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Abstract
Wolves are spreading in the Alpine region at an increasing
rate, which leads to human–wolf conflicts. In order to reduce
those and to perform an active wolf management, solid infor-
mation about the presence of wolves is required. Getting this
information is challenging since wolves are nocturnal, have
sharp senses, and large territories. A monitoring method is to
detect wolf howling, which can be heard over several kilo-
metres and therefore simplifies finding them. Current acous-
tic methods, however, are very labour-intensive as a memory
card has to be fetched from the device in the field and then
the recordings have to be checked for howling manually. We
present a novel approach to acoustic wolf monitoring using a
convolutional neural network that runs on an embedded sys-
tem in the wolf territory. Thus, we obtain accurate real-time
information about the presence of wolves. On our data set,
we achieve an F1-score of 0.61, thus outperforming previous
systems by far. We develop prototypes and conduct two field
test: first in a zoo, where we even achieve an F1-score of 0.8,
and then in a wolf territory, where we successfully detect wolf
howling.

Introduction
After the wolf (Canis lupus italicus) disappeared in the sec-
ond half of the 19th century, it returned to Switzerland in
1995 (Breitenmoser and Breitenmoser-Würsten 2001) and
has since been spreading increasingly in the Alpine region.
This leads to many human–wolf conflicts because of the
wolves’ killing of livestock. Wolves are mostly shy and se-
cretive animals. Finding out if and how many wolves are
present in an area is a big challenge. However, a solid
database on wolves is crucial for functioning wolf manage-
ment.

There are various methods to detect wolves. The best
known methods are DNA analysis, GPS tracking, searching
for footprints, photo trap monitoring, and acoustic monitor-
ing. While the first four methods require knowledge about
the routes and movements of wolves, the acoustic method
makes it possible to cover wolf territories over a large area.
The howling of wolves can be heard over three kilome-
tres (Suter et al. 2017). Thus, one microphone can theoret-
ically cover an area of 28 km2. A wolf territory in Switzer-
land is approximately 250 km2 (Blanché, Jaeger, and Op-
permann 2006). Hence, one can monitor a territory with less
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than ten microphones. The range also allows us to use mi-
crophones for opportunistic monitoring of wolves in areas
with unknown wolf activity.

As wolves are spreading faster and faster, biologists and
rangers in Switzerland face another problem: The human
resources are soon no longer sufficient to generate a good
database through extensive field work. Therefore, it is nec-
essary to have a monitoring method that is cheap, automated,
and scalable.

We present a novel method for automated wolf monitor-
ing using deep learning on the edge. Our work substantially
improves current methods of acoustic monitoring.

First, we developed a Convolutional Neural Network
(CNN) and the corresponding feature preprocessing for de-
tecting wolf howls. This CNN runs on an embedded system,
which allows for real-time detections in the field.

Finally, we have developed a prototype, called Wolf-Box,
and performed field tests in Switzerland. Our results show
that our approach provides better detection results (F1-
score) on the edge than existing off-line acoustic wolf howl
detection algorithms. The results show that the system is a
promising candidate to realize large-scale wolf monitoring.

Related Work
The active acoustic monitoring method of so-called invasive
howling is controversial. It involves playing the howling of
wolves in an attempt to artificially provoke a response (Rein-
hardt et al. 2015). Wolves not only communicate within the
pack with the howl, but also to assert their territory against
strangers. The artificial howls can thus cause unnecessary
stress because the territorial fights of the wolves are often
deadly (Halfpenny 2003). The Howlbox is a project from
North America that relied on this kind of invasive howling.
The box played a wolf howl at 6pm and 6am. Afterwards,
a microphone recorded for two minutes. Since the Howlbox
records only four minutes per night, automated analysis is
not necessary. The researchers tested the setup in Idaho with
two different wolf packs. Thanks to the fact that the wolves
wore transmitting collars, it was possible to go directly to
the rendezvous sites. After three days, twelve artificial howls
elicited a response from the wolves four times(Ausband,
Skrivseth, and Mitchell 2011).

