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Abstract

In class-incremental learning, the objective is to learn
a number of classes sequentially without having access
to the whole training data. However, due to a problem
known as catastrophic forgetting, neural networks suf-
fer substantial performance drop in such settings. The
problem is often approached by experience replay, a
method that stores a limited number of samples to be re-
played in future steps to reduce forgetting of the learned
classes. When using a pretrained network as a feature
extractor, we show that instead of training a single clas-
sifier incrementally, it is better to train a number of
specialized classifiers which do not interfere with each
other yet can cooperatively predict a single class. Our
experiments on CIFAR100 dataset show that the pro-
posed method improves the performance over SOTA by
a large margin.

Introduction
Artificial neural networks (ANNs) have been at the top of the
machine learning landscape for a while. While inspired by
the biological brain, still there are some shortcomings that
make them different. Specifically, they are not designed to
learn in an incremental way, as humans do. Humans keep
learning new knowledge throughout their lives. However,
experiments show that ANNs almost completely forget their
previous knowledge when they are trained on a new task
(Kemker et al. 2017). This is termed as catastrophic forget-
ting (McCloskey and Cohen 1989).

The common way to train ANNs is to provide them the
whole dataset at once and let them iterate through it multiple
times. However, there are scenarios when this is not a feasi-
ble option. There can be memory limitations in the learning
device, making it impossible to store all data. Also, there
may be security concerns restricting the permanent storage
of sensitive data. Besides that, re-learning a large model
from scratch any time new data comes may be too compu-
tationally costly. Catastrophic forgetting in ANNs was first
addressed by McCloskey (McCloskey and Cohen 1989) in
1989 but is still an unsolved problem hindering the progress
towards building AI agents that can learn continuously.

The focus of this paper is class-incremental learning,
where at each training session multiple new classes are to
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be learned while also maintaining the knowledge of pre-
vious classes. The closely related problem is called task-
incremental learning, where the model learns a sequence of
tasks sequentially, and during inference it is provided with
the task identity. In contrast, for class-incremental learn-
ing, no such information is provided at inference time,
and the model is required to predict both the correct class
and the task.

Despite many proposed solutions for continual learning in
the literature, the baseline methods like Experience Replay
(ER) (Buzzega et al. 2020) and GDumb (Prabhu, Torr, and
Dokania 2020) are still shown to be as effective as the state
of the art. Given that each training session contains exam-
ples of only a few classes, the deep networks are prone to
overfitting. Therefore, it is plausible to use a frozen feature
extractor and smaller classifiers on top. ER trains only a sin-
gle network, extending its output units for the new classes.
In each training session, the network is trained on the exam-
ples of new classes as well as a small number of examples
from previous classes which have been stored in the limited
memory buffer. While retraining on these few stored exam-
ples helps retain the knowledge of past classes, there is still
no guarantee that the new knowledge will not interfere with
the past. To solve this problem, we propose to train a sepa-
rate classifier for each group of new classes. These classifiers
do not share any weights with each other, implying that the
newly acquired knowledge will be stored separately without
overriding previous classifiers.

Related Work
In this section, we overview the literature on continual learn-
ing methods. We divide these methods into three groups
based on the main idea: replay, regularization, and architec-
tural techniques.

Replay Methods
A straightforward solution to prevent catastrophic forgetting
is to revisit the previous tasks. Rehearsal methods accom-
plish this by storing a small portion of the seen examples
for later retraining. When the model is faced with new train-
ing data, it augments it with memory samples to reduce the
forgetting of previous knowledge.

