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Abstract
This paper outlines how Mediacorp (Mediacorp 2021),
Singapore’s public service broadcaster, addresses its
cross-device identity challenges using a scalable device
graph approach. Research in this area is relevant to
the domain of advertising technology as it enables a
holistic view of consumers that can be extended to use
cases such as improving advertisement targeting, per-
sonalized recommendations and demographic predic-
tions. Past research efforts were limited to high-level
descriptions of the steps undertaken to create a one-off,
static device graph based on data collected over a cir-
cumscribed time frame, thus limiting its use in larger-
scale commercial applications. In this paper, we pro-
pose a scalable solution that enables continuous, incre-
mental revisions of our device graph. We leverage be-
havioral data captured by Mediacorp across its sites and
platforms to build a richer device graph that is updated
weekly. First, we introduce additional features and ex-
plore various classifiers to improve pairwise probability
scores between devices that are likely to belong to the
same user. Then, we apply community clustering algo-
rithms to uncover device communities to establish the
final device graph. Extensive experiments showed that
our additive approach has consistently delivered >90%
precision and recall in real-world applications.

1 Introduction
Targeted online advertising is increasingly harder to achieve
as users move seamlessly across multiple devices daily. For
example, users may have separate work and personal phones
or laptops that they use interchangeably throughout the work
day. When they return home in the evening, they could
continue browsing using their tablets, PCs and smart TVs.
While the use of cookies and various advertising identifiers
(e.g. Apple’s Identifier For Advertisers [IDFA], Google’s
Advertising ID [GAID], Microsoft’s advertising ID) does
enable tracking at the device level, device-level identifica-
tion of users is hardly optimal since each identifier is treated
as a unique user. Except for logged-in users with a con-
sistent single sign-on identity across platforms, the same
users with different identifiers are essentially considered dif-
ferent users. To add further complexity, identity fragmen-
tation could also occur within each device, particularly on
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mobile devices where multiple identifiers could be assigned
depending on the platform utilized. Mobile browsers, mo-
bile apps and embedded browsers within mobile apps can
present different identifiers, resulting in splintered identities
of the same user. Such fragmentation hampers both user ex-
perience and advertising effectiveness. For example, there
is wastage when the user is repeatedly served the same ad-
vertisement across devices and likely more than the stipu-
lated frequency cap. There are also missed opportunities to
enhance user experience when the user traverses across de-
vices. A device graph solution could help alleviate some of
these challenges by identifying inter-device and intra-device
linkages to form a unified identity of each user.

Figure 1: Resolving user identity: Transitioning from
device-level to user-level view using device graph.

A device graph comprises nodes that represent each iden-
tifier (individual device identifiers or intra-device identifiers)
and edges that represent relationships between nodes. There
are two approaches to calibrating these relationships – de-
terministic or probabilistic. The deterministic approach re-
lies on logins or other personally identifiable information
available to link multiple identifiers to a single profile con-
fidently. The probabilistic approach, however, infers these
linkages by using behavioral, activity-based and other data.
With an established device graph, we are no longer targeting
devices, but actual users (Figure 1). With this new user-
centric perspective, an advertisement can now be served
more judiciously to the same user across devices by rein-
forcing the impression with the right frequency and context.
Advertising wastage is reduced and more informed media
planning decisions can be made.

In this paper, we demonstrate the effectiveness of our ap-



proach using real-world data in production. First-party data
gathered across major properties owned by Mediacorp was
used in the exercise. We referenced existing methodolo-
gies (Malloy et al. 2017; Funkhouser et al. 2018) that uti-
lized IP-related features to generate the device graph. We
implemented a new layer in the graph construction process
by generating additional behavioral features (e.g. browsing
patterns, interests) which were used to train a classifier to
predict the pairwise probabilities of devices belonging to
the same user. By leveraging methodologies already out-
lined in existing literature, our experimentation focus is on
producing continuously updated device graphs that are more
commercially practicable. Training was conducted on Sin-
gle Sign-On (SSO) data within Mediacorp’s data ecosystem.
The SSO user pool serves as the ground truth in our evalua-
tion.
The main contributions of this paper include:

• Establishment of a scalable customer identification frame-
work, which enables incremental updates of a master de-
vice graph. To our knowledge, this is the first time such a
framework has been proposed.

