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Abstract

This paper presents a novel method to automatically
assess self-explanations generated by students during
code comprehension activities. The self-explanations
are produced in the context of an online learning en-
vironment that asks students to freely explain Java code
examples line-by-line. We explored a number of mod-
els consisting of textual features in conjunction with
machine learning algorithms such as Support Vector
Regression (SVR), Decision Trees (DT), and Random
Forests (RF). Support Vector Regression (SVR) per-
formed best having a correlation score with human
judgments of 0.7088. The best model used a combina-
tion of features such as semantic measures obtained us-
ing a Sentence BERT pre-trained model and from pre-
viously developed semantic algorithms used in a state-
of-the-art intelligent tutoring system.

Introduction
Source code comprehension refers to the process of under-
standing a code example, ”a process in which an individ-
ual constructs his or her mental representation of the pro-
gram” (Schulte et al. 2010). Code comprehension is essen-
tial for both professionals and beginners, e.g., students who
learn programming. Indeed, students learning computer pro-
gramming spend a significant portion of their time reading
or reviewing someone else’s code (e.g., source code exam-
ples from a textbook or provided by the instructor). Soft-
ware professionals spend at least half of their time analyz-
ing software artifacts in an attempt to comprehend computer
source code. Reading code is the most time-consuming ac-
tivity during software maintenance, consuming 70% of the
total life-cycle cost of a software product (Rugaber 2000;
Buse and Weimer 2008). O’Brien (O’brien 2003) notes that
source code comprehension is required when a programmer
maintains, reuses, migrates, re-engineers, or enhances a soft-
ware system. Thus, helping students strengthen their source
code comprehension skills will have a significant impact on
their academic as well as a professional career.

One instructional strategy to improve code comprehen-
sion and learning of programming is to prompt students to
freely self-explain the code they are trying to comprehend.
Self-explanation theories (Chi 2000) indicates that students
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who engage in self-explanations while learning are better
learners. The positive impact of self-explanation has previ-
ously been demonstrated in different domains like physics
(Conati and VanLehn 2000), math (Aleven and Koedinger
2002), and programming (Bielaczyc, Pirolli, and Brown
1995; Tamang et al. 2020; Rus et al. 2021). This work is
part of a larger project meant to develop an advanced edu-
cation technology that scaffolds learners’ code comprehen-
sion processes by eliciting self-explanations and providing
feedback, e.g., positive feedback such as Great! followed
by an assertion reinforcing students’ understanding or, if the
case, negative feedback followed by, for instance, correct-
ing a misconception. Figure 1 shows the prompts given to
students and examples of the corresponding lines of code. A
key component of this technology is automatically assessing
students’ self-explanations which we address using a seman-
tic similarity approach in which students’ self-explanations
are compared to ideal self-explanations provided by experts.

Although many studies have been conducted to measure
the semantic similarity between two texts, not much work
has been done in the field of computer programming, and in
particular, in the context of source code comprehension ac-
tivities. The correctness of students’ responses must be as-
sessed in order to provide adequate feedback. The goal of
the work presented here is to investigate a number of meth-
ods that combine machine learning and natural language
techniques to automatically assess student generated self-
explanations of code examples. As noted, the approach we
take is to measure how semantically similar the student self-
explanations are to benchmark explanations provided by ex-
perts.

More specifically, we present a set of novel methods
to compute the semantic similarity between sentence level
self-explanations of JAVA code examples when students are
asked to freely self-explain the code line-by-line. The gen-
eral approach consists of a feature engineering phase to ex-
tract textual features and then, in a second phase, use those
features in a number of machine learning models to com-
pute a normalized semantic similarity score between sen-
tence level self-explanations and expert-generated explana-
tions of the same lines of code.



