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Abstract

Graphs are used to solve many problems in the real world.
At the same time size of the graphs presents a complex
scenario to analyze essential information that they contain.
Graph compression is used to understand high level structure
of the graph through improved visualization. In this work, we
introduce CRADLE (CompRessing grAph data with Domain
independent knowLEdge), a novel method based on knowl-
edge rule called netting, which reports the number of exter-
nal networks for each instance of the substructure. By finding
such substructures with more number of external networks
we can judiciously improve the compression rate. We empir-
ically evaluate our approach using diverse datasets. We com-
pare CRADLE with baseline approaches. Our proposed ap-
proach is comparable in compression rate, search space, and
runtimes to other well-known graph mining approaches.

Introduction
Graphs provide a meaningful representation that can be used
for searching, analyzing, or discovering interesting patterns,
because of the capability to represent complex relations.
Identifying interesting substructures that can increase the
ability to interpret data is of great importance (Chittimoori,
Holder, and Cook 1999). These substructures should be able
to compress the data. Whenever a compressed graph is able
to conserve the characteristics of the original graph it can
be visualized easily (Zhou 2015). Efficient storage can be
achieved using graph compression (CHAVAN ). In earlier
work by Cook and Holder, they use background knowledge
to further refine the search process for discovering inter-
esting normative patterns (Cook and Holder 1994). In this
work, it is our hypothesis that one could use background
knowledge in the form of rule netting, augmenting existing
evaluation techniques, such as MDL and size (used in ap-
proaches like SUBDUE), to discover substructures with im-
proved compression rate, search space and runtimes to other
approaches.

Proposed Approach: Our proposed method CRADLE
(CompRessing grAph data with Domain independent
knowLEdge) can find substructures that increases the
ability to compress the data. Our approach uses domain
independent knowledge to find interesting substructures.
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Figure 1: Overview of CRADLE- Given an input graph g,
we add domain independent knowledge in the form of rule
netting leading to output interesting substructures

Overview of CRADLE is shown in Figure 1. Knowledge is
added in the form of rule, netting which reports the number
of external networks for each instance of the substructure.
It is our hypothesis that substructure with more number of
connections can compress the graph well compared to other
substructures.
The contributions of this work are as follows:

Novel approach: Propose novel domain independent
knowledge rule, called netting which reports the number of
external networks for each instance of the substructure.
Novel Algorithms: We propose CRADLE-MDL &
CRADLE-Size methods that use Minimum Descriptive
Length (MDL) and size as metrics respectively, to aid in
discovering interesting substructures.
Experiments: We perform empirical evaluations on diverse
datasets. We compare CRADLE with well-known graph
mining approaches.

Related Work

Discovering interesting substructures in a structural database
improves the ability to interpret and compress the data. Sci-
entists working with a database in their area of expertise of-
ten search for predetermined types of structures or for struc-
tures exhibiting characteristics specific to the domain. Many
graph mining techniques available in literature differ mainly
in (1) substructure interestingness and (2) substructure eval-
uation.



Mathematical graph-theory based approaches focus on
mining graph data-sets that are frequent and complete. They
use a support or frequency measure in evaluating the sub-
structures. AGM (Inokuchi, Washio, and Motoda 2000) one
of the oldest algorithms which uses an apriori level-wise
approach. (Kuramochi and Karypis 2001) uses a pattern-
growth approach. It adopts an edge-based candidate gen-
eration strategy that increases the substructure size by one
edge. The limitations of AGM and FSG algorithms are
that they generate a huge number of candidates, perform
multiple database scans, and mining long patterns is ex-
tremely complex. gFSG (Yan and Han 2002) is a variant
of FSG which enumerates all geometric subgraphs from the
database. FFSM is a graph mining system which uses an al-
gebraic graph framework to address the underlying problem
of subgraph isomorphism. However, both gFSG and FFSM
are NP-Complete problems. Mining frequent patterns and
subgraphs are also used in other graph-based problems, such
as anomaly detection, clustering, classification, and analy-
sis. Akoglu et al. propose a structure-based algorithm named
OddBall to analyze social network graphs (Akoglu, McGlo-
hon, and Faloutsos 2010). Reza et al. propose an algorithm
and a framework to detect anomalies in an unlabelled so-
cial network Park and Chung propose a MapReduce algo-
rithm based on graph partitioning to count the number of
triangles, an important measure in graph analysis (Park and
Chung 2013). Arora et al. propose a Voronoi based Push Pre-
flow method to find the min-cut, which not only exploits the
structural properties inherent in image-based grid graphs but
also combines the basic paradigms of max-flow theory in
a novel way (Arora et al. 2010). Mookiah et al. study the
problem of detecting changes in news articles for specific
social issues such as human trafficking and road accidents.
The authors propose a graph-cut algorithm that can mark
the change detected articles (Mookiah, Eberle, and Mondal
2016).
Although completeness is a fundamental and desirable prop-
erty, a side effect of the existing mathematical graph the-
ory based approaches is that these systems typically gener-
ate a large number of substructures, which by themselves
provide relatively less insight about the domain. In compari-
son to existing mathematical graph theory based approaches
which are complete, we propose greedy search based ap-
proach. Instead of using frequency or support we use rule
called netting as background knowledge to evaluate the sub-
structures and find interesting patterns with improved com-
pression rates, search space, and runtimes over existing ap-
proaches.

