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Abstract 
There is usually a trade-off between predictive performance 
and transparency, where the reasoning process behind an al-
gorithm is shielded behind a ”black-box.” In medical do-
mains, experts being responsible for their decisions need to 
understand the reasons behind machine-generated recom-
mendations. This paper presents a transparent case-based 
survival analysis framework that automatically retrieves an 
optimal number of solved survival cases and adapts them to 
predict the survival of a new case. With this methodology, 
retrieved and adapted survival cases lend an insight into 
which cases a prediction is based on. Our framework is capa-
ble of integrating DNA methylation, gene expression, and 
their combination in breast cancer. Additionally, we test our 
approach with and without feature selection and demonstrate 
the usefulness of the adaptation phase. We demonstrate that 
our framework performs at least as effectively as other state-
of-the-art methods while affording greater explainability. 

Introduction  
The predictive performance of machine learning algo-
rithms has progressed tremendously, though many re-
cent works has focused on improving explainability 
(Lundberg et al. 2018). Machine-learning researchers 
typically allude to a ”black- box” effect when input and 
output are understood, but the processing that occurs in-
between is obscure. Methods leading to a greater level of 
explainability are necessary in medicine since users are ulti-
mately responsible for their clinical decisions and thus need to 
make informed decisions. One of the most explainable al-
gorithms are instance-based learners (IBLs), such as k- 
Nearest Neighbor (kNN), for which decisions are made 
by similarity between a new case and solved retrieved 
cases, which can serve as explanations for a system rec-
ommendations (Lamy et al. 2018).  

Taking advantage of the known explainability of IBL 
systems, this paper presents Case Based Reasoning with 
Confidence, or CBR-CONF. CBR-CONF is a case-
based reasoning system for survival prediction that uses 
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a novel confidence metric to determine an optimal num-
ber of similar cases to retrieve for each test case to solve. 
Specifically, we contribute the following: 

1. Optimal number of retrieved cases: CBR-CONF lo-
cates an optimal number of similar cases for each        test 
case based on an automatically defined level of confi-
dence in each retrieved case. Retrieval stops when we 
can confidently assign a solution. This method ex-
tends upon our prior work in (Bartlett, Liu, and 
Bichindaritz 2020a) and (Bartlett, Liu, and 
Bichindaritz 2020b). 

2. Multi-level case elaboration and refinement: Sig-
nificantly different DNA methylation levels found 
at a high-order cluster of probes that serve similar 
functions were utilized and compared. We then per-
form a similar series of tests using mRNA expression 
levels prior to integrating the two microarray technol-
ogies to find enriched  motifs and transcription factors. 

3. Novel case adaptation technique: Our case adapta-
tion technique is tailored to survival analysis, which 
is an original application domain for CBR. 

4. Explainability: In addition to the known explainabil-
ity of IBL, CBR-CONF applies feature selection to de-
termine an optimal biomarker signature for this dis-
ease, based on gene expression, methylation, enriched 
motifs, pathway analysis, and transcription factors.  

Research Background 
Survival analysis is about predicting how likely an event 
is to happen over time. In our case, the event we are in-
terested in is the death of the cancer patient. In survival 
analysis, we do not necessarily know how long has each 
patient lived as the experiment may have stopped before 
their death. The individuals in a population who have not 
been subject to the death event are labeled as right-cen-
sored. We observe either the survival time, if we have the 

 



death date, or a censured time if we only have the date of 
last visit to the doctor. A survival instance is usually rep-
resented as (xi, ti, δi) where xi is the feature vector, ti is the 
observed time, δi is the indicator: 1 for an uncensored in-
stance, which means the patient is dead, and 0 for a cen-
sored instance, which is a patient being alive.  

Existing methods for survival analysis include the ran-
dom survival forest (Ishwaran et al. 2008), deep learning 
(Katzman et al. 2018) (Lee et al. 2018) (Hao et al. 2019) 
(Martini et al. 2019), and statistical methods. 

In case-based reasoning, Karmen et al. calculate simi-
larity based on survival functions (Karmen et al. 2019). 
Our work adopts different CBR strategies for survival anal-
ysis and in addition integrates multi-omics data, while Kar-
men at al.’s data are at the clinical level (phenotypic). 

