Automatic verification of multi-agent systems security properties
specified with LTL

Kholud Alghamdi and Marius Silaghi
Florida Institute of Technology

kalghamdi2017 @my.fit.edu, msilaghi @fit.edu

Abstract

We propose a way to verify security requirements of critical
multi-agent system processes by using logic representations
and automatic reasoning. The typical multi-agent system con-
sidered in our work would be an election system with agents
representing their users and aiming to ensure security. Rele-
vant processes are authentication, voting, re-voting, and elec-
tion verification. The security requirements commonly ad-
dressed in such a voting system are: no user can vote un-
less it got authenticated, no invalid vote should be counted,
no vote should be counted twice, and each valid vote should
be eventually counted. We show a model of such security re-
quirements by using system liveness properties, and exem-
plify their verification on a real system that we implement for
this purpose.

Introduction

We exemplify how logic representations can be used to ver-
ify security requirements of multi-agent system processes,
in particular, in the frame of voting systems.

The approach followed uses formal verification and logic
representation to check security requirements with respect
to the behavior/functionality of the main internal processes
in a voting system. The method consists of three phases. A
modeling phase which refers to modeling both the internal
system processes and desirable security requirements. The
second phase, also referred to as the Running Phase, consists
of using a model checking technique to verify the validity of
the properties of the model, and eventually to find any coun-
terexample, if one exists. The last phase, called the Analysis
Phase, uses the result of the Running Phase to either accept
the design or to change it and return to phase one.

In order to evaluate the proposed method’s potential for
verifying security requirements we implement a realistic
voting system as reference. The main processes supported
by this voting system are: authentication, voting, and ver-
ification of election. We model these processes individu-
ally. To also model the security requirements, we start by
defining them unambiguously in natural language. Based on
this definition, a Linear Temporal Logic (LTL) specifica-
tion is formulated. All LTL formulas obtained are converted
to non-deterministic Biichi automata (B A) models (Richard
and others 1962; Gastin and Oddoux 2001), namely models

Copyright © 2022 by the authors. All rights reserved.

based on non-deterministic finite state machines with tran-
sitions on inputs and that accept sequences with infinitely
occurring states respecting the acceptance condition.

We here observe that security requirements can be mod-
eled with liveness properties that map easily into such ac-
ceptance conditions.

This study shows that security requirements of the internal
multi-agents system processes can be tested based on live-
ness system properties when they are modelled with Linear
Temporal Logic representations.

This paper is structured as follows. After the background
and related work is detailed, the proposed illustrative models
are formalized, and the experiment is detailed. We conclude
after the analysis of the experiment.

Background

Model checking is a research area concerned with verifying
whether the model of a system satisfies given specifications
or not. It requires two things; a mathematical (or an abstract)
model of the system under test and specifications of the de-
sired behaviors or requirements. By specifications one refers
to formal definitions of properties we want the model to sat-
isfy. Some properties can be described as invariants. If the
invariant is not violated, that means it holds for infinite many
states in the future of the model evolution. If there is a sin-
gle violation of a given property, then the counterexample
can be found (Clarke Jr et al. 2018).

A mathematical model of a system in this context refers
to the specification of system state transitions as a tuple 7' =
(S,1,A,0,AP, L), where:

* S'is the set of possible states,
¢ [is the initial state distribution,
¢ Ais aset of inputs,

e ¢ is a relation modelling potentially non-deterministic
transitions between any two states given an input,

e AP is a set of atomic propositions which are either true
or false at any given time,

e L is a labeling function telling which members of AP
hold true for each state.

The automata defined by 7" accepts inputs from A as spec-
ified in § and non-deterministically produces sequences of

states, which by virtue of L translate into sequences of cor-
responding sets of atomic propositions from AP, denoted
) (Miiller-Olm, Schmidt, and Steffen 1999).

An abstract model (Giunchiglia, Villafiorita, and Walsh
1997) of a system in this context refers to representation with
a language that skips certain details.