In another experiment with seven wolf packs during the
Wyoming winter, the response rate was only 1.1%. How-



ever, it had wolf tracks less than 50 meters from the Howl-
box 14.8% of the time. Whether the artificial howl or the
human scent attracted the wolves could not be conclusively
determined. What is clear is that the wolves were present
and did not respond (Brennan et al. 2013).

For our work, we use the passive method, where one
waits for the wolves to start howling by themselves. A first
feasibility study on non-invasive acoustic wolf monitoring
has been carried out in (Suter et al. 2017). They showed
that howling can be recorded on distances as far as 3 km.
The devices used in their study recorded for 11 consecutive
hours each night. Each audio recording was then visually
scanned by the authors to detect wolves. During the biolog-
ical year 2019/20, wolf monitoring was carried out in the
Swiss Jura Mountains and adjacent areas in France where,
among other techniques, the Wolf Detection App was em-
ployed (Zimmermann et al. 2020). To determine whether
howling occurred, this app relies on mel-frequency cepstral
coefficients. If howling is recognized, a sample of two sec-
onds is recorded. This method has a high false-positive rate:
about 200 sequences were classified as wolf each night and
had to be analysed by the researchers. Moreover, it was nec-
essary to go to the recording device to fetch the SD card with
the recordings.

Requirements
In this section, we address the requirements placed on the
monitoring method by the various stakeholders. The stake-
holders are the wolf, the users of the equipment, mostly bi-
ologists and rangers, and nature itself.

Wolf The howling serves the wolves to know which in-
dividuals are where (Harrington 2015). This is especially
important during the mating season in March. The highest
howling activity occurs in late summer during the rearing of
the young from the age of a few weeks (Nowak et al. 2007).

Wolf howls vary a lot. We differentiate between sin-
gle howls (0.7–14 seconds long) and chorus howls, when
the whole pack howls (on average 90 seconds long (Suter
2019)). We evaluated the data from the Swiss monitoring,
where howling activities, not necessarily continuous, lasted
for 4.56 minutes on average.

According to the literature, the frequency range in which
mature wolves howl is 150–780 Hz. Juveniles howl at higher
frequencies of around 1000 Hz (Nietlisbach 2014).

In zoos, we know that the wolves howl daily (Nietlisbach
2014). However, in nature, it is much harder to detect the
howling due to their wide-ranging territories.

Moreover, wolves are predominantly nocturnal and there-
fore almost exclusively howl in darkness. The Swiss wolf
monitoring has pursued evaluation of the howling activities
by setting up recorders at different locations on wolves ter-
ritories. Figure 1 shows an overview of the observed results.

Further evaluations on the recordings have shown that
the wolves can be detected on average 19 times per season,
which is about once a week, for each location.

Considering the microphones can be partly switched off
during the day, we can conclude that, by splitting the record-

ings into 10 second sequences, we should expect about one
wolf howling sequence for 2000 “non-wolf” sequences that
do not contain any howling.

Figure 1: Wolves mostly howl before midnight and in the
early morning.

User of Equipment The device should be easy to use for
non-technical users. It should have at least a month of bat-
tery life and be light and small, since some monitoring loca-
tions are difficult to reach. The device shall transmit detec-
tions of the presence of wolves from the field to the user.

We prefer low false-negative rates to detect as many
wolves as possible. This usually comes at the cost of more
false-positive detections, which means more effort for the
operators to evaluate the transmitted detection.

Nature The landscape presents challenges to our technol-
ogy regarding acoustics. Weather and animals present chal-
lenges for robustness.

The landscape affects the soundscape, the attenuation of
sound waves, and network coverage. Especially if there are
many small side valleys or hills, the howling can be heard
over smaller distances only. There is also the factor of net-
work coverage. We need sufficient reception in order for the
data to be sent from the field.

