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Abstract

Cobots are robots specialized in collaborating with a
human to do a task. These cobots needs to be easily
re-programmed in order to adapt to a new task. Learn-
ing by Demonstration enables a non-expert user to pro-
gram a cobot by demonstrating how to realize the task.
Once the learning is done, the user can only improve the
learning by adding new demonstrations or deleting ex-
isting ones. In this article, the proposed model gives the
possibility to the user to impact the learning by choosing
which parts of the demonstration has more importance.
This model uses an extended version of Gaussian Mix-
ture Model (GMM) with weighted data coupled with
Gaussian Mixture Regression (GMR). This architecture
was tested with two different tasks and with two robots.
Results indicate better generated trajectory with the pro-
posed approach.

Introduction

Collaborative robots, or cobots, are developed to help hu-
mans in different situations such as factories, homes, or hos-
pitals. Contrary to robots, cobots work in the same envi-
ronment as a human to achieve a task together (El Zaatari
et al. 2019). These cobots need to learn how to move be-
fore doing the collaborative work. Learning by Demonstra-
tion (Zhu and Hu 2018; Calinon 2009; Argall et al. 2009;
Ravichandar et al. 2020; Chernova and Thomaz 2014) en-
ables a non-expert user to easily teach a task to a cobot by
demonstrating the correct movement. One possible way to
demonstrate a movement is by physically moving the arm
of the cobot. This type of demonstration is called kines-
thetic (Zhu and Hu 2018; Calinon 2009; Argall et al. 2009;
Ravichandar et al. 2020; Chernova and Thomaz 2014). The
joints of the robot or the position of the end effector are di-
rectly recorded. So, there is no correspondence issue be-
tween the demonstrations and the movement’s possibilities
of the cobot (Chernova and Thomaz 2014). The user im-
plicitly feels the arm’s limits so the demonstration will be
within the robot’s workspace. Because of the added noise
due to human manipulation, the kinesthetic demonstrations
are not accurate (Chernova and Thomaz 2014). Therefore,
doing multiple demonstrations for a single task improves the
learning (Calinon 2009).
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Learning by Demonstration, as its name indicates, uses
demonstrations to learn. Without changes to the demonstra-
tion or with new entries, the model cannot create another
learned trajectory. If the model includes weights on data,
the user can choose weights to impact the learning. We pro-
pose to add the human-in-the-loop by coupling an extended
version of Gaussian Mixture Model (GMM) with weighted
data with Gaussian Mixture Regression (GMR) in the con-
text of Learning by Demonstration.

The article is organized as follows. Related work is de-
scribed before the presentation of the algorithms used in our
approach. The proposed model and its experience with the
results are described in order to arrive at the conclusion and
perspectives.

Related work

Learning by Demonstration involves a teacher who teaches,
with demonstrations, how to perform a task to a robot. This
learning may have two level (Calinon 2009; Chernova and
Thomaz 2014): the high-level learning (symbolic learning)
and the low-level learning (trajectory learning). The high-
level learning extracts primitive or atomic actions of a task
and created a symbolic representation of the logic sequence
of atomic actions. The logic is defined by rules. This level
of learning needs pre-existing atomic actions and additional
data such as the position and orientation of the object or the
state of the environment. In contrary, the low-level learning
is based on the trajectory. This learning cannot adapt the
trajectory to a new constraints such as a new position of the
objects nor learning complex tasks. The learning needs only
joint values of the robot. In this article, we focus on the
low-level learning.

One common method to encode a movement is Dy-
namic Movement Primitives (DMP) (Ijspeert et al. 2013;
Ijspeert, Nakanishi, and Schaal 2002; Schaal 2006; Schaal,
Mohajerian, and Ijspeert 2007). This technique converts
a demonstration into non-linear differential equations ro-
bust to external perturbations. DMP runs with only a sin-
gle demonstration. Mixture of Motor Primitives (MoMP)
(Miilling et al. 2013) joins multiple DMP to generalize a
movement. Each demonstration is encoded with a DMP.