Linear Temporal Logic A logic system commonly used
to reason with complex dynamic systems is the Linear Tem-
poral Logic (LTL) (Rescher and Urquhart 1971; Francez and
Pnueli 1978; Rozier 2011).

LTL is based on a finite set of atomic propositions, can be
equipped with logical or temporal operators such as the tem-
poral connectives: until denoted U, release denoted R, next
denoted X or (), globally or always in the future denoted
G or [. next X 7 means that 7 is true in the next time step
after the current one. { means eventually will happen in the
future and 4 means eventually happened at some time in the
past.

For example, # U ¥ means that either ¥ is true now or
7 is true now and 7 remains true at least until ¥ holds. On
the other hand, 7 R ¥ means 7 releases W, specifies that ¥
should be true now and remains true until 7 is true, inclu-
sively.

Furthermore, LTL is commonly used for formally describ-
ing properties of dynamic systems. It allows representing
many real verbal English language requirements with un-
ambiguous logic expressions.

The basis of LTL is propositional logic, with the main dif-
ference lying in the addition of temporal operators. Tempo-
ral logic allows for making deductive arguments about not
only what is, but what was, what will be, what has always
been and what always will be.

Common LTL-provable attributes of a system are phrased
as liveness, safety, correctness, or invariants (Rescher and
Urquhart 1971). Liveness is the property stating that a given
predicate keeps happening past any specific time in the fu-
ture.

An LTL property ¢ can be used to specify a system re-
quirement such that it can be formally proven. The main goal
of model checking is to analyze the system model when rea-
soning about properties of infinite sequences of states it can
generate.

Every valid LTL formula can be translated to a corre-
sponding Biichi Automaton that accepts all and only the infi-
nite traces that satisfy the formula (Vardi and Wolper 1986).
The Biichi automaton obtained by conversion from an LTL
formula ¢ is denoted by B ¢.

To show that a system model satisfies an LTL formula ¢,
this formula is commonly converted to a Biichi Automata.

Biichi Automata Biichi Automata are often used in model
checking as an automata-theoretic version of a formula in
linear temporal logic. According to (Richard and others
1962; Gastin and Oddoux 2001) a Biichi automaton is a fi-
nite automaton and for non-deterministic systems it can be
defined as A = (Q, %, 9, I, F') where:

¢ () is a finite set of states

* ¥ is a finite set of inputs, (aka. the alphabet)

* 0 CQ x X xQ,is called the transition relation
e I C @ is the set of initial states

e F C (@ is the set of accepting states

Static code analysis is an automatic program checking
process commonly implemented with two components: an
automaton and the inputs for this automaton. It requires to
extracts the input from the source code of the system that
needs to be verified, and feed it into the automaton. It re-
quires that the source code is first translated into an interme-
diate model for analysis and a call graph is generated from
the source code.

Each path contained in the call graph is considered as an
input path for the automaton for the property checking.

To start the process of model checking, the ¢ must be con-
verted to B ¢ such that the inputs to the B ¢ are from A as
specified in 6. If all the inputs are accepted in B ¢, then
we can conclude that the model satisfies the property by the
definition of BA. If there is at least one counterexample that
is not accepted in B ¢, then the model is not satisfying the
property.

LTL2BA (Gastin and Oddoux 2001) is an available soft-
ware used to translate the LTL formulas into Biichi automa-
ton and it draws automatically the resulting automaton and
generates the PROMELA codes which can be given to a
model checker to verify properties on a system.
PROMELA stands for Process meta language, and it is
composed of global declarations such as shared variables,
communication channels, and process types. PROMELA is
a language used to build verification models. The verifica-
tion model represents the abstraction of a design and con-
tains only the properties relevant for the desired verification.

Models

In our approach, the internal processes are modelled indi-
vidually. These are: the authentication process, the voting
process, and the election verification process.