iCaRL (Rebuffi et al. 2017) uses the nearest-mean-of-
exemplars classification approach, classifying items to the



class with the nearest center. It uses a heuristic approach
for updating the memory buffer, prioritizing items based
on their proximity to their class means. Together with
network distillation, it has been able to learn in a class-
incremental learning scenario. Gradient Episodic Memory
(GEM) (Lopez-Paz and Ranzato 2017) is designed for task-
incremental learning from streaming data. In this setting, the
model receives a series of tuples (x, t, y) consisting of input,
task label, and target, respectively. GEM uses the memory
samples not for replay but to serve the inequality constraints
that prevent the loss for the past tasks to decrease. Replay
using Memory Indexing (REMIND) (Hayes et al. 2020) ap-
plies quantization to the extracted feature maps from deeper
layers of a CNN and stores their indices in memory. This re-
sults in a compressed representation and allows for a much
bigger number of stored examples. REMIND’s architecture
consists of a frozen feature extractor followed by a trainable
classifier. REMIND was shown to outperform existing ap-
proaches in a streaming setup on the ImageNet (Deng et al.
2009) and other datasets.

Rethinking Experience Replay (Buzzega et al. 2020): In
this work, the authors emphasize that simple experience re-
play (or simple rehearsal) (Ratcliff 1990) is still as effective
as the state of the art if certain issues are resolved. As stated
by the authors, the three important issues with this approach
are: overfitting to stored examples, biased prediction and ac-
curacy towards the later classes, and non-i.i.d stored data in
cases where the buffer is small. Their proposals include an
additional bias correction layer (BiC) (Wu et al. 2019), ex-
ponential decay of learning rate, and balanced sampling for
the memory buffer. In their reported results ER has outper-
formed SOTA sophisticated replay methods such as iCaRL
(Rebuffi et al. 2017), GEM (Lopez-Paz and Ranzato 2017),
A-GEM (Chaudhry et al. 2018), and HAL (Chaudhry et al.
2020), sometimes by a very large margin.

GDumb (Prabhu, Torr, and Dokania 2020): This paper
proposes a simple and most generic baseline for continual
learning. It basically maintains a balanced memory buffer
and only trains on the samples contained in it. The reported
results have shown that it outperforms many SOTA methods
in their respective settings. GDumb serves as a strong base-
line for all continual settings including class-incremental
learning.

Regularization Methods
These methods impose a type of regularization that helps to
retain the learned knowledge of past tasks. This is achieved
by adding special loss terms to the loss function.

Learning without forgetting (LwF) (Li and Hoiem 2017)
presents a modification to the standard fine-tuning. A new
network is initialized as a copy of the old one with an ex-
tension of the output layer (called multihead approach) for
the new task. A distillation loss is added between old and
new task heads so the new network is reminded of the old
tasks indirectly. In the backward pass, only the new network
is updated.

Elastic Weight Consolidation (EWC) (Kirkpatrick et al.
2017) and Synaptic Intelligence (SI) (Zenke, Poole, and

Ganguli 2017) both try to approximate the importance of
each of the parameters for previous tasks and selectively ap-
ply regularization to limit their change. Regularization meth-
ods alone, as several papers demonstrate, are not sufficient
for proper class-incremental learning (Kemker et al. 2017;
Lesort, Stoian, and Filliat 2020).

Architectural Methods
Architectural methods try to manipulate weights, neurons,
layers, or architecture of the network to protect the learned
knowledge while acquiring the new one. They either use
fixed or dynamic architectures. These methods have the
advantage of completely eliminating interference between
tasks while allowing knowledge transfer between them.
However, practically, they are coupled with scalability is-
sues as the number of tasks grows.

Progressive Neural Networks (PNN) (Rusu et al. 2016)
inherently target the task-incremental learning. Their archi-
tecture grows laterally, each time adding a new neural net-
work, called “column”, for a new task. The new columns
have connections to other layers of previous networks and
thus, highly benefit from knowledge transfer. Once a col-
umn is trained, it will be kept frozen making the PNNs com-
pletely immune to catastrophic forgetting. A big issue with
PNNs is that they keep growing too large, limiting their use
in practice to only a small number of tasks. Compacting,
Picking and Growing (CPG) (Hung et al. 2019) tries to over-
come this issue by dynamically controlling the architecture
of the network. The weights of the network are grouped into
“compact” and “free”, where the newly added weights are
considered free until they are trained and then compacted.
For each new task, a learnable binary mask is created and ap-
plied to the compact weights to select a subset of them. Then
this task is learned using this subset of compact weights and
the free weights. The network is provided more free weights
during training if the performance does not reach a satisfac-
tory level. The training is followed by pruning to compact
the newly learned weights. This method is useful in scenar-
ios with fewer but larger tasks.