• Building a commercial device graph solution of higher
precision and recall with lower latency.

• Application of deep-learning techniques to device-pair
classification.

In Section 2, we summarize key learnings from existing
literature. Section 3 outlines step-by-step our methodology
undertaken to derive a functional and scalable device graph.
In Section 4, we describe the datasets, experiments, evalu-
ation and implementation results of our additive approach.
Finally, we discuss future areas of potential investigation in
Section 5.

2 Related Work
There are only a handful of related research papers in the
domain of device graphs. Several organizations (Adbrain
2020; Tapad 2020; Lotame 2020) have been providing iden-
tity resolution products since early 2010. For commercial
reasons, there was rarely mention of the algorithms used or
methodological details behind the products beyond a high-
level description.

Methodologies presented by (Malloy et al. 2017;
Funkhouser et al. 2018) were built on the concept of IP co-
location, by observing co-occurrences of IDs from an IP
address at a specific point in time. IP co-location graphs
formed the foundation of their device graphs. Various com-
munity clustering algorithms are then applied to the IP co-
location graphs to detect communities, each representing a
single user or household. Due to the scale of such graphs,
greedy approaches are favored as exhaustive searches are
computationally costly.

Classification models were used to predict relation-
ships between devices. Beyond IP and device-related fea-
tures (Volkova 2017), additional learning features could be
gleaned from browsing logs and associated meta-data (Tran
2016; Funkhouser et al. 2018) that may be useful. To im-
prove the classifier, (Tran 2016) proposed several features

such as domains visited, actions taken, and time spent while
browsing. Such data were readily available in our case. We
generated a unique set of learning features, including view-
ing patterns and interests amongst others, to supplement our
IP co-location graph.

One of the biggest challenges of developing device graphs
is accurately validating the user-device linkages. In this re-
gard, (Funkhouser et al. 2018) used data from user panels
operated by Comscore as a source of ground truth, realized
through specialized monitoring software that provided data
such as unique hardware identifiers of devices and associ-
ated IDs. Such data was unavailable in our context and in-
feasible for commercial implementation due to the amount
of third-party involvement required. Instead, we relied on
actual SSO data of users that have logged into Mediacorp’s
network of sites to validate our results regularly.

From the literature, there also appeared to be limited test-
ing of generated graphs. For example, in (Malloy et al. 2017;
Funkhouser et al. 2018), graphs were built using data from
Comscore’s digital census network consisting of 700 million
records collected over six weeks in the United States, but
were not evaluated regularly over a period of time. Graphs
appeared to be one-off output and were not updated contin-
uously to capture new identifiers.

3 Methodology
Building our device graph involved three key steps. First, we
constructed an IP co-location graph, G, based on pairwise
IP co-locations of IDs. Next, we extracted activity-based,
event-based and behavioral features of each pair of IDs in G
and updated the pairwise weights based on a classification
model trained on these features. Finally, we clustered the
IDs into appropriate groupings using community clustering
algorithms. Details are given below.

3.1 IP Co-location Graph
Based on the intuition that devices that shared IP addresses
were more likely to be related, we began generating the IP
co-location graph by collating device data (device ID, IP ad-
dress, time) over a defined look-back period. Each day, for
every IP address in the dataset, an edge was created between
each pair of device IDs that appeared together on that IP ad-
dress on that day.

The weight of the edge is the inverse of the total number
of distinct devices, N , that appeared on the IP address over
the day. To reduce noise, IP addresses with more thanNmax

distinct devices were disregarded as they were more likely
to be public IPs. In our experiments, we defined Nmax =
30. The final weight between two devices is a summation of
weights over the look-back period, across all IP addresses.

3.2 Feature Generation
IP co-location can occur between devices within a house-
hold, office, or public space. While an IP co-location graph
served to identify instances of co-location, it did not allow
us to factor other potential relationships between IDs. To
better predict the probability that two devices were related,
a classification model was built using additional features on
top of IP co-location weights.



Figure 2: Example of IP co-location patterns of a user’s devices. Resultant edge between the user’s ‘Work Phone’and ‘Personal
Phone’will be relatively higher due to higher frequency of co-occurrence.