Hidden Markov Model (HMM) is a finite probabilistic
state machine which splits a trajectory in states. Each state
is modeled with a gaussian distribution. With HMM, the



trajectory can be generated with interpolation or spline be-
tween key-points (Aleotti and Caselli 2005; Asfour et al.
2008; Billard, Calinon, and Guenter 2006; Brand and Hertz-
mann 2000; Calinon, Guenter, and Billard 2005; Calinon
and Billard 2004) or with Gaussian Mixture Regression
(GMR) (Calinon et al. 2010). Task-Parameterized Hid-
den Semi-Markov Model (TP-HSMM) (Pignat and Calinon
2017) uses Semi-Markov process combined with a model
of parameterized tasks to adapt the movement with different
environmental conditions.

Another model of Learning by Demonstration is the
Gaussian Mixture Model (GMM). GMM encodes the trajec-
tory of demonstrations with gaussian distributions of vary-
ing importance. The weight given at each gaussian creates a
model of the movement with a mixture of a finite number of
gaussians. The encoding of GMM extracts the constraints
in time and space of the demonstrations. In combination
with GMM, Gaussian Mixture Regression (GMR) generates
the learned trajectory (Calinon, Guenter, and Billard 2007;
Calinon and Billard 2008). Task-Parameterized GMM (TP-
GMM) adds a model of parameterized tasks to deal with
new environmental conditions (Calinon 2016; Rozo et al.
2016). GMM modification (m-GMM) adds an extra step to
the process GMM/GMR by the modification of the means
of learned GMM depending on new objects positions or ob-
stacles. Contrary to TP-GMM, this model does not need
demonstrations in various conditions.

HMM models only key-points contrary to GMM which
encodes continuously the movement. GMM automatically
represents the constraints of the trajectory (Calinon and Bil-
lard 2007). The motion’s generation with GMR creates a
smooth trajectory. In the presented approach, GMM is ex-
tended with weighted data to adapt the generated trajectory
given by GMR to the user preference. The used model is
based on (Gebru et al. 2016) which presented a weighted
version of expectation-maximization (EM) algorithm for
GMM with an application on clustering audio-visual data.

Background
Gaussian Mixture Model

Each demonstration has N; data points of D dimension.
A dataset ¢ with J demonstrations is composed of N data

points with N = Z'le Nj and ¢ = {fj}fle. The gaus-
sian mixture has K gaussian distributions. The probability
density function P(§;) of GMM is defined by Equation 1

(Calinon 2009):
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where the parameters P(k) and P(&;|k) are defined by
Equation 2 and Equation 3. GMM is made up of the param-
eters {7y, uk, Xi } 5, where , is the prior probability, /1
the mean vector and ¥, the covariance matrix of the gaus-
sian k.
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until the log-likelihood £(&;)" of Equation 9 increases of
a threshold C;. The EM algorithm is computed for each
gaussian k. The BIC score is used to define the best number
of gaussians.
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Gaussian Mixture Model with Weighted Data

Gaussian Mixture Model with Weighted data (W-GMM)
(Gebru et al. 2016) is identical to GMM with a weight w; on
each data point. A weight w; > 0 represents the importance
of a given data point, such as this data point is observed w;
times. If w; = 1, the data point has the same importance

than if it did not have weight. Equation 3 becomes Equation
10 because N (&;; pur, i)™ o< N (&5 e, X /wyj).
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As consequence, inside the EM algorithm, Equation 4,
Equation 7 and Equation 8 become respectively Equation
11, Equation 12 and Equation 13.

v TR N pgs B/ w;g)

Prj = , e (1)

TN TN (G, B fws)

N "
wr1 _ 2j=1 Wik 12
k - N w ( )
Zj:l Wj Py, j
N m u u
wil Zj:l wjpp; (& — NkH) (& — NkH)T
= ’ (13)
B}

W-GMM has no impact on the formulation of GMR equa-
tions. Only the parameters learned by the GMM are influ-
enced by the weights.



