
Best Response Computation in Multiplayer
Imperfect-Information Stochastic Games

Sam Ganzfried
Ganzfried Research
Miami Beach, FL

sam.ganzfried@gmail.com

Abstract

Computing a best response is a fundamental task in game
theory. One of its uses is to compute the degree of approxi-
mation error of an approximation of Nash equilibrium strate-
gies. In many game classes best responses can be computed
in polynomial time, but in imperfect-information stochastic
games it is equivalent to solving a POMDP and is PSPACE-
complete. Prior work has developed an algorithm for com-
puting an approximation of Nash equilibrium strategies in a
4-player imperfect-information naval strategic planning prob-
lem which is modeled as a stochastic game. A heuristic ap-
proach was developed for computing best responses to deter-
mine the approximation error of these strategies, which was
shown to have limited scalability. In this paper we present ap-
proaches that utilize parallelism to significantly speed up this
computation allowing us to compute best responses in signif-
icantly larger games.

Introduction
Computing a best response is a fundamental task in games.
Typically it can be performed efficiently (in polynomial
time), while computing a Nash equilibrium (the standard
game-theoretic solution concept) is PPAD-hard for games
with more than two players and two-player non-zero-sum
games. Since strategies are fixed for the opposing players
computing a best response is just a single agent optimiza-
tion problem, and is often significantly easier than comput-
ing solution concepts that involve reasoning about multiple
players’ strategies. Computing a best response is important
for three main reasons. First, if we are able to formulate a
prediction for the strategies of the opposing players (e.g., by
using an opponent modeling algorithm), then computing a
best response would allow us to obtain the highest possible
expected payoff against this predicted model. Second, sev-
eral algorithms for computing Nash equilibrium, such as fic-
titious play (Brown 1951), require the computation of best
responses as a subroutine. And third, when an approxima-
tion of Nash equilibrium strategies has been computed in a
large or complex game, computing a best response for each
player allows us to quantify the degree of approximation
error (ε). The value of ε denotes the largest amount that a
player can gain by deviating from the strategy profile. In ex-
act Nash equilibrium ε = 0, and so naturally our goal is to

Copyright © 2021by the authors. All rights reserved.

produce strategies with as small value of ε as possible. We
say that the computed strategies constitute an ε-equilibrium.
Formally, for a given candidate (mixed) strategy profile σ∗,
define

ε(σ∗) = max
i∈N

max
si∈Si

[
ui(si, σ

∗
−i)− ui(σ∗i , σ∗−i)

]
.

Here N denotes the set of players, Si denotes the set of pure
strategies for player i ∈ N , and ui denotes the utility func-
tion for player i. σ∗i is the component of σ∗ correspond to
player i’s strategy, and σ∗−i is the component of σ∗ corre-
sponding to the strategies of the players excluding player i.

In a normal-form game (with any number of players) it is
clear that a best response computation can be performed in
polynomial time. The same is true for extensive-form games
of sequential actions with either perfect or imperfect infor-
mation. While extensive-form game trees can be used to
model sequential actions of a known duration (e.g., repeat-
ing a simultaneous-move game for a specified number of it-
erations), they cannot model games of unknown duration,
which can potentially contain infinite cycles between states.
Such games must be modeled as stochastic games.
Definition 1. A stochastic game (aka Markov game) is a
tuple (Q,N,A, P, r), where:
• Q is a finite set of (stage) games (aka game states)
• N is a finite set of n players
• A = A1 × . . . × An, where Ai is a finite set of actions

available to player i
• P : Q × A × Q → [0, 1] is the transition probabil-

ity function; P (q, a, q̂) is the probability of transitioning
from state q to state q̂ after action profile a

• R = r1, . . . , rn, where ri : Q × A → R is a real-valued
payoff function for player i
If strategies are fixed for all players excluding player i,

then the best response problem for player i in a stochas-
tic game is equivalent to solving a Markov decision pro-
cess, and can be done in polynomial time. However, if the
stochastic game has imperfect information (i.e., agents have
private information that is not known to other agents), then
computing a best response is equivalent to solving a par-
tially observable Markov decision process (POMDP), and is
PSPACE-complete. So there is no hope of finding an effi-
cient algorithm for this problem in general; but there may

be specialized algorithms that can efficiently solve specific
problems of interest that may have a special structure.