Methods 
DNA methylation and mRNA gene expression data for 
breast cancer (BRCA) was downloaded from The Cancer 
Genome Atlas (TCGA) Research Network: 
https://www.cancer.gov/tcga.  
   The methylation data pertained to 763 primary tumor 
samples and the 485,577 probes that exist on the Illumina 
Human Methylation 450 bead chip. Each probe represents a 
location on the DNA where a methyl group (-CH3) may be 
found. DNA methylation has been associated with many dis-
eases and disorders, including trauma and aging. Methylation 
β values, which are an estimation of the methylation 
levels between 0 and 1, were extracted. 0 indicates that 
the site is completely non-methylated, while 1 indicates 
that it is completely methylated. Similarly, 0.8 and above 
is commonly   referred to as being hypermethylated 
while 0.2 and below  is hypomethylated. We discarded 
samples that had a survival duration less than  0 months. 
A f t e r  batch elimination, the remaining probes were  
used to locate differentially methylated regions, which 
consist in clusters of probes that are a   possible func-
tional region for gene transcriptional regulation. These 
clusters are based on physical proximity on a chromo-
some and serve as a feature reduction mechanism based 
on biology. The number of features was reduced to 8,722.  
   Gene expressions came from the Illumina HiSeq RNA 
sequencing data collected from TCGA. Low correlating 
samples were filtered out and normalized prior to per-
forming differential expression analysis (DEA). A false 
discovery rate of 0.01 and a log fold change cut-off of 1 
were used in this analysis. After preprocessing, DEA and 
reducing samples to just the primary cancer tissue, 1159 
features and 763 samples were retained.  
   In addition to the genomic and transcriptomic data, each case 
features the overall survival (in months) T and the censoring 
information (1 if the case is deceased, and 0 if the ca se  
is living at the time of the last follow-up).  
   23 enriched motifs were found through the R package 
ELMER (Silva et al. 2018), which groups together DNA 
methylation probes correlated with expression of these 
genes. Gene-probe pairs where this occurs are set aside 

and used to locate enriched motifs and upstream regula-
tory transcription factors.  

Prognostic Groups 
Prognostic groups for survival were established using a 
method similar to (Chen et al. 2018). A multivariate cox re-
gression was constructed using either DNA methylation fea-
tures, or gene expression features as covariates in order to 
test each feature’s contribution to the survival state. To find 
risk groups, the beta coefficient for each feature was multi-
plied by its expression value (beta value for DNA methyla-
tion) and these values were then summed together to find a 
single prognostic score for each sample (Formula (1)). Sam-
ples were ranked by their prognostic scores and divided into 
equal-sized low, medium and high risk groups (Fig. 1). 
 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = ∑ (𝛽𝛽) ∗ (𝑃𝑃𝑒𝑒𝑒𝑒𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃)𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

𝑖𝑖=1  (1) 
 
Confidence Metric 
In order to predict the survival length of test samples, a con-
fidence metric was established to indicate when to cease re-
trieval. For training samples in each risk group, the mean of 
each feature was calculated and used to construct one proto- 
typical case P for each risk group. 
 
𝐶𝐶𝑃𝑃𝑃𝑃𝐶𝐶 = 1/2 (𝑑𝑑𝑃𝑃𝑃𝑃𝑃𝑃(𝛼𝛼,𝑃𝑃)) + (𝑑𝑑(𝑎𝑎,𝑢𝑢𝑃𝑃𝑃𝑃1) +⋯+ 𝑑𝑑(𝑎𝑎,𝑢𝑢𝑃𝑃𝑃𝑃𝑃𝑃))/𝑃𝑃            (2) 
 
As shown in Formula (2), the confidence metric is one half 
of the Euclidean distance dist from case a to its prototype P, 
added to the average distance of case a to each unsolved 
case. The system’s confidence in its solution for any given 
unsolved case would then be the summation of each re-
trieved case’s confidence value until confidence reaches 
100%. The predicted survival time for the unsolved case 
would then be the mean survival time of each retrieved case. 
 
Feature Selection 
To locate a subset of features that were highly specific to the 
overall survival of the breast cancer samples, a feature se-
lection process was constructed based on multivariate Cox 
regression. 100 randomized training and testing splits of the 
data (with replacement) were used to extract a biomarker 
panel. After each iteration, features that had a significant log 
rank less than 0.01 were notated and validated with the test 
set. Upon conclusion of the 100 runs, only the features that 
were significant in at least 50% of the training sets were 
kept. Prognostic scores were then the sum of the average 
beta coefficients for each of these features multiplied by the 
feature’s methylation beta value (for DNA methylation) or 
the expression value (for mRNA expression). 
 