Gaussian Mixture Regression

The learned GMM parameters yj, and X are used by the
GMR to generate a trajectory. The dataset £ = ﬁgf L9}
contains the position vectors £© at the time step ¢/. Equa-
tion 14 gives the components of the mean i, and the covari-
ance Y.
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The trajectory é is generated by Equation 15:
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Contribution
Our approach

Our model proposes an extension to existing GMM/GMR
with W-GMM (Gebru et al. 2016) in place of GMM.
Weights for each data are chosen by the user to improve
the learned trajectory depending on important points. With-
out weighted data, GMM/GMR accuracy depends only on
demonstrations. In this case, the learning can only be im-
proved by adding or deleting demonstrations. If all demon-
strations are efficient and the generated trajectory not accu-
rate enough, it is impossible to further improve the learning.
Whereas weighted data can improve the learning and thus
the generated motion.

Data from demonstrations can be in joint mode or in carte-
sian mode. In joint mode, data is the position or speed of the
joints of the robot. In cartesian mode, data corresponds to
the position of the end effector of the robot (position and
rotation). In this mode, it is common to give all data to
the GMM algorithm. The number of gaussians is therefore
the same for each dimension of data. We called this use of
GMM, the multiple mode. In the case of joint mode, giving
all joint in the algorithm may not be efficient. A joint may
need a smaller number of gaussians than another one; if it is
not often used for example. In this case, running new GMM
for each joint may be more relevant. We called it the single
mode. These two modes (single and multiple) are compared
in the following experience.

Experimentation

Procedure In the experience, the joints angles are
recorded during demonstrations. Before the learning, the
data needs to be temporally aligned and filtered. When
someone teaches a movement to a robot, it is impossible to
reproduce the same trajectory at the exact same speed so the
temporal alignment is indispensable. A human may com-
mit mistakes or add unwanted noise. These errors need to
be removed. Without these two pre-processes, the result of

the learning will be impacted because it depends only on the
quality of the demonstrations. The temporal alignment is
done with the proportionality in case all data is not periodic
because of potential data losses. The filtering or selection
of demonstrations is realized with Dynamic Time Warping
(DTW) (Berndt and Clifford 1994). Three algorithms are
tested:

* Baseline: GMM/GMR multiple mode (GG-mult),
* Proposition 1: GMM/GMR single mode (GG-sing),
* Proposition 2: W-GMM/GMR single mode (WGG-sing).

W-GMM/GMR was not tested with the multiple mode. In
fact, this mode which is not suitable for joint values and thus
poorly generated the trajectory.

The learning is difficult when data contains fast varying
movement regarding the sampling frequency such as a si-
nusoid movement. The chosen tasks for the experience are
Wave and Goblet_into_Mug, as shown in Figure 1. The
task Wave consists of waving a greeting. The task Gob-
let_into_Mug (GiM) aims to place a goblet into a mug. The
task Wave is done with the robots Nao and YuMi. The other
task is realized only with the YuMi robot. Data from Nao
is recorded at 15 Hz and 250 Hz for YuMi. For each task,
ten good demonstrations are performed. Data from these
demonstrations is refined using the two pre-processing ex-
plained earlier then the learning starts.

Figure 1: Experimental setup. From left to right: Nao task
Wave, YuMi task Wave, YuMi task Goblet_into_Mug (GiM)
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Figure 2: Weighted data on each task and the generated
movement with WGG-sing. (a) Nao task Wave, (b) YuMi
task Wave, (c¢) YuMi task GiM

For the WGG-sing, the weighted data are represented in
Figure 2. The chosen weight, determined empirically, is dif-



ferent for each task. The weights chosen for each task il-
lustrate some of the possibilities given by the weighted data.
With Nao and the task Wave, all data are weighted with 1.15.
Weighting all data points helps the learning when the sam-
pling frequency is low. Although not intuitive, weighting
all data with a value greater than one has an impact on the
learning. For YuMi and the task Wave, the peaks of the sinu-
soid are weighted with 9.5. For YuMi GiM, the data points
of a chosen demonstration get the weight of 5. Weighting
a single demonstration, considered as the right one to fol-
low, steers the learning by a specific trajectory. Except when
weighting is applied on all data points or on a single demon-
stration, the points to weight are easily chosen by selecting
points above or under a specific joint value or by choosing a
time window.