Figure 1: PCEX web application for collecting line-by-line stu-
dent self explanation

Semantic Similarity as an Approach to
Natural Language Understanding

Measuring the semantic similarity of texts can be framed
as quantifying the degree of semantic similarity between a
given pair of texts, such as two words or two sentences or
even larger texts (Agirre et al. 2015; Rus et al. 2008). Sim-
ilarity scores typically range between 0 to 1 (normalized
scores), 0 meaning no similarity at all, whereas 1 meaning
most similar. Semantic similarity is widely used in the field
of Natural Language Processing (NLP) for various tasks like
text summarization, information retrieval, sentiment analy-
sis and so on. Semantic similarity between two texts can also
be framed qualitatively, i.e., identifying the presence of se-
mantic relations such as paraphrase or elaboration between
two texts A and B (Dolan et al. 2004).

The two major approaches in measuring semantic similar-
ity in texts are corpora-based, and knowledge-based (Mihal-
cea et al. 2006). For instance, one approach for computing
the semantic similarity between two texts is to calculate a
semantic similarity score directly by representing the texts
using a vectorial representation derived, for instance, based
on distributional semantics methods which analyze word co-
occurrences in large collections of texts. The simplest vec-
torial representation is the so called Bag of Words (BOW)
representation using binary weights, in which case a cosine-
based similarity measure leads to a way to quantify word
overlap. BOW methods ignore important relationships be-
tween words in a sentence such as semantic and syntactic de-
pendencies between words. With the recent advances in deep
neural networks, models like Glove (Pennington, Socher,
and Manning 2014), ELMO (Kenter and De Rijke 2015) per-
form much better on many of the NLP tasks. Other semantic
similarity algorithms (Taieb, Aouicha, and Hamadou 2014;
Zhu et al. 2018) use WordNet, i.e., a lexical database that
was manually built, where words are organized in synony-
mous sets (synsets) which in turn are hierarchically orga-

nized in an ontology.
Furthermore, different neural networks such as Recurrent

Neural Networks (Mueller and Thyagarajan 2016; Kiros et
al. 2015) and Convolutional Neural Networks (CNN) (He,
Gimpel, and Lin 2015) provide good performance on sen-
tence level semantic similarity tasks. In addition to this, the
introduction of the transformer model, BERT (Devlin et al.
2018) has been able to achieve state-of-the-art results in var-
ious NLP tasks. We do report results with BERT.

Related Works
In this section, we review some of the previous work in
the area of self-explanations and semantic similarity, with
a focus on work related to source code comprehension.
Self-explanations are beneficial to learning as during self-
explanations several cognitive mechanisms are involved, in-
cluding creating inferences to fill in gaps in learning mate-
rials, integrating new information with old knowledge, and
monitoring and fixing defective knowledge (Roy and Chi
2005). Self-explanations can be elicited in a variety of ways,
resulting in various types of self-explanations, such as free
self-explanations (no specific instruction or training is of-
fered, just simple prompting to explain) or scaffolded self-
explanations (these are self-explanations with support from
a more knowledgeable other, e.g. a human or computer-
based tutor). Self-explanations can have different degrees of
impact on various learners, e.g., learners who write down
their thoughts when engaging with a specific learning re-
source, such as reading scientific articles or while attempt-
ing to solve a problem, benefit in general from such self-
explanations and in particular this type of self-explanation
has been proven to be more appropriate for students who
struggle with challenging reading activities, such as reading
scientific texts that require a higher cognitive load.

A series of studies (Recker and Pirolli 1990; Pirolli and
Recker 1994; Bielaczyc, Pirolli, and Brown 1995) focused
on the role of self-explanations for programming with pos-
itive results, e.g., it helped to understand the concepts of
Lisp programming. While a significant relationship was
found between skill improvement and the amount of self-
explanation generated, they also discovered that the na-
ture of self-explanations is important: when compared to
low-performing students, high-performing students’ expla-
nations were far more structured. Studies performed with
undergraduates (Rezel 2003) and high school students (Al-
hassan 2017) showed that students using self-explanations
were better at program construction compare to those who
did not self-explain.

