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Abstract

Novelty search is a powerful tool for finding sets of
complex objects in complicated, open-ended spaces.
Recent empirical analysis on a simplified version of
novelty search makes it clear that novelty search hap-
pens at the level of the archive space, not the individual
point space. The sparseness measure and archive update
criterion create a process that is driven by a clear pair of
objectives: spread out to cover the space, while trying
to remain as efficiently packed as possible driving these
simplified variants to converge to an ε-net in the sense
defined by k Nearest Neighbor theory. Among the sim-
plifications was omission of a population: the archive
itself served as both the potential candidate set solu-
tion, as well as the source of parents in the evolutionary
search, which has the potential to fundamentally ham-
string the search. In this paper, we relax this crucial as-
sumption, generalizing the previous simplified novelty
search so that a traditional population and (µ, λ) dy-
namics are used to produce new search points, and the
population and the archive are updated separately. We
show empirically that it still possible to converge, and
that it can be even more likely to do so.

Introduction
Evolutionary algorithms (EAs) are increasingly being lever-
aged for creative endeavors from creating computer pro-
grams (Koza 1992) to producing art (Dreher 2014). Though
there is a subfield of evolutionary computation dedicated to
its ability to generate, create, and innovate (Goldberg 2002),
there is not a lot of theory or foundational analysis for such
applications.

One of the most successful and aggressively promoted
concepts springing from innovative power of evolution-
ary methods is the idea of Quality Diversity Algorithms
(Fontaine et al. 2019), such as Novelty Search (Stanley and
Lehman 2015). The motivation of novelty search is that for
some complex spaces, it is better to ignore the optimiza-
tion objective and instead explore the space by discovering
things that are increasingly “different” from those that the
search process has encountered. Novelty search has been
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surprisingly effective at finding good solutions to a number
of challenging problems without even looking for those so-
lutions directly, for instance discovering grasping behaviors
for robotic arms (Huang et al. 2014), unsupervised feature
learning for deep networks (Szerlip et al. 2015), discovering
of gaits for quadruped locomotion (Morse et al. 2013), and
goal-seeking in complex multiagent simulations (Lehman
and Stanley 2011).

Advocates suggest at least three reasons novelty search
has been so successful. The first is that novelty search avoids
deceptive areas of the space by abandoning the objective in
favor of a novelty metric (Stanley and Lehman 2015). Sec-
ond, novelty search is typically used in conjunction with
open-ended or generative representations Finally, by using
distance metrics within the behavior space rather than the
raw genotype space, novelty search finds what is interesting
in the space in which the designers are interested. Unfortu-
nately, there is virtually no foundational analysis for novelty
search to support such assertions.

This paper considers only the claim that novelty search
has no objective, and that it is a “divergent” search process
(Lehman, Wilder, and Stanley 2016; Lehman and Miikku-
lainen 2015; Stanley and Lehman 2015). This claim was ad-
dressed in a recent empirical analysis of a simplified form
of novelty search (Wiegand 2020), which showed that un-
der the most basic components of traditional novelty search
(sparseness and an archive) the archive is driven toward in-
creasingly better ε-covers of the search space while also try-
ing to optimize the ε-packing of the archive. Simple variants
of novelty search can converge, even in unbounded spaces.

But the algorithmic simplifications of this recent effort
are severe and radically alter novelty search. In particu-
lar, though the simple novelty search evolutionary algorithm
(SNSEA) that paper presents uses an archive to represent a
candidate solution set, it does not use a population for evo-
lutionary dynamics. Instead, parents are selected uniformly
at random from the archive itself.

The current paper examines a population-based simple
novelty search evolutionary algorithm (PSNSEA). We show
empirically that adding a population and separate update dy-
namics for archives and populations, as in more traditional
novelty search applications, does not necessarily alleviate



the problem that novelty search can converge, contradicting
prior claims that they diverge.

Technical Approach
Sparseness and Archives
The sparseness of a candidate object y, ρy , is estimated by
the average distance to the k nearest neighbors in a set A:

ρy :=
1

k

k∑
i=1

δ
(
xAi , y

)
, (1)

where xAi is the ith closest point in set A to y and δ is a
distance function.

This sparseness score is used in two ways: 1) as a fit-
ness value for evolution and 2) as an updated mechanism
for an archive of points maintained during search. That is,
parent and/or survival selection can be based on maximiz-
ing sparseness, and novelty search adds individuals to the
archive only if the sparseness over the archive is above a
certain threshold, ρmin.

During search, the archive continues to expand as the
search progresses, and the population is evolved toward new,
novel search points. It is the assumption that search occurs
at the level of these candidate points and the fact that the
archive continues to expand that gives rise to previous asser-
tions that novelty search “diverges”.

Archive-Based Searches
In a typical evolutionary algorithm, individuals in the popu-
lation represent candidate solutions to some problem, and
the search space is the space of potential candidate solu-
tions to that problem. Given this, it’s easy to see why novelty
search appears to be objectiveless: the algorithms ignore the
optimization objective associated with that candidate solu-
tion, and one imagines search diverging in the sense that in-
creasingly different candidates are progressively proposed in
an ever-growing archive.