Recently an algorithm has been developed for comput-
ing Nash equilibrium strategies in multiplayer stochastic
games with imperfect information where the game states
form a directed acyclic graph (Ganzfried 2021). This algo-
rithm was used to approximate Nash equilibrium strategies
in a 4-player imperfect-information naval strategic planning
scenario that was constructed in consultation with a domain
expert. In order to evaluate the quality of the computed strat-
egy profile σ∗ (i.e., the ε), we must compute a best response
for each player to σ∗. An algorithm for doing this was de-
veloped that recursively calls itself for updated belief states
corresponding to new states that can be transitioned to with
horizon t − 1 (where we are interested in a time horizon
of t for the initial state). Unfortunately this algorithm was
unable to converge in the initial version of the game, which
hadK = 300 non-terminal states, even using several heuris-
tics for improved speed. However, the algorithm was able to
solve a smaller version with K = 150 with use of these
heuristics.

There have been recent applications of game-theoretic al-
gorithms to important problems in national security. These
game models and algorithms have differing levels of com-
plexity. Typically these games have two players, and al-
gorithms compute a Stackelberg equilibrium for a model
where the “defender” acts as the leader and the “attacker”
as the follower; the goal is to compute an optimal mixed
strategy to commit to for the defender, assuming that the
attacker will play a best response. Computing Stackelberg
equilibrium is easier than Nash equilibrium; for exam-
ple, for two-player normal-form general-sum games, opti-
mal Stackelberg strategies can be computed in polynomial
time (Conitzer and Sandholm 2006), while computing Nash
equilibrium is PPAD-hard, and widely conjectured that no
polynomial-time algorithms exist (Chen and Deng 2006;
Daskalakis, Goldberg, and Papadimitriou 2009). Many re-
alistic problems in national security involve more than two
agents, sequential actions, imperfect information, proba-
bilistic events, and/or repeated interactions of unknown du-
ration. Several stochastic game models have been previously
proposed for national security settings. For example, two-
player discounted models of adversarial patrolling have been
considered, for which mixed-integer program formulations
are solved to compute a Markov stationary Stackelberg equi-
librium (Vorobeychik and Singh 2012; Vorobeychik et al.
2014). One work has applied an approach to approximate
a correlated equilibrium in a three-player threat prediction
game model (Chen et al. 2006). However we are not aware
of other prior research on settings with more than two play-
ers with guarantees on solution quality (or for computing
Nash as opposed to Stackelberg or correlated equilibrium)
for either perfect or imperfect information other than the
very recent work that we build on (Ganzfried, Laughlin, and
Morefield 2020; Ganzfried 2021).

Imperfect-information naval strategic
planning problem

We will first review the perfect-information naval strate-
gic planning problem that has been previously stud-
ied (Ganzfried, Laughlin, and Morefield 2020), and then de-
scribe the differences for the imperfect-information version.
The game is based on a freedom of navigation scenario in
the South China Sea where a set of blue players attempts
to navigate freely, while a set of red players attempt to ob-
struct this from occurring (Figure 1). In our model there is
a single blue player and several different red players which
have different capabilities (we will specifically focus on the
setting where there are three different red players). If a blue
player and a subset of the red players happen to navigate to
the same location, then a confrontation will ensue, which we
call a Hostility Game.

Figure 1: General figure for South China Sea scenario.