Early attempts on semantic similarity used feature engi-
neering (Gupta and El Maarouf 2014), e.g., they generated
20 linguistic features, which were then used as predictors in
a support vector regressor. In (Zhao, Zhu, and Lan 2014),
the authors created a system that performed best on task
1 of SemEval2014, the leading forum for semantic eval-
uations. They used seven textual features in combination
with various machine learning algorithms like support vec-
tor regressors, random forest regressors, and others. (Ma-
harjan et al. 2017) used an ensemble of traditional machine
learning algorithms with deep learning models for Semeval



2017, where their system was one of the top performing sys-
tem. Sultan (Sultan, Bethard, and Sumner 2015) proposed a
supervised architecture model which relies on word align-
ments and similarities between compositional sentence vec-
tors.

Elvys (Pontes et al. 2018) proposed a neural network ar-
chitecture that uses siamese CNN for analyzing the con-
text of a word in a sentence and generating its represen-
tation and then using siamese LSTM to analyze the whole
sentence based on words and the local context. After com-
pleting those two steps, the semantic similarity between two
sentences is calculated based using a Manhattan distance.
Chen et al. (Chen et al. 2017) proposed a method for se-
mantic similarity for web service discovery that integrates
multiple conceptual relationships for web service discov-
ery. The similarity is computed as a weighted aggregation
of interface similarity and web service description similar-
ity.Vekariya (Vekariya and Limbasiya 2020) introduced a
new approach called DeepLSTM for semantic similarity for
answer selection in question answering. The approach con-
verts words into vectors using word embedding. Once the
words are embedded, a versatile global T-max pooling and
DeepLSTM are used to predict an output score.

Experiments and Results
We have conducted experiments with various models (sets
of textual features) to tackle the task of automatically eval-
uating students’ self-explanations of computer programs
with the specific goal of predicting a semantic similarity
score which indicates how semantically similar the self-
explanations are to the expert explanations.

Data Collection
All the data were collected using a web-based learning tool
called PCEX, which is a collection of interactive worked ex-
amples that allow students to explore text explanations of
programming code line by line interactively (see Figure 1).
Using the PCEX original platform, we made some changes
to prompt students to explain each line of code as a way to
collect genuine student self-explanations. Specifically, stu-
dents were shown 10 different JAVA examples which has on
average 12 lines of code and asked to read each line of code
and explain it which resulted in 1,771 self-explanations.
Since for each line of code we also have the benchmark,
expert-generated explanations from the original PCEX plat-
form, we ended up with a data-set that consists of 1,771 sen-
tence pairs, a student explanation, and an expert explanation
for each line of code.Table 1 shows examples of line-by-line
student self-explanations and the corresponding benchmark
explanations. Descriptive statistics such as average length of
words and standard deviation for student explanations and
benchmark explanations are presented in Table 2.

Data Preparation
Human experts annotated the sentence pairs with semantic
similarity ratings ranging from 1-5 (1 - not similar, 5 - se-
mantically similar). The goal of the annotation was to gen-
erate a gold standard for training and testing the machine
learning models that we experimented with.

Student Explanation Standard Explanation
Declares the array we want
to use for our assignment

We initialize the array of
type int to hold the speci-
fied numbers.

Shift the point by +11 in
the x direction and +6 in
the y direction.

The translate method re-
ceives two parameters.

create variable integer en-
titled ”num” with value 5

In this program, we initial-
ize the variable num to 15.

Initialize the maximum
value to the first value in
the array.

We need to extract the first
letter from the last name.

print the max value after
the recursion ends

This statement prints the
maximum value of the ar-
ray to the default standard
output stream.

Table 1: Student line-by-line self explanation vs PCEX Standard
Explanation

Due to space reasons, we provide only briefly the details
of the annotation protocol as in the followings:
• Explanations that contain more than one sentence were

broken down into individual sentences, and all pairs of
sentences were generated.

