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Abstract

Control systems are used to automate industrial pro-
cesses, smart grids, and smart cities. Unfortunately, cyber
attacks on control systems are on the rise. Additionally,
control systems lack the plethora of tools available for
commodity systems for forensic investigation. An impor-
tant step towards the proper forensic investigation is to
analyze device memory. To assist in identifying features
of device memory, we present a machine learning-based
technique that integrates ontology information for fea-
ture classification in a control system device’s memory.

Introduction
A control system is a set of interconnected devices that coor-
dinate to control dynamic systems in industry, the power grid,
and smart cities. Control systems can be found anywhere
that automation is needed to increase productivity, consis-
tency, and safety. Control devices monitor and control other
devices and tend to require little energy, but are computation-
ally slower than commodity hardware. Historically, due to
their lack of processing power, these devices lack the security
measures of commodity hardware because they were typi-
cally isolated and lacked connection to a network. However,
controls systems are now often deployed in uncontrolled en-
vironments, such as buildings accessible by many employees,
or out in the field. Furthermore, these devices have become
more remotely accessible through wide area networks and
the Internet. The increased accessibility has also increased
the opportunity for attacks, which can have severe, even life
threatening, consequences.

Forensic analysis is used to determine characteristics of a
cyber attack. However, forensic analysis needs to be done as
quickly and thoroughly as possible to mitigate cost and dam-
age. Machine Learning (ML) techniques are becoming more
widely used in computer forensics because they can decrease
the time of the investigation (Qadir and Varol 2020). Unfor-
tunately, few tools exist for identifying features in a device
memory which is an important step of forensic analysis.

In this paper, we present a methodology for automatic
identification of features in a device memory using raw de-
vice data, such as device memory dumps or log files, and an
ontology that describes the control process.
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To describe our methodology, our goals are as follows.

• Define example sets of ontologies for established control
systems. In this paper, we incorporate two such examples.

• Show how these ontologies could be used with our feature
classification methodology to classify the artifacts from
raw unlabelled data that can be obtained from logs and/or
device memory dumps.

• Show how these ontologies with the selected features can
be used to classify device artifacts for device states.

• Evaluate our feature classification methodology and make
a determination about which algorithms work for our ex-
ample domains and datasets.

Related Work
Closely related to our work are the areas of ontology in con-
trol systems, feature extraction and classification, and foren-
sics. Ontologies are formal representations and definitions of
the running processes of a domain that also provide knowl-
edge about the relations between artifacts of the domain (Gru-
ber and others 1993). Some of the works using ontology in
control system are: Küçük et al. (Küçük and Arslan 2014)
domain ontology for wind power applications by learning
the concepts and properties of this domain from Wikipedia
articles.

Melik-Merkumians et al. proposed an ontology-based fault
diagnosis for control systems in (Melik-Merkumians, Zoitl,
and Moser 2010), they used an ontology to represent the core
concepts and instances of a minimalistic tank model.

Work in feature extraction and classification includes
Christ et al. who proposed an approach named FRESH - Fea-
ture Extraction based on Scalable Hypothesis tests, which is a
highly parallel feature filtering system (Christ, Kempa-Liehr,
and Feindt 2016). Tsang et al. (Tsang and Kwong 2005) im-
plemented an Independent Component Analysis (ICA) with
an Ant Colony Clustering Model (ACCM) to extract features
and reduce dimensionality for intrusion detection. Both of
these works aim to enhance feature extraction with compo-
nent analysis and dimensionality reduction to improve the
clustering algorithms, and their approaches attempt to identify
the important features in the dataset. In our case, we incor-
porate additional information extracted from the ontology to
improve the performance of our clustering algorithms.



Figure 1: Relation between sensor data and ontology.

Forensic analysis in control systems can be challenging
because shutting down the control system to collect forensic
data is not practical. A necessary initial phase is to examine
and identify the control system (Spyridopoulos, Tryfonas, and
May 2013). Two phases of forensic methodology described
by Stirland et al. (Stirland et al. 2014) are identification and
preparation. Our work can be used by the investigators to
complement these steps and use the collected data to quickly
get familiar with the system under investigation.

Feature Classification Workflow
We use a two phase workflow for feature classification from
the raw data. The first phase labels the data according to the
information in the ontology, and the second phase applies
ML feature classification algorithms.

Ontology and Labeling
In the first phase of our workflow, we collect raw, unlabeled
data. Typically, this raw data will come from the device log
file or debugging interfaces. However, for these initial experi-
ments, we used freely available datasets. The authors of these
datasets have already labeled them. For our purposes, we re-
moved the labels from the data so that they represent the raw
data collected from devices. The next step is to incorporate
the ontology information. This preprocessing associates char-
acteristics and behaviors in the ontology to the data values in
the raw data. It results in a labeled data file whose labels are
identifiers for the characteristics and behaviors from the on-
tology file. The labeling algorithm, as shown in Algorithm 1,
takes as input the raw sensor data and the ontology. It then
parses the ontology into a map of labels and predicates with
tolerances. Then, each item in the sensor data is matched
against the ontology by evaluating the predicate, and if the
predicate evaluates to TRUE for all the sensor values for that
sensor, then the data value is labeled with the corresponding
label.

For example, in the ontology file, as shown in Figure 1, one
of the value range is 0 to 17 which represents the sensor value
of the nacelle speed. If the data values for a particular memory
location all adhere to this behavior, then all the data values
in the raw data are annotated with a label ”nacelle speed”
that corresponds to this behavior according to an expected
tolerance or deviation.

Feature Classification
In the second phase of our workflow, the labeled data file
is used in the classification process, as shown in Figure 2.