Proposed Algorithms
What we are proposing in this work is a novel way to detect
graph-based substructures that improve upon existing ap-
proaches by reducing the compression rates, and time com-
plexity. Our first proposed approach we call CompRessing
grAph data with Domain independent knowLEdge based on
the MDL evaluation metric (CRADLE-MDL). Algorithm
1 presents the steps of our proposed CRADLE-MDL ap-
proach. Our second proposed approach we call CompRess-
ing grAph data with Domain independent knowLEdge based

Algorithm 1 CRADLE-MDL: CompRessing grAph data
with Domain independent knowLEdge based on the MDL

1: Goal: Reduce Time Complexity, Space Complexity
with increased Compression Percentage

2: procedure CRADLE-MDL–ALGORITHM
3: Find all normative substructures S using MDL

approach on input graph G which minimizes
DL(S)+DL(G|S). DL= Description Length

4: Store S in list L.
5: for each substructure S” in L do
6: Determine the number of external networks for

each instance of the substructure S” with other substruc-
tures present in Graph G.

7: Store S” in ordered list B (highest to lowest) in
its corresponding ranked position.

8: end for
9: Return B

10: end procedure

on a size evaluation metric (CRADLE-Size). Algorithm 2
presents the steps of our proposed CRADLE-Size approach.

Algorithm 2 CRADLE-Size: CompRessing grAph data with
Domain independent knowLEdge based on the Size

1: Goal: Reduce Time Complexity, Space Complexity
with increased Compression Percentage

2: procedure CRADLE-SIZE–ALGORITHM
3: Find all normative substructures S using Size

approach on input graph G which minimizes
size(S)+size(G|S). size= |V|+|E|

4: Store S in list L.
5: for each substructure S” in L do
6: Determine the number of external networks for

each instance of the substructure S” with other substruc-
tures present in Graph G.

7: Store S” in ordered list B (highest to lowest) in
its corresponding ranked position.

8: end for
9: Return B

10: end procedure

Both algorithms first discover normative substructures Si
where a normative substructure S is a subgraph that has
an associated description. After which, for each instance in
the substructure it searches for number of external networks
with other substructures among the substructures Si. The
difference between these two algorithms lies in the evalua-
tion metric. While we can discover interesting substructures
using either algorithm, there are pros and cons to each ap-
proach. For instance, the CRADLE-Size approach is faster
because it uses a simple size evaluation metric, whereas
calculating compression (CRADLE-Size) is slightly more
costly. However, the structure of the graph may affect the
discovery process. For example, if there are many overlap-
ping substructures in a graph, the size metric may discover
more interesting substructures that the MDL metric may not,
and vice-versa. In addition, the MDL metric is more widely



used in the literature, and has many applications in various
domains. Thus, we will evaluate both approaches on a vari-
ety of different graphs.

Evaluation Metrics: MDL, Size
The hypothesis of this work it that we add domain knowl-
edge in the form of rule netting, to evaluation metrics in or-
der to guide the graph-based substructure discovery process.
Our proposed algorithm CRADLE-MDL uses the MDL
evaluation metric, whereas our proposed CRADLE-Size ap-
proach uses the size evaluation metric. The concept of MDL
(Rissanen 1984) was first introduced by Jorma Rissanen in
1978. The MDL principle involves the relation between the
regularity in data and the compression of data. The principle
implies that whenever we are able to compress the data well,
there is much regularity in the data. In particular, MDL is
well-suited for model selection problems, such as substruc-
ture discovery, decision tree induction, genetic programming
and image processing (Cook and Holder 1994),(Quinlan and
Rivest 1989), (van Leeuwen and Vreeken 2014), (Quinlan
and Rivest 1989). In order to implement our approach, we
will use the publicly available SUBDUE system. SUBDUE,
one of the well-known substructure discovery algorithms
(Cook and Holder 1994), uses a model evaluation method
called Minimum Encoding, a technique derived from the
MDL principle.