• for each sentence in the student self-explanation, find the
sentence in the expert explanation that best matches in
terms of semantic similarity. Judge the semantic similarity
by using a rating from 0 (not similar, which could mean
irrelevant or incorrect; well-known misconceptions were
flagged) to 5 (similar; the student self-explanation is cor-
rect and covers all concepts of the expert explanation).

Explanations Word Count (µ) Word Count (σ)
Student 11.862 6.602
Standard 16.815 6.793

Table 2: Statistics of student explanation and standard explanation

To annotate the data, we recruited six graduate students
with expertise in computer programming. Each sentence
pair was rated by three students, with three students rating
the first half of the data and the other three students the other
half. The annotation for each sentence pair was conducted
in two stages. During the first stage, each of the annota-
tors provided a score for each pair. During the second stage,
disagreement cases were discussed, and raters were given
a chance to change their original scores. After the second
stage, each sentence pair (except very few cases) had sim-
ilarity ratings which differed by at most 1 point among the
three annotators. We considered such a difference of zero or
one as ”agreement” owing to subtle differences in interpret-
ing the sentences, which was realized during the disagree-
ment resolution stage.

The inter-rater agreement between raters was computed
using Fleiss Kappa (Fleiss 1971). Fleiss’ Kappa was 0.33
after stage 1, representing the fair agreement between the
annotator and 0.99 during stage 2.



Models R1 R2 R3 R4 R5
Corr. RMSE Corr. RMSE Corr. RMSE Corr. RMSE Corr. RMSE

Linear 0.5251 0.2338 0.6792 0.2035 0.4679 0.2445 0.6895 0.2016 0.6655 0.2056
Support Vector 0.4070 0.2518 0.6572 0.2115 0.4471 0.2466 0.7088 0.1995 0.6729 0.2042
Random Forest 0.5241 0.2341 0.6628 0.2059 0.5375 0.2350 0.6652 0.2059 0.6628 0.2059
Decision Tree 0.5033 0.2373 0.6341 0.2119 0.5120 0.2385 0.6341 0.2119 0.6341 0.2132

Table 3: Summary of the results obtained with all runs R1-5.

Figure 2: Comparison of models in different runs R1-5 with the baseline

We also normalized the ratings: a normalized score of 0
was assigned for the human rating 1 (meaning not similar
at all), a score of 0.25 for human rating 2, and so on. The
normalized score of 1 corresponds to the human rating of 5,
meaning most similar. To generate one rating score, we took
the average of the three human scores for each instance.

The Features Used in The Models
These features were then used in models trained with the fol-
lowing four different regression models: Linear Regression
(LR), Support Vector Regression (SVR), Random Forest Re-
gressor (RFR), and Decision Tree Regressor (DTR). The
number of overlapping words and the BERT similarity score
correlated at the magnitude of 0.5718, whereas the number
of overlapping words and the similarity score obtained from
the semantic similarity method used in a state-of-the-art in-
telligent tutoring system has a magnitude of 0.6415 (these
are the highest, significant correlations among our features).
Based on those correlations, we decided to use the following
combinations of features as they were not highly correlated
with each other:

• R1: Word count difference, Number of overlapping
words, Number of bigram overlapping words

• R2: Word count difference, Number of bigram overlap-
ping words, Semantic Similarity Score obtained from
Sentence BERT pre-trained model

• R3: Word count difference, Number of bigram overlap-
ping words, Semantic Similarity Score obtained from
DeepTutor

• R4: Semantic Similarity Score obtained from Sentence
BERT pre-trained model, Semantic Similarity Score ob-
tained from DeepTutor

• R5: Semantic Similarity Score obtained from Sentence
BERT pre-trained model

Results

We conducted experiments with models that combine differ-
ent sets of features. We present here the results of the best
combinations of features and algorithms (LR, SVR, etc.).
For each of the models, we used a 10-fold training-testing
methodology in which the dataset was divided into 10equal
folds, and each fold was held-out for testing resulting in 200
train-test iterations. We calculated a correlation between the
semantic similarity score given by human annotators and the
semantic similarity score obtained from the DeepTutor se-
mantic similarity engine, which was trained on Physics data
that has a correlation score of 0.4270, which we used as our
baseline to compare the models’ performance.