Weather requires that the installation is robust. Tempera-
ture, in particular, is a challenge. The electronics functions
at temperatures between -20 C to 70 C. For the battery, how-
ever, temperatures close to freezing mean a reduction in run-
time.

Different animal species place requirements on the hard-
ware. Experience with camera traps has shown that, in par-
ticular, the marten is a challenge as it bites into cables and
housings. Moreover, invertebrates could cause problems.
They fit into almost all openings and could therefore enter
the device.

Data
The wolf dataset consists mainly of data from the Swiss
acoustic wolf monitoring, supplemented with recordings
from Wild Sweden and the Cornell Lab of Ornithology. In



total, it contains 1300 wolf howl recordings with a total
length of 24 hours.

False-Positives
The non-wolf dataset consists of recordings of the natural
environment of the monitoring locations and additional spe-
cific sounds that often trigger false positives. These can be
categorized into three different classes:

• Background noises that were on wolf recordings. These
noises include heavy winds, rain, and cow bells.

• Noise from vehicles like cars, planes, and motorcycles.

• Wildlife that makes similar sounds. This includes vari-
ous bird species like pigeons, owls, and cuckoos (see Fig-
ure 2).

Figure 2: On the left, a spectrogram of a clear howling of
two adult wolves can be seen. In the middle and on the right,
we see the sounds of two animals that often trigger false
positives.

Preprocessing
Preprocessing of the data, which is stored in waveform audio
file format, consists of eight steps (Figure 3):

Figure 3: Preprocessing steps

1. Cut the recordings into 10 second sequences. With this
length, we can do justice to the single howlers as well as
the choir howlers.

2. Set the sample rate to 4000Hz.

3. Truncate the frequency below 20Hz and above 1600Hz
with a Butterworth filter of order 6.

4. Convert audio files into spectrograms using the Short-
time Fourier transform (STFT).

5. Map the frequency scale onto the Mel scale to form a Mel
spectrogram.

6. Resize the images to 64 x 64 pixels.
7. Standardize the pixels with the means and standard devi-

ations obtained in each time step.
8. Quantize the data during inference on the embedded sys-

tem from 32-bit float to 8-bit integer values for compati-
bility with the edge neural network.

Deep Learning
We first looked at various architectures that delivered
promising results for classification of bats, birds, and
whales (Harvey 2018; Nanni et al. 2020). However, there,
four input channels are used whereas we want to work with
one channel, the spectrogram.

We then decided to use a custom architecture for the
CNN after experiments with other models showed various
problems. For instance, the ResNet architecture (He et al.
2016), which was successfully employed for acoustic orca
detection (Bergler et al. 2019), was too complex to run ef-
ficiently on the Coral USB Accelerator whereas the Mo-
bileNet (Howard et al. 2017) architecture (which is particu-
larly well-suited for embedded systems) had large accuracy
losses after quantization.

Our model consists of nine convolutional layers and three
max pooling layers in between. The number of filters was
increased in each layer, except in the last two. A constant
kernel size of three was chosen. With two dropout layers
that randomly set inputs to 0, overfitting is reduced. After
converting to an edge Tensor Processing Unit (TPU) model,
this custom architecture gave the best results.

We used the following parameters:
Activation Function: We have chosen the usual Rectified

Linear Unit (ReLU). Other options like Leaky ReLU or
Parametric ReLu did not yield better results.

Optimizer Algorithms: The Adam algorithm has pre-
vailed against RMSprop, Adadelta, and Adagrad.

Loss Function: We use cross entropy loss, which is a pop-
ular loss function in classification problems.

Class Weight: We assigned the non-wolf class 10 times
more weight, which helps to reduce the number of false
positives.

Batch size: We tested batch sizes of 16, 32, 64, 128, and
256. We achieved the best results with a batch size of 128.

Epochs: We trained the CNN for 30 epochs.

Edge TPU Compatibility
The target system for inference is an edge TPU. Hence, we
need to convert the model for compatibility. This means to
quantize the weights to 8-bit integer values. We also have
to convert the model to a TensorFlow light model due to
the reduced operation set allowed on the edge TPU. It also
makes the model much smaller.