Survival Prediction 
Once cases in the case base were retrieved for an unsolved 
case and their average survival duration was determined and 



assigned to the unsolved case, a cox proportional hazards 
model was built. Assigned survival times and survival status 
was used to construct the model, with the concordance index 
being employed to test the accuracy of the model. Concord-
ance index measure evaluates how correct is the ordering of 
predicted times. It is interpreted as follows: 0.5 is the ex-
pected result from random predictions, 1.0 is perfect con-
cordance and, 0.0 is perfect anti-concordance (multiply pre-
dictions with -1 to get 1.0). For example, if Case A died after 
36 months and Case B died after 33 months and the model 
predicted that Case A would die after 24 months and Case B 
would die after 11 months, this is still a correct prediction. 
 
Case Adaptation 
A case adaptation phase followed feature selection and sur-
vival prediction to determine if adapting the case increased or 
decreased the concordance index. Case adaptation is the abil-
ity to morph training cases to reflect a test case more closely. 
Therefore, after retrieving similar training cases, the average 
difference between the survival of training cases and the  test 
case was computed. This difference was then added or sub-
tracted to the training case’s survival duration. Once this 
was performed, we retested with the adapted cases. 

Results 
Results were obtained using only DNA methylation, using 
only gene expressions (RNA), and using motifs combining 
the two. 
 
Table 1: Predicting survival of breast cancer samples from 
8,722 DNA methylation probes and from 80 selected DNA 
methylation probes 

Method Concordance Index 
 8,722 probes 80 probes 
CBR-CONF (Adapted)  0.745 
CBR-CONF 0.727 0.739 
kNN (k5) 0.671  0.675 
Gradient Boosting Tree 0.661  0.715 
kNN (k15) 0.638  0.681 
GLMnet 0.637  0.500 
kNN (k10) 0.624  0.658 
Random Survival Forest 0.623  0.594 
kNN (k20) 0.597  0.679 

 
Results on DNA Methylation 
The first stage was to view DNA methylation alone using 
the probes located in the differentially methylated regions. 
This constructed a dataset of 763 cancer samples and 8,724 
features (8,722 of which were DNA methylation probes, 
plus the survival length and the censoring information 0/1). 
Tests were performed: 
• Before feature selection: The initial tests used all 

8,722 features and were performed using 10-fold cross 
validation. A K-Nearest Neighbor algorithm tailored to 

survival analysis with 4 different levels of k, Random 
Survival Forest, and Lasso and Elastic-Net Regularized 
Generalized Linear Models (GLMnet) were also tested 
and compared. As shown in Table 1, CBR-CONF ob-
tained the highest concordance index. 

• After feature selection: We then performed a similar test 
after feature selection. 80 features remained after the 
100 iterations. CBR-CONF retrieved an average of 7 
cases with a maximum of 20  and a minimum of 2. Table 
1 shows that once again CBR-CONF held strong re-
sults, especially when case adaptation is applied. 

Table 2: Predicting survival of breast cancer samples from 
1,149 differentially expressed genes and from 22 selected 
genes using mRNA expression. 

Method Concordance Index 
 1,149 genes 22 genes 
CBR-CONF (Adapted)  0.699 
CBR-CONF 0.672 0.696 
kNN (k20) 0.657 0.701 
kNN (k15) 0.644 0.709 
kNN (k5) 0.641 0.654 
kNN (k10) 0.637 0.690 
Gradient Boosting Tree 0.634 0.722 
GLMnet 0.500 0.503 
Random Survival Forest 0.466 0.589 

 
Results on Gene Expression 
After normalizing and determining, which genes were dif-
ferentially expressed from a normal control group, 761 can-
cer samples and 1,149 genes were kept.  
• Before Feature Selection: As with methylation, Table 2 

shows that CBR-CONF was the highest performer. 
• After Feature Selection: Only 22 genes remained after 

feature selection. These features were tested both be-
fore and after applying case adaptation. While CBR-
CONF still performed well, Table 2 shows that Gradient 
Boosting Tree was the most performant. During re-
trieval, the average number of retrieved cases was 2 
with a minimum of 2 and a maxi- mum of 3. 