We make use of temporal descriptions in security re-
quirements, such as “’the voter should be successfully au-

93 99

thenticated as a precondition of casting the vote”, a vote
should be eventually counted after it is cast”, ”a voter should
eventually receive a confirmation message after he/she has
voted”. We utilize words like “’precondition”, before”, and
“after” to show that some actions will or should happen in
some sequence.

We note that types of temporal descriptions occurring in
our cases of interest can be formulated as liveness properties.
Liveness properties state that a given predicate eventually
holds at moments past any specific time in the future.

To illustrate the approach, in the following, we used linear
temporal logic to formulate liveness properties describing
system security requirements:

e Formula 1: OJ (Signin (Valid-Username, Valid-Password)
— ¢ Verified (Valid-Username, Valid-Password))

e Formula 2: [(Verified (Valid-Username, Valid-
Password) — ¢ Receive (Unique-Code))

¢ Formula 3: [J (Cast (vote) — ¢ (Counted (vote) A Con-
firmed(vote)))

The current working assumptions, that are included as
limitations in the attacker model of this research step, state
that computer hardware will not fail, Internet and SMS com-
munication is reliable and private, and human participants
will physically be unconstrained and actively participating
during the whole process. Relaxations of these assumptions
are subject of future work.

The first aforementioned sample LTL statement specifies
that whenever a sign-in action happens for a valid user, then
sometime later there will be a verification action taking place
and qualifying him. Further, according to the second state-
ment, whenever the user is verified, then sometime later he
receives a unique-code as a token for casting a vote. Third,
whenever a vote is cast, then sometime later the confirmation
message must be generated and the vote is counted.

After that, tools such as LTL2BA are found to be able to
create the Biichi automaton from such LTL properties. The
automaton generated in this way is specified in PROMELA.

The call graph of the source code is built and it is focused
only on function calls, then execution paths of the imple-
mentation are also provided as the traversal from root to end
nodes.

For example, verification pseudo code corresponding to
the automata generated for the first LTL property is shown
in Algorithm 1.

signin ();

getVerified ();

signin-completion ();

while (valid-username, valid-password) do
| getVerified ();

Algorithm 1: Pseudo-code Property |

As shown in the Pseudo-code, the function names are: {
signin, getVerified, signin-completion }

The path illustrated in Algorithm 1 is extracted from the
call graph of these functions.

The Biichi automata would be fed by the set of this paths
as inputs. Then, if the paths from the input set end in the
accepting state, which is the init” state, the property is
achieved. In contrast, if the paths end up in a non-accepting
state 17, then the property is not guaranteed.

Experiment

The proposed process is experimented with a voting system
developed for Saudi Arabia’s business performance contests
organized under the public administration.

The aforementioned formulas ¢ are translated into a
Buchi automaton B ¢ as shown in the next figures gener-
ated automatically by LTL2BA.

°'- Isignin) || (getVerified)

getVerified

”signin” means any event but signin, and (| |) is utilized to
match either not signin or getVerified.

”lgetVerified ” means any event but getVerified, and (| |)
is utilized to match either not getVerified or receiveUnique-
Code.

' lcastVote) || (sendConfirm)

sendConfirm

”lIcastVote ” means any event but castVote, and (| |) is uti-
lized to match either not castVote or sendConfirm.

In each of these examples there are two states. As named
by the LTL2BA tool generating the automata, the "init” state
is the accepting state while both states of the automaton
can be initial states. The transition labels are the predicate
names. Label ”’1” matches any predicate name.