IP-based features IP features were generated based on
data of the IP addresses accessed by each device. These fea-
tures conveyed information on how the IP addresses were
shared between the devices. First, statistics like the number
of IPs accessed by each device, the number of common IPs
accessed by each pair of devices, and the total number of
IPs accessed by each pair of devices were derived. Then,
additional features like Dice and Jaccard similarity, overlap
coefficient, ratio of commonly accessed IPs, and number of
concurrent IPs accessed were computed.

Activity-based features Similar to IP-based features,
activity-based features were also extracted. Here, we com-
pared the active days of each device.

Event-based features We noticed that the majority of de-
vice pairs had only one shared IP address. There could be a
few reasons for this observation. Users may not have moved
or changed locations during the look-back period, or users
had not been accessing the network from personal mobility
devices (for example, accessing from PCs/TVs instead of
laptops/tablets/phones). There was also the possibility that
the co-location occurred by chance. To differentiate these
scenarios, we introduced additional features derived from a
combination of IP and activity-based events. We generated
these features by computing the ratio of common IPs and
active days of each pair against the total number of events.

Behavioral features Attributes were extracted for each
device and aggregated over the look-back period from the
browsing logs (Table 1). For each device pair, we calculated
similarity measures such as cosine similarity, L1 norm, and
max norm as learning features at each attribute level. To
account for different content languages, various natural lan-
guage processing techniques were also employed to extract
user interests for each device from the different sites they
had visited.

3.3 Classification Model
For each pair of IDs, an updated pairwise probability score
was computed with the above features. We experimented

with LightGBM, RandomForest, and Neural Network clas-
sifiers and selected the best-performing model to derive the
probability scores.

LightGBM (Ke et al. 2017) is a Gradient Boosted Deci-
sion Tree (GBDT) built upon weak learners having high bias
and low variance since weak learners are typically shallow
trees. Gradient boosting iteratively reduces error mainly by
rectifying bias. Compared to other popular GBDTs like XG-
Boost (Chen et al. 2015), LightGBM speeds up the training
process by up to 20 folds while achieving similar accuracy.
A RandomForest (Liaw, Wiener, and others 2002) is typi-
cally built upon fully-grown decision trees having low bias
and high variance. It aggregates output from many uncorre-
lated models, thus helping to reduce variance. However, it
cannot reduce bias and as such, the bias of a RandomForest
may not be lower than that of an individual decision tree. We
also trained a Neural Network classifier for comparison with
these machine learning approaches. We adopted an optimal
network structure based on 6 hidden layers with 200, 100,
50, 25, 50 and 100 neurons.

3.4 Community Clustering

After establishing the probabilistic relationships between
pairs of devices, we progressed with different community
clustering approaches (affinity propagation, label propaga-
tion, and connected components) to build the final device
graph.

Affinity Propagation (Frey and Dueck 2007) takes in the
pairwise probability scores between data points and finds
clusters by maximizing the total similarity between data
points and their surrounding points. Label Propagation (Xi-
aojin and Zoubin 2002) is an iterative algorithm that propa-
gates labels throughout the dataset with the assumption that
closer data points tend to have similar class labels. The
last approach uses Connected Components, which is an ex-
haustive search of all data points connected. To granularize
the resulting communities, final community sizes was fine-
tuned by varying the probability thresholds.



Table 1: Behavioral features

Attribute Name Description
browser language Browser language set on the device E.g. Chinese, English, Malay etc.

site Distribution of Mediacorp’s sites accessed on the device
media language Distribution of language of the content visited on the device [Chinese, English, Malay, Tamil]

interests Interests are extracted based on the content visited E.g. Entertainment, News, Education etc.
hour Distribution of page/video views during each hour of the day

weekday Distribution of page/video views during each day of the week
device model Device manufacturer. E.g. Apple, Samsung, LG etc.

platform Device platform. E.g. Mobile, PC, Tablet, TV
browser Browser of the device from which user accessed the content. E.g. Google Chrome, Safari etc.

operating system Device operating system. E.g. Android, iOS, macOS, Windows etc.
time spent Average time spent on different sites

video completion pattern Distribution of completion milestone of video [25%, 50%, 75%, 90%, 100%]
viewing pattern Distribution of visit frequency

page access pattern Distribution of number of pages accessed in a visit
referral traffic Distribution of referrer source to the content. E.g. Search, Social, Internal, Direct etc.