Table 3 shows the performance of our model in each runs,
and Figure 2 shows the comparison of our model’s perfor-
mance with baseline. Among all runs(R1-R5), SVR on R4
produced the best performance across all the models with
a correlation score of 0.7088. Hence for the regression task
explored in this paper, the set of features represented by R4
(Semantic similarity score obtained from Sentence BERT
pre-trained model, semantic similarity score obtained from
previously developed DeepTutor semantic similarity engine)
has been the most significant.

We also ran an experiment to understand the performance
of various models for each annotation category. Table 4
shows the correlation score for each annotation label for the
best performing model. From the table we can infer that the
model is performing well for each annotation label espe-
cially for annotation label 5 even though this category has
fewer instances.



Annotation Label No. of instances Corr.
1 520 0.5912
2 513 0.6755
3 416 0.67335
4 263 0.6155
5 59 0.7517

Table 4: Performance of best model per majority human annota-
tion score.

Error Analysis
While the best model provides very good performance com-
pared to human ratings, it does fail in many instances
which may represent opportunities for improvement. We
conducted an in-depth analysis of the major failing points
of the best model as indicated by large differences between
the human ratings and the best model’s predicted similar-
ity score. Such instances with large discrepancies are shown
in Table 5. A closer analysis of those instances revealed
that sometimes students provide correct explanations in very
different language compared to the benchmark explanation
provided by experts (see instance 3 in the table) or the stu-
dent explanation focuses on a higher level explanation of
the corresponding line of code explaining why the line was
needed (why?) whereas the benchmark explanation focuses
on how the intended step is implemented (see instance 1).

Student Explanation Benchmark Explanation
1 Read in the user’s input

as to whether the phone is
broken

The variable isBroken is
true when the phone is bro-
ken, and false otherwise.

2 creates ”translate” with de-
pendent integers dx and dy

This method shifts the co-
ordinates by a specific
delta-x and delta-y, which
are passed as parameters.

3 this is beginning line of
the translate method of the
class Point1, it has two in-
tegers as its arguments, dx
and dy

This method shifts the co-
ordinates by a specific
delta-x and delta-y, which
are passed as parameters.

4 Creates a function called
translate which takes 2 ints
called dx and dy

This method shifts the co-
ordinates by a specific
delta-x and delta-y, which
are passed as parameters.

5 the firstInitial and the las-
tInitial are then stored
together in the variable
named initals.

This statements concate-
nates the extracted initials
and store the result in the
string initials.

Table 5: Sentence pair instances where the similarity score varied

More domain specific training of semantic representations
are needed, e.g., in the form of jointly trained code and text
embeddings, to better handle instance 3, e.g., identifying
that dx and delta-x refer to the same concept and that ’in-
tegers’ in the student explanation are equivalent to ’delta-x
and delta-y’ in the benchmark explanation as they are integer
variables. Instances similar to instance 1 can be better han-

dled by making the prompts more specific, e.g., prompting
students to explain both the why and how of a line of code as
opposed to just asking them to explain which is vague and
students may just explain the why or just the how.

Conclusions
In this paper, we evaluated four different regression models,
namely, linear regression, support vector regression, random
forest regression, and decision tree regression with a number
of features in different combinations in order to compute a
semantic similarity score between student self-explanations
and benchmark explanations. The results obtained indicate
that support vector regression (SVR) has the highest perfor-
mance across all sets of models when used with a combina-
tion of features that includes a semantic similarity score ob-
tained from the Sentence BERT pre-trained model and the
semantic similarity score obtained from DeepTutor. We plan
to extend this work further by trying different state-of-the-
art deep learning methods. Also, we plan to mix the hand-
crafted features with word embeddings derived using neural
networks to create hybrid models.
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