Still, there are other ways to understand search. Multi-
objective optimization find approximations of Pareto non-
dominating sets for some solution space (Seada and Deb
2018).Cooptimization (e.g., coevolutionary algorithms) are
supersets of multiobjective optimization problems, in which
simultaneously identifies the set of objectives and produces
a set obeying some solution concept — typically also Pareto-
based (Popovici et al. 2012).

Novelty search also searches a space of novel archives,
not a space of candidate solutions. The true goal of this
search is to cover a solution space as much as possible while
remaining as efficiently packed as possible. That is, it devel-
ops a set that spreads out in the space and also keeps points
in the set far apart.

The Population-Based Simple Novelty Search
Evolutionary Algorithm
In a PBSNSEA, the parent population contains the current
state of the exploration aspects of the search, while the
archive contains the potential solution set at that moment of
the search. Each generation, λ children are produced from

the µ parents, and the children are added to the archive
if they meet the sparseness criterion as computed over the
archive. Additionally, sparseness of the children with respect
to the child population itself is computed, and that the µ
individuals with the highest sparseness values are selected
to be in the parent set for the next generation. This is re-
peated until some termination criteria is met. For this pa-
per, we use k = 3 for the sparseness computation in all
cases for simplicity. The termination criterion is simple a
maximum number of generations (500 in all cases here). We
will consider a real-valued representations, where d = 5 di-
mensions. Gene values are unbounded, and mutation works
by independently adding a value drawn fromN (0, σ)— so-
called Gaussian mutation. This allows the possibility for the
archive to grow in an unbounded way by adding individuals
that are “novel” in the sense that they are distant from pre-
vious individuals. Distance is computed using the L2 norm,
Euclidean distance.

Note that our distance calculations are in the genotype
space, whereas traditionally novelty search computes dis-
tance in “behavior space”. However, this is not an important
distinction in this analysis since we are only evaluating the
claim about whether an objective exists, not what it looks
like for a given problem instance.

In all cases, experiments were replicated for 50 indepen-
dent trials and run to 500 generations. All experiments in
this paper use σ = 0.1 and ρmin = 0.45.

Packing and Covering
To develop bounds on how efficiently distance-based, lazy
methods like k-nearest neighbor algorithms are able to de-
velop hypotheses for a given space, the theory commu-
nity for that field have developed several formal definitions
(Clarkson 1999).

The first idea is the ε-cover of a set: How well does the set
cover some space?

Definition 1 An ε-cover of some space Z = 〈U, δ〉, where
δ : U×U 7→ R is a distance measure over U , is a setA ⊂ U
such that ∀x ∈ U,∃a ∈ A with δ(x, a) < ε.

The second idea is ε-packing of a set: How efficient is the
distribution of points in the set?

Definition 2 Given the space Z = 〈U, δ〉, where δ : U ×
U 7→ R is a distance measure over U , a set A ⊂ U is an
ε-packing iff δ(a, b) > 2ε ∀a, b ∈ A, where a 6= b.

Put more simply, a set that covers a space well is one that
is spread out over that space such that no point in the space
is too far from at least one point in the set, while a set that is
packed well is one in which points inside the set aren’t too
close together. Note that for cover, smaller is better (points
in U are closer to points in A); however, for packing, larger
is better (points in A are further apart).

Definition 3 An ε-net A ⊂ U is a set that is an ε-cover of
U and an (ε/2)-packing.

In k-NN theory, an ε-net is optimal: A set that is both effi-
ciently packed and covers the space well.



We adopt the estimation measures for these from (Wie-
gand 2020). The packing estimator is simply half the max-
imum pairwise distance in the archive. Packing, thus, starts
small and grows as points are added to the archive.

Directly computing cover is computationally infeasible.
Instead, we approximate this as follows. First, we assume
that the search will (with high probability) remain within the
bound ±σ ·maxGen in all dimensions. We confirmed that
though any 5D point was possible in principle, in all runs
of all experimental groups, none were generated outside that
region. Second, we sample points uniformly at random from
inside that bounded hypercube. Finally, we find the closest
point in the archive to each sample point. The maximum of
such distances is reported as our estimate for ε-cover. Cover
estimates will tend to start large, then drop as it becomes
increasingly less probable that the algorithm will select new
points that fill in the gaps of the space searched so far.

Results
The SNSEA variant from (Wiegand 2020) does not have a
population in the sense that traditional novelty search has.
It instead uses the archive as the population. Seen this way,
the SNSEA is most comparable to a (µ+1)-EA, where par-
ent selection occurs randomly from the population (archive)
and truncation survival selection is being used. Of course, it
differs from this in that the fitness of an individual depends
on the current population (archive), which grows.

So the algorithm does have selective pressure and pro-
gresses in a particular direction; it is not random search.
Generally, the algorithm gradually grows the size of the
archive, adding new points as they are discovered. The
SNSEA will steadily increase packing and decrease cover.