4 Evaluation
In this section, we describe the results of our experimenta-
tion and implementation process. Our goal is to demonstrate
the performance of our methodology using real-world data.

4.1 Dataset and Protocols
Mediacorp operates a suite of TV channels, radio stations,
and multiple digital platforms. Data collected from digi-
tal platforms comprise of IDs, IP addresses, timestamps and
other browsing details. If a user is logged in, all device IDs
will be linked to the user’s SSO ID deterministically. If a
user is not logged in, each device ID will be assumed to be
from a different user. As such, we aim to link the device
IDs to reflect inter-device as well as intra-device relation-
ships. SSO IDs are deterministic and hence, will serve as
our ground truth data (validation set). Models were trained
using data collected from May to August 2020. Evaluation
was conducted weekly over the following nine weeks.

4.2 Evaluation Metrics
For evaluation, we computed the precision and recall of the
generated graph with a methodology similar to (Funkhouser
et al. 2018), using the graph generated from the SSO IDs as
ground truth. Let Ng be the number of SSO users, H be the
community of devices corresponding to a user, u. Each SSO
ID community was hence identified as Hu,g (ground truth
community). We then compared this with Hu,t, the com-
munity generated from our device graph (generated commu-
nity).

For each user U , different devices D were captured in
the ground truth data and generated graphs. For exam-
ple, ground truth community Hu,g consisted of d1, d2, d4
and generated community Hu,t consisted of d1, d2, d3, d5.
Based on the above, precision and recall scores were com-
puted in Eq. 1 and Eq. 2 as follows:

Precision =
1

|Ng|
∑
u

Precisionu (1)

where

Precisionu =
|Hu,g ∩Hu,t|
|Hu,t|

Recall =
1

|Ng|
∑
u

Recallu (2)

where

Recallu =
|Hu,g ∩Hu,t|
|Hu,g|

In addition, we have defined an additional metric cover-
age, which represents the percentage of devices included
in the device graph. Let C be the number of communities
formed in the device graph, Smean be the average size of
the communities and N be the total devices count. Cover-
age is defined as:

Coverage =
C × Smean × 100%

N
(3)

High precision and recall scores, coupled with high cov-
erage score, would be ideal as this would indicate that the
device graph had managed to link a large proportion of the
devices correctly. Low coverage, however, would suggest a
large proportion of devices had not been linked successfully.
In this scenario, high precision and recall scores would be
less meaningful.

4.3 Experiments
Device Pair Classification We experimented with the
LightGBM, RandomForest, and Neural Network algorithms
and compared the macro-averaged F1-scores on testing data
comprising of device pairs. Results are shown in Table 2.

Though results were largely similar, we decided to use
the Neural Network classifier due to marginally better per-
formance.



Table 2: Results of classification models

Macro-Averaged F1 Precision Recall
LightGBM 0.93 0.95 0.92

RandomForest 0.92 0.91 0.93
Neural Network 0.94 0.94 0.94

Community Clustering Due to sheer size of the data,
affinity propagation did not scale well and took over 16
hours to generate 4,000 clusters. In real-world deployment,
this may not be ideal as the device graphs will need to be
updated periodically in our proposed approach. With the
connected components method, we varied the probabilistic
weight threshold to evaluate the results. Table 3 shows the
precision and recall values of the validation set at various
thresholds. As the threshold increased, precision increased
but recall decreased. threshold = 0.5 was selected for its
higher recall and coverage, with negligible precision trade-
off.

Table 3: Results of connected components approach

Threshold 0.5 0.7 0.9

Precision 0.983 0.992 0.997
Recall 0.931 0.878 0.784

Preliminary evaluation showed that the connected compo-
nents approach yielded better results and scaled better at the
same time. As such, the connected components approach
was eventually chosen for production. Table 4 is a summary
of evaluation results using different clustering approaches.

Table 4: Results of community clustering algorithms

Algorithm Precision Recall

IP co-location 0.596 0.995
Affinity Propagation 0.832 0.914
Label Propagation 0.957 0.563

Connected Components 0.983 0.931

4.4 Implementation
Existing studies tested their methodologies by using static
device graphs. For commercial purposes, we believe that
our device graphs will need to be continuously updated to
remain robust and effective. To achieve this, we performed
incremental weekly updates to the device graph by repeating
the same process over a 14-day look-back period. For each
generated community, we assign a new community ID (Peo-
pleID) that has a one-to-many relationship with the existing
device-level IDs. If a generated community already exists
in the current device graph, they are merged. Otherwise, the
new community is added to the graph as shown in Figure 3.
This way, we will be able to account for new IDs by incre-
mentally assigning them to a PeopleID. This ensures that the
device graph remains updated and relevant.