In a Hostility Game, each player can initially select from a
number of available actions (which is between 7 and 10 for
each player). Certain actions for the blue player are coun-
tered by certain actions of each of the red players, while
others are not (Figure 2). Depending on whether the selected
actions constitute a counter, there is some probability that
the blue player wins the confrontation, some probability that
the red players win, and some probability that the game re-
peats. Furthermore, each action of each player has an asso-
ciated hostility level. Initially the game starts in a state of
zero hostility, and if it is repeated then the overall hostil-
ity level increases by the sum of the hostilities of the se-
lected actions. If the overall hostility level reaches a certain
threshold (300), then the game goes into kinetic mode and
all players achieve a very low payoff (negative 200). If the
game ends in a win for the blue player, then the blue player
receives a payoff of 100 and the red players receive nega-
tive 100 (and vice versa for a red win). The game repeats
until either the blue/red players win or the game enters ki-
netic mode. A subset of the game’s actions and parameters
are given in Figure 3. Note that in our model we assume that
all red players act independently and do not coordinate their
actions. The game model and parameters were constructed
from discussions with a domain expert.
Definition 2. A perfect-information hostility game is a tuple
G = (N,M, c, bD, bU , rD, rU , π, h,K, πK), where
• N is the set of players. For our initial model we will as-

sume player 1 is a blue player and players 2–4 are red

Figure 2: List of blue moves that counter each red move.

players (P2 is a Warship, P3 is a Security ship, and P4 is
an Auxiliary vessel).

• M = {Mi} is the set of actions, or moves, where Mi is
the set of moves available to player i

• For mi ∈ Mi, c(Mi) gives a set of blue moves that are
counter moves of mi

• For each blue player move and red player, a probability
of blue success/red failure given that the move is defended
against (i.e., countered), denoted as bD

• Probability that a move is a blue success/red failure given
the move is Undefended against, denoted as bU

• Probability for a red success/blue failure given the move
is defended against, rD

• Probability for a red success/blue failure given the move
is undefended against, rU

• Real valued payoff for success for each player, πi
• Real-valued hostility level for each move h(mi)

• Positive real-valued kinetic hostility threshold K
• Real-valued payoffs for each player when game goes into

Kinetic mode, πK
i

We model hostility game G as a (4-player) stochastic
game with a collection of stage games {Gn}, where n cor-
responds to the cumulative sum of hostility levels of actions
played so far. The game has K+3 states: G0, . . . , GK , with
two additional terminal states B and R for blue and red vic-
tories. Depending on whether the blue move is countered,
there is a probabilistic outcome for whether the blue player
or red player (or neither) will outright win. The game will
then transition into terminal states B or R with these proba-
bilities, and then will be over with final payoffs. Otherwise,
the game transitions intoGn′ where n′ is the new sum of the
hostility levels. If the game reaches GK , the players obtain
the kinetic payoff πK

i . Thus, the game starts at initial state
G0 and after a finite number of time steps will eventually
reach one of the terminal states (B,R,GK).

So far, we have described the Perfect-Information Hostil-
ity Game (PIHG). In the real world, often players have some
private information that they know but the other players do
not. For example, in poker this can be one’s private cards, or
in an auction one’s private valuation for an item. We consider
a modification to the PIHG where each player has private
information that corresponds to its “strength,” or amount of

resources it has available. We assume each player has a pri-
vate type ti from a discrete set Ti, where larger values of ti
correspond to increased strength. We assume that the play-
ers know only the value of their own type, while each player
knows that the other players’ private types are drawn from
a public distribution. We assume that each player is drawn a
private type ti from the public distribution at the outset of the
game, and that this type persists throughout the game’s du-
ration. Thus, the game model of the Imperfect-Information
Hostility Game (IIHG) is a 4-player imperfect-information
stochastic game.

The values of the type parameters affect the probabilities
of each player’s success during a confrontation, with larger
values leading to greater success probabilities. For example,
suppose there is an encounter between a blue ship of type tb
and red ship of type tr, and suppose that blue player plays an
action ab that is a counter-move to red’s action ar. Then for
the PIHG the probability of a blue success would be p =
bD(ab). In the IIHG we now have that the probability of

a blue success will be p′ = p
tr
tb . The other success/failure

probabilities are computed analogously. Note that for tb =
tr we have p′ = p and the payoffs are the same as for the
PIHG. If tr > tb then p′ < p, and similarly if tb < tr then
p′ > p.