Running the CNN on the edge TPU yields a performance
improvement of a factor 500 compared to running it on the
CPU of the edge device (Raspberry Pi Zero). However, the
conversion to the Lite model results in a loss of accuracy,
see Table 1. Still, our results on the edge TPU are substan-
tially better than the performance of the Wolf Detection App,
which is the system currently used by Swiss wolf monitor-
ing.

Method TF TF Lite TPU Wolf Det. App
Recall 0.77 0.70 0.70 0.69
Precision 0.95 0.54 0.54 0.038
F1-Score 0.85 0.61 0.61 0.073

Table 1: Comparison of architectures. TF stands for Tensor-
Flow.

Embedded System
Hardware We built hardware prototypes to run the devel-
oped neural network on the edge in the field. Figure 4 shows
its hardware components.

Figure 4: Hardware architecture

We use a Raspberry Pi Zero W. This fits the application
purpose due to high performance (512 MB RAM, 1 GHz
single kernel CPU) and low power consumption (0.7 W).

We use an MVL lavalier microphone from Sure with a
range from 20 to 20,000 Hz and a signal-to-noise ratio of
65 dB. To digitize the microphone’s recordings, a sound
card (UGREEN USB) connects it to the edge device via a
USB2 port.

On the edge TPU, the inference is performed. That is, an
audio sequence is classified by the finished trained model.
We used the Coral USB Accelerator from Google as the
TPU. It performs the function of the CPU or GPU in terms
of processing the neural network. A TPU is an application-
specific chip specifically designed to efficiently process neu-
ral networks. Edge TPUs are characterized by low power
consumption, compactness and fast processing (Jouppi et al.
2018).

With the sender unit, we want to make a status message
whether the neural network has detected a wolf howl. The
audio sequence in which the howl was detected will be trans-
mitted. The concrete product is the 4G/3G LTE Base HAT
(Hardware Attached on Top) from Sixfab. We use it to es-
tablish an Internet connection via a point-to-point protocol
(PPP) over which e-mails can be sent.

We use the Witty Py to provide a Real Time Clock (RTC)
and power management to the system.

The power supply is the limiting factor of the installa-
tion’s autonomy. We power banks with 111 watt hours
which offer the best price-performance ratio.

Software Figure 5 shows an overview of the software ar-
chitecture.

Figure 5: Software architecture

Recording is done only during the night. The sound is
recorded for 100 seconds at a time. This is then written in
parallel to the next 100 seconds recording in another thread
as a *.wav file. This is repeated constantly during the whole
recording time. For a recording time of eight hours, 288
times in total. This way we can record sound and have as



little missing data between recordings as possible. The files
are named with the timestamp of the howl.

The second step is the preprocessing as described in Sec-
tion Data. After that, power is given to the Coral USB Ac-
celerator, which performs the actual wolf detection. After all
images have been run, a check is made to see if there are any
wolf detections that are less than 40 seconds apart. If so, the
sequences are merged. Then a ten-second snippet is added as
a buffer at the beginning and end of the howling sequence.

Next, the sender is started and the Coral USB Accelera-
tor is shut down. If no wolf was detected, an email contain-
ing status information is sent as a so-called heartbeat. If a
wolf was detected, the same status information is sent, plus
the number of detected sequences and of course the howl
recordings themselves.

All recordings of the night are stored in an archive on
the Raspberry Pi Zero. The recordings in which wolves
were detected are stored separately. Once the files have been
archived, the process is complete and the installation can be
switched off by the Witty Pi.

Field Test
We performed two tests, first a proof of concept test in a
wildlife park and then a field test in a wolf territory.

Proof of Concept
In Wildlife Park Goldau, located in central Switzerland, a
pack of four European gray wolves lives in an almost two
hectare large area together with two Syrian brown bears. The
pack howls daily and is therefore ideally suited for our ex-
perimental setup.