For each BA, a PROMELA code is generated, as shown
below:

First Biichi Automata Code
never {
/* O (signin — ¢ getVerified) */
accept-init : /* init */
if
:: (!signin) | | (getVerified) — goto accept-init
2 (1) — goto TO-S2

TO-S2:/* 1 */

if

.1 (getVerified) — goto accept-init
2 (1) — goto TO-S2

fi;
}

Second Biichi Automata Code

never {

/* [0 (getVerified — ¢ receiveUniqueCode) */

accept-init : /* init */

if

:: (!getVerified) | | (receiveUniqueCode) — goto accept-
init
2 (1) — goto TO-S2
fi;
TO-S2: /%1 */
if
:: (receiveUniqueCode) — goto accept-init
2 (1) — goto TO-S2
fi;
}

Third Biichi Automata Code
never {
/* [(castVote — ¢ sendConfirm) */
accept-init : /* init */
if
i (IcastVote) | | (sendConfirm) — goto accept-init
2 (1) — goto TO-S2
fi;
TO-S2: /% 1 */
if
:: (sendConfirm) — goto accept-init
2 (1) — goto TO-S2
fi;
}
For example, a fragment of the function call graph corre-
sponding to the authentication process in the source code is
shown below.

voting.system.dev.hean.user.

//" getVerified
voting.system.dev.controller. voting.system.dev.common.c
logingControllersignin " ryptwithSHE256
\ voting.system.dev.hean.user.
getPassword

The extracted path from the source code of the authenti-
cation process is: { signin, getVerified, signin-completion }

A sample input for the first Biichi automaton is the set
of path: { {signin, getVerified, signin-completion, getVeri-
fied}; {signin, getVerified, signin-completion, getVerified};
{signin, getVerified, signin-completion, getVerified, getVer-
ified } }

As noted, all input sets end in “init”” state which is the
accepting state, therefore the property is achieved with this
sample.

999

Conclusion

Important processes like voting and its verification are fre-
quently implemented by programmers and are known to be
error prone and be subject to many security challenges. Au-
tomatic verification is proposed as a design and implementa-
tion step to increase robustness. Security requirements mod-
eled using Liner Temporal Logic (LTL) are verified directly
using the source code.

It is showed that the security requirements of the internal
multi-agents system processes can be tested based on live-
ness system properties when they are modelled with linear
temporal logic representations.

It is observed that all the identified security properties that
we wanted to pose at this stage were naturally implemented
in LTL. The concept was tested on a sample voting system
developed for Saudi business performance contests.

Properties in LTL are further translated into Buchi au-
tomata (BA). We present such translations using Buchi au-
tomata, then write the pseudo-code based on the automata
PROMELA code. We showed that the corresponding prop-
erties of the security requirements can be verified with the
automatic system. Thus a step is achieved towards the use of
artificial intelligence for guaranteeing security properties in
election systems.

References

Clarke Jr, E. M.; Grumberg, O.; Kroening, D.; Peled, D.; and
Veith, H. 2018. Model checking. MIT press.

Francez, N., and Pnueli, A. 1978. A proof method for cyclic
programs. Acta Informatica 9(2):133-157.

Gastin, P., and Oddoux, D. 2001. Fast 1t] to biichi automata
translation. In International Conference on Computer Aided
Verification, 53—65. Springer.

Giunchiglia, F.; Villafiorita, A.; and Walsh, T. 1997. Theo-
ries of abstraction. AI communications 10(3, 4):167-176.

Miiller-Olm, M.; Schmidt, D.; and Steffen, B. 1999. Model-
checking. In International Static Analysis Symposium, 330—
354. Springer.

Rescher, N., and Urquhart, A. 1971. Temporal logic springer
verlag. Vienna-New York.

Richard, B., et al. 1962. On a decision method in re-
stricted second order arithmetic. In Proc. of the Interna-
tional Congress on Logic, Method and Philosophy of Sci-
ence, 1962, 425-435. Stanford University Press.

Rozier, K. Y. 2011. Survey: Linear Temporal Logic Sym-
bolic Model Checking. Computer Science Review 5(2):163—
203.

Vardi, M. Y., and Wolper, P. 1986. An automata-theoretic
approach to automatic program verification. In Proceedings

of the First Symposium on Logic in Computer Science, 322—
331. IEEE Computer Society.