Prior research for approximating Nash equilibrium strate-
gies in multiplayer imperfect-information stochastic games
has focused on the case where the players’ private in-
formation is local and does not extend between game
states (Ganzfried and Sandholm 2008; 2009). By contrast,
the private information in the IIHG is persistent and extends
throughout game play. It can also be observed that this prob-
lem has the special structure that the game states form a di-
rected acyclic graph. This allowed them to devise a new al-
gorithm that solves each game state sequentially, computes
updated type distributions from the state equilibrium strate-
gies at that state, and uses these updated type distributions
for solving successive states within the current algorithm it-
eration. The best algorithm for approximating Nash equi-
librium in this game class combines variants of fictitious
play (Brown 1951) and policy iteration and is called Sequen-
tial Topological FIFP for Type-Dependent Values (ST-PIFP-
TDV) (Ganzfried 2021). This was applied to approximate
Nash equilibrium strategies in the IIHG.

Prior approach for best response computation
In order to evaluate the strategies computed from our al-
gorithm, we need a procedure to compute the degree of
Nash equilibrium approximation, ε. For perfect-information
stochastic games it turns out that there is a relatively straight-
forward approach for accomplishing this, based on the ob-
servation that the problem of computing a best response for
a player is equivalent to solving a Markov decision process
(MDP). We can construct and solve a corresponding MDP
for each player, and compute the maximum that a player
can obtain by deviating from our computed strategies for the
initial state G0. This approach is depicted in Algorithm 1,
which applies a standard version of policy iteration (Puter-
man 2005). It turns out that Algorithm 1 can also be ap-

Figure 3: Sample of typical actions and parameters for Hostility Game.

plied straightforwardly to stochastic games with local imper-
fect information. This algorithm was applied to compute the
degree of Nash equilibrium approximation on the perfect-
information hostility game (Ganzfried, Laughlin, and More-
field 2020) and a 3-player imperfect-information poker tour-
nament (Ganzfried and Sandholm 2008; 2009).

Algorithm 1 Ex post check procedure
Create MDP M from the strategy profile s∗

Run policy iteration on M (using initial policy s∗) to get π∗

return maxi∈N
[
v
π∗i ,s

∗
−i

i (G0)− v
s∗i ,s
∗
−i

i (G0)
]

Unfortunately, Algorithm 1 can no longer be applied for
stochastic games with persistent imperfect information. For
these games, computing the best response for each player
is equivalent to solving a partially observable Markov deci-
sion processes (POMDP), which is significantly more chal-
lenging than solving an MDP. It turns out that computing
the optimal policy for a finite-horizon POMDP is PSPACE-
complete. The main algorithms are inefficient and typically
require an amount of time that is exponential in the problem
size (Cassandra, Kaelbling, and Littman 1994). Common
approaches involve transforming the initial POMDP to an
MDP with continuous (infinite) state space, where each state
of the MDP corresponds to a belief state of the POMDP.

Due to the problem’s intractability, a new procedure was
devised for this setting that exploits domain-specific infor-
mation to find optimal policies in the POMDPs which corre-
spond to computing a best response. The algorithm is based
on a recursive procedure, presented in Algorithm 2. The in-
puts to the procedure are a player i, a type ti for player i, a
set of type distributions {τj} for the other players j 6= i, the
strategies computed by our game-solving algorithm {s∗j}, a
game state Gh, and a time horizon t. The procedure outputs
the optimal value in the belief state for player i when he has
type ti and the opponents have type distribution {τj} at hos-
tility stateGh for the POMDP defined by the strategies {s∗j},
assuming that a time horizon of t remains. For simplicity of
presentation we assume that Ti = 2 for each player (which
is what we will use for our experiments), where τj denotes
the probability that player j has type 1, and 1− τj the prob-

ability of type 2. The algorithm recursively calls itself for
updated belief states corresponding to new hostility states
that can be transitioned to with horizon t − 1. As the base
case for t = 0 we consider only the attainable terminal pay-
offs from the current state with no additional transitions to
new states.