The Wolf-Box was positioned southeast on the opposite
slope of the enclosure at a distance of about 14 meters, fac-
ing north. The maximum distance to the microphone where
the wolves could stay was 140 meters, see Figure 6. In total,
the experiment was in operation for 13 days. Table 2 shows

Figure 6: Situation at Wildlife Park Goldau

the results. During the subsequent evaluation, precision and

Message Recall Precision
Night 1 34 wolf sequences 0.66 1.0
Night 2 8 wolf sequences 1.0 1.0
Night 2 6 wolf sequences 0.54 1.0
Night 4 no howling - -
Night 5 25 wolf sequences 0.92 1.0
Night 6 21 wolf sequences 1.0 0.95
Night 7 battery empty - -
Night 8 11 wolf sequences 1.0 1.0
Night 9 9 wolf sequences 1.0 1.0
Night 10 1253 wolf sequences 0.83 0.008
Night 11 548 wolf sequences 0.62 0.04
Night 12 system malfunction - -
Night 13 7 wolf sequences 0.41 1.0
Average 0.8 0.8

Table 2: Results Wildlife Park Goldau

recall were checked manually. The problem in nights 10 and
11 was that the creek between the microphone and the en-
closure had more water than the days before. When the au-
dio sequences were run on the non-quantized algorithm, it
did not generate these false positives. This shows in practice
that the accuracy of the quantized and converted algorithm
is worse. Despite these false positives, the average F1 score,
over all nights in which wolves were detected, is 0.8. This
result is good enough to continue with the field test in a wolf
territory.

Wolf Territory Test
For the field test, we monitored the Marchairuz pack in the
Swiss canton of Vaud, which formed in 2019 and had off-
spring again in 2020 and 2021 (Gruppe Wolf Schweiz 2022).
Three prototypes of the Wolf-Box were placed in the Mar-
chairuz area. Two devices were in the valley and presumably
close to the pack’s core area. The third installation listened
to the area more extensively from a hill. Unfortunately, one
of the devices in the valley had a technical defect and did
not deliver any data. The other device recorded a wolf howl
that lasted more than two minutes in night 4. Detected were
three of the fourteen parts of this sequence. On night 6, the
noise of a machine was misclassified as a wolf, see Table 3.
No wolf howl and no false positive sequence was detected
by the installation on the hill.

Message Recall Precision
Night 1 no howling - -
Night 2 no howling - -
Night 3 no howling - -
Night 4 3 wolf sequences (TP) 0.21 1.0
Night 5 no howling - -
Night 6 12 wolf sequences (FP) - -
Night 7 no howling - -
Night 8 battery empty - -

Table 3: Results Marchairuz pack



Conclusion
We developed the Wolf-Box, a system for passive acoustic
wolf monitoring. It performs substantially better than pre-
vious systems. We obtain a precision of 0.54 on the TPU
whereas, e.g., the existing wolf detection app only achieves
0.038 on our test data. Also in the field test, our prototype
implementation reliably detected wolf howling. Moreover,
with the current wolf detection app, the memory card has to
be fetched from the device in the field, which can lead to a
delay of several weeks. Our system, on the other hand, sends
the results back each night. Having this real-time informa-
tion is very beneficial for a successful wolf management.

For the future, we need to improve the power consump-
tion of the Wolf-Box in particular, so that it can operate au-
tonomously for a longer time. We are also experimenting
with other CNN architectures. In the lab, we can achieve
even better results than our current prototype. However, this
approach does not yet run on the edge.

One could also push automation even further by having
the algorithm filter out more accurate information, as sug-
gested by (Passilongo et al. 2015): number of individuals,
classification if juveniles are howling or not, identification
of individuals.

Last but not least, our method can be applied to other
species that communicate over long distances. The big cats
lion, tiger, and leopard can also be heard over several kilo-
metres. Further, canine species such as various hyenas would
also be suitable.
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