Measures The success of a trajectory is hard to define
because it is not possible to compare the generated move-
ment with the perfect one which is unknown. The choice
of the measures in the field of Learning by Demonstra-
tion is still an open challenge (Chernova and Thomaz 2014;
Argall et al. 2009) The success of the learning is measured
with a success rate, the Mean Squared Error (MSE) and the
Mean Absolute Error (MAE). The success rate is a score out
of 100, see Table 1. The value O corresponds to an absolute
failure and 100 to a perfect success of the task. The suc-
cess rate is divided into two equal part. The first part evalu-
ates the success of the task and the second part assesses the
quality of the achievement of the task. MSE and MAE are
computed between the generated movement and all demon-
strations. For a single task, a single value for the MSE and
MAE is computed by meaning MSE/MAE over all demon-
strations.

Table 1: Detailed Success Rate
Success rate out of 100

50 | The goal of the task is successful.

25 | None of the motion interferes with the task.

10 | The movement is done without useless motions.

10 | The robot moves during all the tasks without errors.
5 | The movement is smooth.

Results The results of the experience are presented in Ta-
ble 2 for the success rate and in Table 3 for the MSE/MAE.
The generated trajectory for each model is displayed in Fig-
ure 3 for Nao task Wave, Figure 4 for YuMi task Wave and
Figure 5 for YuMi task GiM.

GMM/GMR with the multiple mode gives the worse re-
sults with all metrics. Indeed, this model attributes the same
number of gaussians for each joint so the generated trajec-
tory is not the optimal one. GMM/GMR with the single
mode increases the results compared to the multiple mode.
GMM/GMR with weighted data improves the single mode
by helping the learning when needed. This model gets the
best results regarding the success rate of each task. MSE
and MAE are better with the weighted data model except
for YuMi task Wave. Figure 4 shows that GMM/GMR with
weighted data are the only model able to follow the sinu-
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Figure 3: Result of the experience: Generated movement
with Nao, task Wave

soid in the axis 3 of the right arm (RAxis 3). As a conse-
quence, this model has the best success rate because it is
the only one replicating the right waving sequence of the
motion. With Nao robot, W-GMM/GMR single mode with
weight on each data points reduces the impact of the low
sampling frequency which complicated the learning specifi-
cally in case of sudden changes. The model can also weight
a specific demonstration in order to steer the learning to a
user chosen good demonstration, such as YuMi task GiM.

Table 2: Results of the experience: Success Rate

Success Rate | Nao Wave | YuMi Wave | YuMi GiM
GG-mult 75 38 35
GG-sing 92 45 40
WGG-sing 98 60 55

Table 3: Results of the experience: MSE and MAE

MSE/MAE Nao Wave YuMi Wave YuMi GiM

GG-mult 0.0184/0.0556 | 0.0487/0.0693 | 0.0084 /0.0390
GG-sing 0.0094 7 0.0453 | 0.0460/0.0668 | 0.0171/0.0465
WGG-sing | 0.0077 /0.0422 | 0.0684/0.0728 | 0.0077 / 0.0342

In case of data with joint values, GMM/GMR works bet-
ter if it is used in single mode. The single mode can be im-
proved by weighting some data points, chosen by the user.
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Figure 4: Result of the experience: Generated movement
with YuMi, task Wave

Conclusion

Learning by Demonstration becomes a good way to program
a cobot by a non-expert user. The model GMM/GMR ex-
tracts the main constraints of the task from demonstration to
generate a trajectory. The proposed approach extends this
model with weighted data. The user chooses which data
has more importance to improve the generated movement.
This model has been tested on different tasks and robots.
GMM/GMR has issues in modeling data containing quick
changes. Using weighted data allows these curves to be
learned better. The proposed approach can be further im-
proved by adding an automatic algorithm which defines the
best value of weight depending on chosen data points. This
improvement will simplify the programming process of a
cobot with the proposed learning approach for a non-expert
user.
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