Algorithm 2 ComputeValue(i, ti, {τj}, {s∗j}, Gh, t) (CV)

Inputs: player i, type ti for player i, type distributions for
opposing players {τj}, strategies for opposing players {s∗j},
hostility state Gh, time horizon t

max-payoff = −∞
for each action ai for player i do

payoff = 0
sum = 0
for every possible combination of αk =

∏
j γj , where

γj ∈ {τj , (1− τj)} do
for every possible terminal outcome o, with payoff

ui(o) do
payoff += αk · ui(o)· probability outcome o is

attained when player i takes action ai and other players
follow {s∗j}

sum is incremented by same excluding ui(o)
factor

if t ≥ 1 then
for every possible hostility state Gh′ 6= Gh do

p′ = total probability we will transition to
stateGh′ when player i takes action ai and opposing play-
ers have type distribution {τj} and follow strategies {s∗j}

{τ ′j} = new type distributions computed us-
ing Bayes’ rule assuming player i takes action ai and the
game transitions to state Gh′

payoff += p′· CV(i, ti, {τ ′j}, {s∗j}, Gh′ , t− 1)
sum += p′

payoff = payoff / sum
if payoff > max-payoff then

max-payoff = payoff
return max-payoff

For the case where the prior type distribution is uniform
(all values equal to 1

|Ti| , which is what we use in our experi-

ments), we apply Algorithm 2 as follows. For each player
i and each type ti ∈ Ti we apply Algorithm 2, assum-
ing that each opposing player has type tj with probabil-
ity τj = 1

|Tj | , using the initial game state G0 and time
horizon t. Call the result Vti . Then the optimal value for

player i is Vi =
∑

ti
Vti

|Ti| . We repeatedly compute Vi for
t = 0, 1, 2 . . . until it (hopefully) converges. We can then
compare the converged values of Vi for each player to the
expected payoff for the player under the computed strategy
profile, V ∗i = ui(s

∗). We then define εi = Vi − V ∗i , and
ε = maxi εi. Several implementation enhancements were
applied to improve the efficiency of Algorithm 2 for the
IIHG. These included precomputing tables of coefficients
for transition and terminal payoff probabilities and type in-
dices, only iterating over future states with h′ > h, and ig-
noring statesGh′ with extremely small transition probability
from Gh (e.g., below 0.01)

New improvements for best response
computation

Note that the procedure previously described involves per-
forming

∑n
i=1 |Ti| applications of Algorithm 2, once for

each type ti ∈ Ti for each player i ∈ N. If we assume
that all of the |Ti| are equal, say to |T |, then we will call
Algorithm 2 n|T | times. For our specific problem we have
n = 4 and Ti = 2 for all i, so we would run the algorithm 8
times. We could straightforwardly parallelize the approach
by running these computations in parallel instead of sequen-
tially. This would achieve a speedup of the runtime by a fac-
tor of

∑n
i=1 |Ti| if all of the computations take equal time.

However, it is possible that one of the computations takes
significantly longer than the others in which case this simple
parallelization would not result in a significant speed im-
provement. In general, given access to C cores, we would
like to come up with an approach that exploits parallelism
as much as possible using to minimize the total runtime.

To start let us fix p ∈ N , tp ∈ Tp, and consider the
problem of running Algorithm 2 for player p with type tp
assuming we are allocated Cp cores. This requires iterat-
ing through all nodes in a tree where the nodes correspond
to belief states that are reachable from the initial state and
the edges correspond to actions for player p. At each non-
terminal node there are |Mp| actions available. One ap-
proach would be to solve separately for each of the |Mp|
subtrees on its own core and select the corresponding ac-
tion producing highest expected payoff. If all of the sub-
trees have equal size, then this would improve the runtime
by a factor of |Mp|; however, if one of the subtrees is sig-
nificantly larger than all the others then this parallelization
would prove little improvement. We could extend this ap-
proach by solving separately for all subtrees that are rooted
at nodes at depth 1, of which there are |Mp|2, and in general
solve separately for all |Mp|d+1 subtrees rooted at depth d
(as long as Cp ≥ |Mp|d+1), propagating values up the tree.