Similarity with other works Here we compare our ap-
proach with similar works in the literature. Our main differ-
ence is that we train a set of specialized classifiers dedicated
to each class group while also making them able to detect if
a sample is from previous classes.

Aljundi et al. (Aljundi, Chakravarty, and Tuytelaars 2017)
train a specialized model for each new task and propose
a method for choosing the relevant one at inference time.
Specifically, they train separate autoencoders describing
each task’s data distribution, and during inference they
choose the model for which the corresponding autoencoder
has the least reconstruction error. In our work, the classifiers
are not separate models, but parts of a larger model, which
allows for knowledge sharing.

AR1 (Maltoni and Lomonaco 2019) trains a linear classi-
fier on top of a feature extractor. In each phase, a new linear
classifier is trained for the current group of classes. Then a
mean-normalization is applied to the weights of this classi-
fier to eliminate the prediction bias. During testing, the pre-
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Figure 1: The proposed model architecture: a feature extractor F (pale-blue trapezoid) and a growing number of classifiers
(orange trapezoids), followed by the final layer S which concatenates all classifier outputs together and applies the softmax
function. At each training session i, only the newly added classifier Ci is trained while the previous classifiers and the feature
extractor are kept frozen. The frozen modules are represented by dashed borders.

diction of the model is the softmax over all classifiers’ out-
puts. In contrast to their approach, we use deeper classifiers
and memory buffer.

Methods
Our goal is to sequentially train on a number of disjoint
datasets containing different classes. Relying on a pretrained
deep feature extractor, we only consider training small net-
works on top of it. The traditional way is to construct and
train a single head with expanding output units to facilitate
the prediction of new classes. However, despite the replay
mechanism, the single head is still not sufficiently equipped
against catastrophic forgetting. We improve the situation by
instead training much smaller classifiers, one at a time, that
are specific only to new classes in the training session. For
a descriptive diagram of our method, please see Fig. 1. In
the following paragraph, we further formalize the training
setting and details of our method.

In class-incremental learning we aim to train a network
on a sequence of datasets Di = (xj

i , y
j
i )

ni

j=1 with inputs xj
i

and labels yij ∈ Yi, where Yi ∩ Yk = ∅ for any i ̸= k. Note
that in the training session i only the dataset Di is available.
Suppose we are allowed to store a small number of examples
from the current training session in a limited memory buffer.
We denote the samples in the memory buffer by Mi and its
capacity by B, thus Mi ≤ B. The memory can be updated
with new examples at each training session. Having access
to past examples through the memory buffer, the training
data for the i-th session will then consist of Di ∪Mi.

Let F(·) be the feature extraction network. At i-th train-
ing session we create a new classifier network Ci with
|Yi| output units that classifies between the new classes.
The final classification is done by the final layer S(·) =
Softmax(⊕(·)) which simply concatenates the outputs of all
classifiers and then applies the softmax. The objective is to
minimize the cross-entropy loss between the outputs of the

final layer and the true targets over all training samples:

Lθi(x, y) = −
C∑
j

tj log(S(c0, . . . , ci)j)

where

ck = Ck(F(x)) for k = 0, . . . , j

θi − parameters of the last classifier, Ci

t− the one-hot encoded vector of target y

C =

i∑
k=1

|Yk| (i.e. the number of classes seen so far)

Note that only the last classifier is trained, while the loss
is a function of the outputs of all classifiers. In this way, the
last classifier is adjusting itself to respect the prediction of
previous classifiers. In other words, it is learning to produce
higher output values for the samples belonging to its feature
space (the new classes in the current training session) while
suppressing itself for the samples belonging to previous clas-
sifiers. Although all of the classifiers are in a sense “partial”,
i.e. they can only predict the classes belonging to them, they
also see previous classes during the training as “negative”
examples acting as a regularizer which makes them even
stronger and more robust. We also emphasize that since the
previous classifiers are frozen, it eliminates the problem of
“forgetting” for them.