Algorithm 1: Phase 1 - incorporating the ontology
1 function add ontology (X,Y );

Input :raw sensor data (X), ontology (Y )
Output :ontology incorporated data (Z)

2 for i = 0 to Ylength do
3 for j = 0 to Xlength do
4 if Y[i].predicate applied to X[j] is TRUE then
5 append (Y [i].label + X[j]) to Z;
6 end
7 end
8 end
9 return Z;

We have used both supervised and unsupervised learning
in our experiments. For the unsupervised learning K-means
clustering algorithm was selected for this experiment. The
clustering algorithm takes the ontology incorporated data and
assigns cluster labels to the data. The assigned clusters in
this experiment represent different types of sensors. The next
step is to use this labeled data for supervised learning. The
supervised classification algorithms use the labeled data to
create a prediction model. The data is split into training and
test datasets. Once the training phase finishes, the prediction
phase attempts to predict sensor data values in raw, unlabeled
input data.

Figure 2: Phase 2 - clustering and classification.

In our experiments, to determine the effect of incorpo-
rating ontology information into the datasets, we compared
the following classification algorithms: Decision Trees, K-
Nearest-Neighbors (KNN), Support Vector Machines (SVM),
and Näive Bayes. We chose these algorithms because they
are in common use and have the most readily accessible li-
braries. We will incorporate more algorithms in our study in
the future.

Experimental Results
We ran our experiments on the two datasets using various
clustering and predictions algorithms, both with and without
incorporating an ontology, and compared the results.

Experimental Setup
We applied our workflow in two different experiments on the
WADI dataset (SUTD 2015) and the wind farm dataset(Pas-
sos et al. 2017). For the WADI dataset, we used 7 different
types of sensors from the raw sensor data that had 192,000



Figure 3: K-Means clustering w/o ontology data (Wind
Farm).

records. The dataset consisted of an average of 14% to 15%
sensor data for each of the 7 sensors. Each sensor in this
dataset had 4 attributes. For the wind farm dataset, 4 types of
sensor values were used to create a dataset of raw sensor data
with 105,100 records. Each sensor had approximately 25%
of sensor data. There are five attributes for the sensors.

As discussed in section ”Feature Classification Workflow”,
the workflow labeled the data with ontology information in
a preprocessing step, clustered the data, and then trained the
classifier. After the workflow completed, we tested the clas-
sifier by running it and computing metrics for its statistical
performance. Then in each experiment we ran the training
and testing phases again, but excluded the preprocessing step
in the workflow so that the ontology was not used. Running
the workflow without the ontology information allows to
compare the classifier on both raw and labelled data.

Evaluation
All of the classification algorithms performed similarly, ac-
cording to their F-measure. However, the F-measure for some
of the raw data was below 0.6. We found that the performance
of the classification highly depends on the performance of
the clustering algorithm.

Clustering without the ontology information results in poor
clustering performance and, thus, poor classification perfor-
mance. For example, Figure 3 shows four clusters for the
wind farm dataset labeled as 0-3. Each cluster represents a
different sensor. This figure illustrates running the workflow
on the unlabeled data. Some of the raw data values are asso-
ciated with the incorrect sensors, which behave similarly, but
not exactly the same. The similar behavior makes distinguish-
ing between the sensors difficult for the clustering algorithm.
For example, in Figure 3 cluster 0 represents the values of the
wind speed sensor which have a maximum value of 17.1 and
minimum of 0. Similarly, cluster 0 represents the values of
the active power sensor and the values for this sensor range
from 0 to 840. As a result, the similarity of the values for
the active power sensors contributed to clustering some of
them as the wind speed sensor values. However, as shown in

Figure 4: K-Means clustering with ontology (Wind Farm).

Figure 5: K-Means clustering w/o ontology (WADI).

Figure 4, which incorporates the ontology, the clustering im-
proved significantly. Though, some values of the active power
sensors fall in the same range as the values of the wind speed
sensors, the ontology supplies the needed information to tell
them apart. The clustering algorithm uses this information to
differentiate two sensors successfully.

Including ontology information improved clustering, and
thus improved the classification performance metrics across
all the classification algorithms. Precision increased from as
little as 61% to 99% for the wind farm dataset and from 62%
to 79% for the WADI dataset. The F-measure was higher
than .75 for all cases with .99 being highest. Figure 5 cluster-
ing results of K-Means algorithm with and without ontology
data for the WADI dataset. and Figure 6 show the Principal
component analysis was used to reduce the dimensionality
of the dataset. To evaluate the performance of the K-Means
clustering algorithm we also implemented DBSCAN for the
clustering phase. Figure 7 and Figure 8 illustrate the DB-
SCAN clustering performance on the wind farm dataset with
and without ontology. Due to the nature of the dataset being
highly sparse between different ranges, DBSCAN labels a
lot of the data as noise (cluster 6). As a result, even though
the performance of the algorithm improves when using the



Figure 6: K-Means clustering with ontology (WADI).

Figure 7: DBSCAN clustering w/o ontology (Wind Farm).

dataset with the ontology, the K-Means algorithm produces
the best clustering results for the classification phase.

Conclusion
In this paper, based on the need for tools and methods for
forensic analysis in control systems, we have presented a
methodology that uses domain knowledge, clustering, and
feature classification techniques to label features of raw mem-
ory dumps. Incorporating the domain knowledge in the form
of ontologies significantly improves the performance of clus-
tering and thus classification of the sensors in the control
system devices. Our results are encouraging because having
reliable device state data can help to discover and investigate
cyber attacks at early stages in a control system.
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Figure 8: DBSCAN clustering with ontology (Wind Farm).
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