Domain Knowledge to Evaluation Metrics: Rule
Netting
The hypothesis of our work is that we could use background
knowledge in the form of rule netting that will improve
upon the ability to discover interesting substructures with
improved compression rate, search space and runtimes. Net-
ting reports the number of external networks for each in-
stance of the substructure.

Netting = 1+
1

|I|
log(b+1)+

∑
iinI

weight(i)∗Ext networks(i)

(1)
where,
I is the set of instances of substructure S.
Ext networks(i) is the number of edges connecting a vertex
in an instance to a vertex outside the instance.

weight = 1− matchcost(S, i)

size(i)
(2)

Also, matchcost(S,i) is the cost required to match an instance
to a substructure. Specifically, it is the number of vertices
and edges that would need to be changed in order to derive
a matching substructure.

Netting: Example Calculation of netting is explained by
taking the same sample graph shown in Figure 2, where the
number of vertices is 5 and the number of edges is 4 for a
total size of 9. Using Equation (1), the values for the sub-
structures in Figure 2 are shown in Table 1.

Among the substructures shown in Table 1 we can say that
substructure B (value highlighted in bold italic) has highest
netting value with 2 instances and 4 external connections,

Figure 2: Sample Graph

Table 1: Netting Values for Substructures
Substructures Netting Value
A 2.5
B 3
C 2
A-B 2.5
B-A 1.3333
B-C 2

and substructures C, B-C (value highlighted in bold) have
low netting values with only 1 instance and 1 external con-
nection. It should be noted that for this example, the list is
not exhaustive, and only substructures up to two vertices and
one edge are shown, even though the largest substructure
would consist of 5 vertices.

Experiments
We compare CRADLE with other three well-known graph
mining approaches: SUBDUE (Cook and Holder 1994),
(Kuramochi and Karypis 2001) and (Yan and Han 2002).
All experiments are run under the following Hardware spec-
ifications:

• Processor Intel(R) Core(TM) i3-5005U CPU @2.00GHz
2.00 GHz, 2 Core(s), 4 Logical Processor(s).

• RAM 4.00GB.

• Operating system: xubuntu 16.04.

Experimental Evaluations: Synthetic Datasets
We used the subgen tool (Eberle and Holder 2011) for our
experiments. subgen is a synthetic generator that generates
graphs using the user-specified parameters namely size of
the graph, names of vertex and edge labels, substructure pat-
tern, connectivity value, overlap value. For example, using a
graph size of 1000 (500 vertices and 500 edges), with a nor-
mative pattern of 4 vertices and 4 edges (shown in Figure
3), the compression rates obtained using our approach CRA-
DLE in comparison to other approaches along with runtimes
are shown in Table 2.

Figure 3: Normative Pattern



Table 2: Results of Artificial Datasets
S.No Approach Compression

(Percentage)
Runtime
(Seconds)

1. CRADLE-MDL 19% 7.24
2. CRADLE-Size 22% 4.28
3. Subdue 8% 17.78
4. FSG 2% 3.96
5. gSpan 2% 2.38

Table 3: Results-Chemical Compound Domain (422
molecules)

S.No Approach Compression
(Percentage)

Runtime
(Seconds)

1. CRADLE-MDL 22% 65.28
2. CRADLE-Size 25% 50.26
3. Subdue 19% 132.98
4. FSG 7% 19.21
5. gSpan 7% 3.22

Results obtained clearly show that CRADLE outper-
formed in terms of compression percentage in comparison to
other well-known graph mining approaches. However, run-
times needed to discover best substructure using CRADLE
is higher compared to FSG and gSpan approaches.

Comparison of CRADLE with SUBDUE, FSG
and gSpan on Real-World Datasets

We compare our approach CRADLE with other graph min-
ing systems SUBDUE, FSG and gSpan on chemical com-
pound domain. We experiment with datasets that are avail-
able with gSpan (Yan and Han 2002) that contains 422
molecules and the results are shown in Table 3.

Analysis
Similar to synthetic data results, CRADLE outperformed
in terms of compression percentage in comparison to other
well-known graph mining approaches in real datasets as
well. However, runtimes needed to discover best substruc-
ture using CRADLE is higher compared to FSG and gSpan
approaches.

Conclusion and Future work
In this work, we introduced CRADLE (CompRessing
grAph data with Domain independent knowLEdge), a novel
method based on knowledge rule called netting, which re-
ports the number of external networks for each instance of
the substructure. We demonstrate the effectiveness of our
approach on various diverse datasets, through the compar-
ison of execution times and compression rates of our pro-
posed approach against other well-known graph mining ap-
proaches. Results of our study is promising for finding re-
quired patterns, but more research is needed in terms of
scalability, as well as discovering more diverse normative
patterns.However, we are currently investigating additional

knowledge rules that can be added to discover other interest-
ing substructures that are specific to the domain.
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