Memory buffer
As the memory should be kept updated to include new
samples, a sampling strategy has to decide which exam-
ples should be selected or removed. We adopt the greedy
sampling approach described in (Prabhu, Torr, and Dokania
2020). It randomly replaces some of the old examples in the



memory with the new ones, while trying to satisfy the bal-
ancing constraint, that is, to maintain an equal number of
examples for each class.

Training
Training consists of multiple sessions. During each session,
we train a new classifier which has the output size equal to
the number of classes in the training data. We train it by
mini-batch gradient descent where each mini-batch contains
an equal number of samples from the current dataset and
the memory buffer. At the end of each training session, the
memory buffer is updated with new samples.

Early Stopping
As the number of examples per class in the memory keeps
decreasing over time, the model becomes prone to overfit-
ting. Therefore, an early stopping mechanism is essential.
Apart from splitting the incoming data into train and valida-
tion parts, we also dedicate a part of the memory buffer for
validation samples.

Bias correction layer
Since the mini-batches contain a nonequal number of sam-
ples from the old and new classes, it poses a class imbalance
problem. This problem has been first addressed in (Wu et al.
2019) and the authors proposed a simple yet effective solu-
tion, called Bias Correction (BiC). It is a linear transforma-
tion layer with only two parameters which is applied to the
output logits belonging to new classes Yi as follows:

qk =

{
αok + β k ∈ Yi

ok otherwise

where α and β are the bias parameters and ok is the output
logits of the final layer. The BiC layer is trained separately
at the end of each training session with a small amount of
data as it contains only two parameters.

Experimental Results
We consider the class-incremental learning scenario on the
CIFAR100 dataset (Krizhevsky 2009) by splitting it into 5,
10, and 20 disjoint parts, each part containing 20, 10, and
5 classes respectively. In all of our experiments, we use the
same class ordering which is obtained by random shuffling.
We also run experiments with different memory sizes. We
compare our method against two state-of-the-art baselines:
ER equipped with BiC, and GDumb.

Implementation details
For feature extraction, we use a EfficientNet-B0 network
(Tan and Le 2019) that is pretrained on ImageNet. We re-
move from it the final convolution layer, the output layer,
and the final MBConv block. Since this feature extractor ac-
cepts inputs of size 224× 224, we resize the CIFAR100 im-
ages which are 32× 32 to match the input size. The feature
extractor is kept frozen in all experiments of our method and
the baselines. For classifiers, we use a single 1 × 1 convo-
lution layer followed by global average pooling and a dense

Table 1: Number of trainable parameters in each of the ex-
periment settings, when training on CIFAR100 split into 5,
10, and 20 parts.

Method # trainable parameters
5 splits 10 splits 20 splits

GDumb 118K 118K 118K
ER 118K 118K 118K
Ours 17K → 86K 8K → 82K 4K → 80K

Table 2: Accuracies at the end of the training. CIFAR100
split into 5, 10, and 20 parts.

Splits 5 10 20
Memory 2000 500 1000 2000 1000 2000
GDumb 48.24 23.79 39.89 48.74 39.57 47.83
ER w/ BiC 57.89 42.46 48.97 54.68 48.78 55.23
Ours 67.83 56.45 63.48 65.79 61.60 63.25

layer. In all experiments, the classifiers have the same archi-
tecture except the number of filters in the convolution layer
and the number of units in the final dense layer. Overall, we
have made sure that our method does not use more trainable
parameters in total than the baselines (see Table 1).