Figure 3: Weekly device graph update process

Table 5: Overall ID distribution two months after implemen-
tation

Total Unique Device IDs 15,808,740

Total Unique SSO Device IDs 979,873
Coverage 6.19%

Device IDs included in IP co-location Graph 9,684,073
Coverage 61.25%

Device IDs included in Device Graph 6,922,044
Coverage 43.78%

Results There were a total of 15,808,740 unique Device
IDs whose activity lifetime was at least one day. Out of
these, 979,873 of them were deterministically linked to SSO
IDs, representing coverage of 6.19% before application of
the device graph. After generating the IP co-location graph,
9,684,073 (61.25%) device IDs were subsequently linked.
The IP co-location graph only generated links based on de-
vice IDs that appeared on the same IP address at the same
time, subject to conditions such as disregarding IPs with
large number of connections as these could be public IPs
(e.g. offices, shopping malls). A total of 6,922,044 (43.78%)
device IDs were linked in the final device graph after the
classification and community clustering steps. The device
graph enabled a seven-fold increase in linked devices from
6.19% (SSO IDs only) to 43.78% after deployment.

We further analysed the effectiveness of the device graph
in actual advertising campaigns by measuring deduplication.
We define deduplication as:

Deduplication = (1− Y

X + δX
)× 100% (4)

whereX is the number of devices to which an advertisement
was served, Y is the number of users that the devices are
linked to and δX are the additional devices that potentially
belong to Y according to the device graph. The deduplica-
tion rate represents the potential decrease in related devices
that the advertisement needs to be served to reach the same
users. A higher deduplication rate lowers the frequency of



unwanted ad exposure. Across ten recent campaigns, there
was an average of 49% deduplication rate achieved in our
experiments.

Table 6: Statistics of device graph two months after imple-
mentation

No. of Clusters 1,609,111
Avg. Cluster Size 4.301
Std. Cluster Size 4.075

Beyond ground truth data, we also benchmarked the com-
munity statistics of our device graph (Table 6). While we
are unable to evaluate if the average number of clusters were
representative of the population, a previous survey on global
device ownership (Buckle 2016) estimated the average num-
ber of devices per user at 3.64. This suggests that our aver-
age cluster size of 4.301 is a reasonable figure.

5 Summary and Future Work
A reliable device graph is fundamental to cross-device iden-
tity resolution in a world of fragmented devices. In this pa-
per, we demonstrated a practical approach to maintaining
an updated device graph in a scalable manner. Our weekly
additive approach to device graph construction also ensures
our graph remains comprehensive, without incurring signif-
icant overheads.

We introduced an additional classification layer in our
methodology that leverages not only IP-related features but
also behavioral features to better improve linkages between
devices. Our approach has produced consistent results on
an ongoing basis with respect to the validation set users.
While it is virtually impossible to ascertain that the gener-
ated device graph is an accurate representation of the popu-
lation (such data does not exist in reality), we can infer that
the output graph is reasonable based on available empirical
benchmarks.

In the same vein, future work may include gathering more
third-party data to better evaluate constructed device graphs.
Such data could be collected via surveys, telcos, and other
external collaborations focused on users within the country
of study. Further experimentation on new datasets could also
help determine the portability of our proposed methodol-
ogy. With device graphs, a holistic set of behavioral fea-
tures of users across linked devices are also now accessi-
ble. This could benefit other adjacent areas of investigation
such as personalization, content recommendations, and de-
mographic predictions.

Despite all the attendant benefits of a device graph, indus-
try developments may require our approach to evolve. Con-
sumer concerns have led many players in the industry to roll
out new privacy measures. For example, Google (Google
2020) has recently announced plans to phase out third-party
cookie support, joining other popular browsers like Safari
and Firefox. While our approach relies mainly on first-party
data and such privacy-driven measures may not immediately
impact our baseline, nonetheless we will need to continue
monitoring developments in the industry at large and adapt
accordingly.
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