Now suppose we are at a given node v∗ with children
v1, . . . , vK , and suppose that for each vi we know exactly
how many nodes are in the subtree rooted at vi: denote this

by Ni. Suppose we have C∗ cores to allocate between the
entire subtree rooted at v∗. Let bij be a binary variable that
is 1 if core j is used for node vi. Let Qi denote the total
number of cores that are allocated to node i. An integer
program for determining the optimal allocation of cores to
nodes is provided below. The first constraint ensures that the
objective is to minimize the maximum amount of compu-
tation assigned to each core, where we assume that com-
putation is divided equally between all nodes assigned to a
given core. The second constraint ensures that we don’t as-
sign more cores to a node than the number of nodes in its
subtree. And the third constraint ensures that Qi is equal to
the number of cores allocated to node i, as is its intended
definition. Note that the first set of constraints involves di-
vision by the variables Qi. We can define a new (continu-
ous) variable Ri by the constraint RiQi = 1, and therefore
the value of Ri will equal 1

Qi
, transforming the constraint

into u ≥
∑C∗

i=1 (NiRibij) . This constraint now just involves
the product of two variables, and is therefore quadratic. The
overall formulation is now a mixed-integer quadratically-
constrained program (QCP). Note that the first set of con-
straints is not convex, making the problem challenging to
solve. Fortunately Gurobi has recently released an approach
that is able to solve non-convex programs with quadratic ob-
jective and constraints (Gurobi Optimization 2019), which
we can apply to our problem.

minu u

s.t. u ≥
∑C∗

i=1
Nibij
Qi

for all j
Qi ≤ Ni for all i∑C∗

j=1 bij = Qi for all i
We could apply this method recursively to determine the

optimal allocation of cores to subtrees. Note that this ap-
proach assumes that we know in advance the values Ni de-
noting the number of nodes in each subtree. If it is not pos-
sible to obtain these exactly, they could be approximated by
repeatedly sampling from the tree.

Due to practical challenges of implementing this ap-
proach, we also consider a simpler approach for paralleliz-
ing Algorithm 2. When we are solving for player i with type
ti for the initial state G0 with horizon T , we can assign the
subtree corresponding to each initial action ai to a differ-
ent core. This would require |Mi| cores, and would result in
a speedup by a factor of |Mi| if all subtrees took the same
amount of time.

Another improvement to Algorithm 2 can be made if we
know the diameter of the tree in advance. Rather than com-
puting Vi for t = 0, 1, 2, . . . until it converges, we can just
set t = T ∗ − 1, where T ∗ is the diameter of the tree. Note
also that the prior approach is not theoretically sound; it is
possible that Vi remains the same for several values of t
without the algorithm converging (for example, we may re-
quire t = 50 steps to reach a terminal state, and Vi may be
identical for t = 15, 16, 17, etc.).

To summarize, we can expect to obtain a speedup of ap-
proximately

∑n
i=1 |Ti| by solving for all players and types

in parallel, and a further speedup by a factor of |Mi| if we
assign a different core to each action at the initial node for

each of these computations. Assuming that all of these com-
putations are roughly equal, this would result in a speedup
of
∑n

i=1 (|Mi||Ti|), or n|T ||M | if all |Ti| equal |T | and all
|Mi| equal |M |, assuming access to

∑n
i=1 (|Mi||Ti|) cores.

Experiments
We ran experiments on the strategies computed by ST-PIFP-
TDV after 10 iterations for K = 100. We assume that
Ti = {1, 2} for all players i. For simplicity we compare the
approaches for computing player 1’s best response with type
1 (note that the other calculations can be performed analo-
gously). We first present results for Algorithm 2. Recall that
the limitations of this algorithm are that it is sequential, and
that it makes the assumption that it ignores transitions that
have probability below some threshold δ (in prior experi-
ments δ = 0.01 was used). We computed that the diameter
of the tree is T ∗ = 13, so we can just solve with t = 12.

In Table 1, we compare the runtimes of Algorithm 2 and
the parallel approach that assigns different cores for each of
the initial actions. Note that we are just considering player
1 with type 1 and t = 12, and that the parallel approach
additionally benefits by solving for all i, ti in parallel. We
are also ignoring the additional runtime of Algorithm 2 that
would be due to iterating over different values of t. From the
table, we can see that for δ = 0.00001 we obtain a speedup
by a factor of 4.4. (Note that |M1| = 9.) The parallel ap-
proach is able to solve the problem exactly (using δ = 0) in
26.55 hours, while the prior approach was not able to solve
the problem within 45 hours. If we implemented the optimal
parallelization based on the mixed-integer QCP described
above we could obtain a significant further speedup.