In all experiments, we stop a training session when the
validation loss does not improve for 10 consecutive epochs.
We have dedicated 10% of the data for validation. For all
methods, we start with a learning rate of 0.01. For our
method, we decrease the learning rate when the validation
loss does not improve for 3 consecutive epochs. For GDumb
and ER we apply exponential learning rate scheduling. At
the end of each training session, just before testing, we train
the BiC layer to remove the prediction bias towards later
classes. Since the whole purpose of BiC is to remove pre-
diction bias, we train it only on the validation part of the
memory buffer (after it has been updated to include all seen
classes) which the model itself has never been trained on.

Baselines
GDumb and ER use the same architecture, and the difference
is in training. Gdumb only trains on memory samples. It up-
dates the memory buffer at the beginning of each training
session and then trains only on the memory buffer discard-
ing the rest of the data. We also train a BiC layer at the end
of each training session of ER. BiC layer is not necessary
for GDumb since it trains on the balanced dataset, i.e., the
memory buffer.

Analysis
We test the models at the end of each training session over
all classes that have been encountered so far. In Table 2 we
report the accuracy at the end of the training in three differ-
ent settings with varying memory buffer sizes (500, 1000,
and 2000) and dataset splitting into 5 (Fig. 2), 10 (Fig. 3),
and 20 (Fig. 4) parts. In all settings, we see a large gap in
accuracy between our method and the second best method,
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Figure 2: Accuracies at the end of each training session.
CIFAR100 split into 5 parts.

ER. ER always outperforms GDumbs, as expected, because
it trains on all available data, and the early stopping mech-
anism that we introduced here prevents it from unnecessary
training which causes more forgetting of past data.

We observe that the gap in accuracy tends to get larger
when we shrink the memory buffer size. Our method still
reaches a remarkable performance of 56.45% when mem-
ory size is 500 leaving a gap of 14% relative to the next
method, ER. On the other hand, we see a large performance
drop of GDumb. This is mainly because it is highly depen-
dent on the memory size as it trains only on the memory
samples. However, GDumb shows the least difference in
performance when training with different dataset splittings,
meaning that it might have an advantage in settings closer to
online learning.

Ablation studies

We conduct the experiments to see if all components of our
method are indeed important. The first component is freez-
ing the classifiers’ weights after training to prevent the prob-
lem of “forgetting”. Therefore we have conducted an exper-
iment where we let our method keep updating all classifiers.
The second component is the additional BiC layer. Look-
ing at the confusion matrices, we have observed a prediction
bias towards the last group of classes which was a signal
to incorporate BiC layer. We also present the results here
where our method does not use a BiC layer. These experi-
ments are conducted in the case of CIFAR100 split into 10
classes, and a memory buffer size of 2000. The reported re-
sults are in Table 3. We can see the benefit of using BiC
layer, which confirms that our method would have some pre-
diction bias without it. On the other hand, we can see a large
drop in accuracy (65.79% → 57.04%) when we allow updat-
ing our classifiers. Nevertheless, still, the performance stays
above the other two methods (looking at Table 2, 54.68%
and 48.74% of ER and GDumb, respectively).
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Figure 3: Accuracies at the end of each training session.
CIFAR100 split into 10 parts.

Table 3: Ablation studies testing our method in two alterna-
tive forms: (1) without freezing the classifiers, and (2) with-
out using BiC layer.

Method Accuracy %
Ours w/out freezing 57.04
Ours w/out BiC 62.86
Ours 65.79
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Figure 4: Accuracies at the end of each training session.
CIFAR100 split into 20 parts.

Conclusion
In this paper, we proposed a new approach for class-
incremental learning. We tackled the problem by training a
separate classifier for each new group of classes. By freez-
ing these classifiers after they have been trained and cor-
recting bias towards later classes, we have limited the prob-
lem of “forgetting” and achieved big improvements over
strong SOTA baselines. Our method consistently achieved
better performance in different learning scenarios for the
CIFAR100 dataset.
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