Our (µ, λ) population-based variant instead maintains a
separate population and archive. This permits the search dy-
namics to work independently of the archive state. In such
a case, it is better to think of the archive as the “saved best
solution found so far.” Still, since the archive update mech-
anism makes use of the sparseness criteria, the algorithm’s
updates of the archive are not random or arbitrary. Again,
the update process itself applies pressure to reduce pack-
ing (make the archive more efficient) and reduce the cover
(finding new points). The key question is whether the confla-
tion of population dynamics and archive update in (Wiegand
2020) is the reason convergence was observed.

The PSNSEA Converges
Ideally, a “diverging” novelty search will continue to find
increasingly more efficient packings of the existing archive
while developing an archive whose coverage of the space
also improves. When cover improves and packing does not,
this suggests that novel points are being added but the
archive is missing large swaths of the space — novelty is be-
ing discovered but inefficiently. When packing improves and
cover does not, this is a very different matter. The algorithm
is inserting more points inside the convex hull of the archive
but not really discovering anything new (as defined by the
sparseness metric). As long as packing remains below cover,
true novel discovery is occurring.
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Figure 1: (2, 8)-PSNSEA applied to an unbounded real-
valued space with n = 5, ρmin = 0.45, and σ = 0.1 av-
eraged over 50 independent trials.

Figure 1 illustrates an example in a population-based ap-
proach where packing increases and cover converges. It is
clear that it is driven by the packing and cover objectives de-
scribed above. Indeed, the (2, 8)-PSNSEA converges much
faster than non-population approaches show in (?).

Populations Can Speed Up Convergence
To test whether or not populations can solve the
problem of our simple novelty search EA converg-
ing, which considered several different population
configurations for µ and λ, specifically, we ran
50 independent trials of eight experimental groups:
(2, 8); (2, 16); (2, 32); (4, 16); (4, 32); (8, 32) (16, 32) no-
population. The goal is to see how long it takes before
convergence occurs in the sense that coverage has dropped
below packing. Our experiments were run for 500 gener-
ations, and in trials of all population-based experimental
groups this occurred within that time. The only experimen-
tal group where packing does not overtake cover were the
control group trials where children are selected directly
from the archive. Here, we run a LOESS regression curve
for both packing and coverage and record when the two
curves would have intersected with 95% confidence.

Novelty search is searching archive space rather than the
underlying Euclidean space, and that the population repre-
sents part of this potential archive space. In that sense, it
makes the most sense to examine coverage and packing of
the archive by generation. As such, Figure 2 shows the aver-
age number of generations it took for the different groups to
converge. The control group (no-population) actually took
longer than any population-based group.

Discussion
Novelty search can be a useful tool for discovery of complex
objects in open-ended spaces by leveraging three key pieces:
a sparseness metric and archive, generative representations,
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Figure 2: PSNSEAs applied unbounded 5D Euclidean space
under different population conditions. Each experimental
group was run for 50 independent trials. The bar length rep-
resents the generation in which packing overtakes cover and
cover has converged.

and distance measures in the actual solution space (e.g., be-
haviors) rather than genotype space. This paper expands on
recent efforts to examine novelty search at a more founda-
tional level by concentrating on the first piece (sparseness
and archive) to evaluate claims that novelty search is “diver-
gent” and “objectiveless”. Previous work has concluded that
these claims aren’t always valid — SNSEAs can converge by
optimizing the archive toward an ε-net that covers and packs
a space in the sense defined by k-NN theory. Unfortunately,
this was based on unrealistic simplifications where SNSEAs
draw parent individuals directly from the archive rather than
using a population, which is not how most novelty search
methods work.

In this paper, we consider whether adding a population
changes things. Do SNSEAs with populations diverge? We
show that even when the PSNSEA uses a child and parent
population, it can converge in terms of cover measures over
the space. In fact, we provide evidence that certain popula-
tion configurations can actually accelerate convergence be-
cause populations are not necessarily good representatives
of the leading edge of an archive.

It may seem counter-intuitive that drawing a single child
from the archive can improve novelty search — surely draw-
ing a single parent, producing one child, then updating
the archive represents a significant diversity loss? But this
counter-intuition again mistakes the fundamental unit of
search in novelty search, which not the genotype space but
the archive space. Each child produced represents a potential
part of how the solution can be grown, and as such it needs
to be as representative of the leading edge of the archive
as possible assuming the goal is to grow the cover of the
archive. Drawing parents directly from the archive ensures
the archive is at least minimally represented, whereas main-
taining a separate population runs the risk that the cover of
the archive and the cover of the population are very different.

Still, selecting random individuals from inside an archive
is inefficient. As the archive grows, the ratio of the lead-
ing edge to its overall volume will reduce, making it harder

and harder to sample from areas that are likely to produce
“novel” solutions. This problem gets worse as dimension-
ality is increased, of course. Taken together, these observa-
tions suggest potential new ideas for maintaining the novelty
gradient: Bias parent selection to favor the leading edge of
the archive. This may involve convex hull operations, or se-
lection methods for population-based approaches that fore-
stall packing rather than increase it.
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