δ Algorithm 2 runtime Parallel runtime
0.01 3.247 1.506

0.001 5.183 2.211
0.0001 65.403 24.031
0.00001 14952.307 3457.727

0 Did Not Finish 95589.746

Table 1: Running time in seconds for prior algorithm and
new parallel algorithm for different values of δ.

Conclusion
Computing a best response is a fundamental task in game
theory. One important use is to evaluate the quality of
Nash equilibrium approximations. While it can often be
performed in polynomial time, in imperfect-information
stochastic games it is equivalent to solving a POMDP, which
is PSPACE-complete. We developed two new approaches
for utilizing parallelization to improve the runtime of a prior
approach; the first is an optimal approach based on a mixed-
integer QCP, and the second is a simpler approach that paral-
lelizes over actions taken at the initial game state. We show
that the approaches lead to a significant improvement in
runtime for a 4-player imperfect-information naval planning
problem. We expect these approaches to be useful for signif-
icantly improving the runtimes for a variety of sequential-

graph searching algorithms, including approaches for solv-
ing POMDPs.

References
Brown, G. W. 1951. Iterative solutions of games by fic-
titious play. In Koopmans, T. C., ed., Activity Analysis of
Production and Allocation. John Wiley & Sons. 374–376.
Cassandra, A. R.; Kaelbling, L. P.; and Littman, M. L. 1994.
Acting optimally in partially observable stochastic domains.
In Proceedings of the AAAI Conference on Artificial Intelli-
gence (AAAI).
Chen, X., and Deng, X. 2006. Settling the complexity of
2-player Nash equilibrium. In Proceedings of the Annual
Symposium on Foundations of Computer Science (FOCS).
Chen, G.; Shen, D.; Kwan, C.; Cruz, J.; Kruger, M.; and
Blasch, E. 2006. Game theoretic approach to threat predic-
tion and situation awareness. Journal of Advances in Infor-
mation Fusion 2(1):1–14.
Conitzer, V., and Sandholm, T. 2006. Computing the op-
timal strategy to commit to. In Proceedings of the ACM
Conference on Electronic Commerce (ACM-EC).
Daskalakis, C.; Goldberg, P.; and Papadimitriou, C. 2009.
The complexity of computing a Nash equilibrium. SIAM
Journal on Computing 1(39):195–259.
Ganzfried, S., and Sandholm, T. 2008. Computing an ap-
proximate jam/fold equilibrium for 3-player no-limit Texas
hold ’em tournaments. In Proceedings of the International
Conference on Autonomous Agents and Multi-Agent Systems
(AAMAS).
Ganzfried, S., and Sandholm, T. 2009. Computing equilibria
in multiplayer stochastic games of imperfect information. In
Proceedings of the 21st International Joint Conference on
Artificial Intelligence (IJCAI).
Ganzfried, S.; Laughlin, C.; and Morefield, C. 2020. Par-
allel algorithm for Nash equilibrium in multiplayer stochas-
tic games with application to naval strategic planning. In
Proceedings of the International Conference on Distributed
Artificial Intelligence (DAI).
Ganzfried, S. 2021. Computing Nash equilibria in multi-
player DAG-structured stochastic games with persistent im-
perfect information. In Proceedings of the Conference on
Decision and Game Theory for Security (GameSec).
Gurobi Optimization, L. 2019. Gurobi optimizer reference
manual.
Puterman, M. L. 2005. Markov Decision Processes: Dis-
crete Stochastic Dynamic Programming. John Wiley &
Sons.
Vorobeychik, Y., and Singh, S. 2012. Computing Stack-
elberg equilibria in discounted stochastic games. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence
(AAAI).
Vorobeychik, Y.; An, B.; Tambe, M.; and Singh, S. 2014.
Computing solutions in infinite-horizon discounted adver-
sarial patrolling games. In International Conference on Au-
tomated Planning and Scheduling (ICAPS).