Table 3: Predicting survival of breast cancer samples from 
the weighted average of DNA methylation probes on 23 
enriched motifs. 
•  

Method Concordance Index 
CBR-CONF (Adapted) 0.668 
kNN (k5) 0.667 
kNN (k10) 0.655 
CBR-CONF 0.652 
kNN (k15) 0.644 
kNN (k20) 0.641 
Gradient Boosting Tree 0.550 
GLMnet 0.500 
Random Survival Forest 0.445 

 
Enriched Motifs 



Using the 23 enriched motifs found, we first selected all 
methylation probes  associated with these enriched motifs 
(and subsequently, their transcription factors). We tested 
each of these probes using a multivariate cox regression and 
extracted their log ranking. Probes were then weighted by 
their inverse log ranking and a weighted average of all probes 
for an enriched motif was calculated for each sample. As we 
had a small set of 23 motifs, we opted out of performing 
feature selection. The results are available in Table 3 and 
show again that CBR-CONF adapted performed the best.  
 

 

Figure 1. Kaplan-Meier plots of the low, medium and high 
risk groups using CBR-CONF model. The top plots are for 
DNA methylation before and after feature selection, and 
the bottom plots are for gene expression before and after 
feature selection. Legend: The black line is low risk, red 
line is medium risk, green line is high risk. 
 
Explainability 
Using Gene Ontology knowledge-base, the 80 DNA meth-
ylation probes selected were annotated to their nearest 
genes. These genes were found to be significantly associ-
ated with the positive regulation of response to DNA dam-
age (q-value = 0.021, coverage = 5/47). For the 22 gene ex-
pressions selected, we found a significant association to 
the regulation of complement activation (q-value = 0.002, 
coverage = 4/27). For transcription factors found within 
the enriched motifs, the pattern specification process was 
significant (q-value = 1.4e-06, coverage = 8/184). 

Conclusion 
In this paper we discussed a case based reasoning frame- 
work that assigns a novel confidence metric to each solved 
case depicting how well that case can be used to solve a new 
case. We also developed novel retr ieval  and adaptation 
steps for survival analysis. Using DNA methylation, gene 
expression and enriched motifs, we tested our framework to 
predict survival of breast cancer. We found that our model 

performed at least as well as several renowned methodolo-
gies for survival pre diction with the advantage of interpreta-
bility. We further tested the presence of overfitting by intro-
ducing randomness in the dataset and found only minor dif-
ferences in results, which suggests that the model does not 
suffer from overfitting. In the future, we wish to further val-
idate our results using independent datasets and  expand the 
scope to other cancers and diseases. 

References 
Bartlett, C. L.; Liu, G.; and Bichindaritz, I. 2020a. Case- based rea-
soning for the analysis of methylation data in oncology.  In Barták, 
R., and Bell, E., eds., Proceedings of the Thirty-Third International 
Florida Artificial Intelligence Research Society Conference, 2020, 
401–406. AAAI Press. 
Bartlett, C. L.; Liu, G.; and Bichindaritz, I. 2020b. Classifying 
breast cancer tissue through DNA methylation and clinical covari-
ate based retrieval. In Watson, I., and Weber, R. O., eds., 28th In-
ternational Conference, ICCBR 2020, Lecture Notes in Computer 
Science, 82–96. Springer. 
Chen, E.G.; Wang, P.; Lou, H.; Wang, Y.; Yan, H.; Bi, L.; Liu, L.; 
Li, B.; Snijders, A.M.; Mao, J.H.; and Hang, B.2018. A robust gene 
expression-based prognostic risk score predicts overall survival of 
lung adenocarcinoma patients. Oncotarget 9(6):6862–6871. 
Hao, J.; Kim, Y.; Mallavarapu, T.; Oh, J. H.; and Kang, M. 2019. 
Interpretable deep neural network for cancer survival analysis by 
integrating genomic and clinical data. BMC Medical Genomics 
12(Suppl 10):1–13. 
Ishwaran, H.; Kogalur, U. B.; Blackstone, E. H.; and Lauer, M. S. 
2008. Random survival forests. Annals of Applied Statistics 
2(3):841–860. 
Karmen, C.; Gietzelt, M.; Knaup-Gregori, P.; and Ganzinger, M. 
2019. Methods for a similarity measure for clinical attributes based 
on survival data analysis. BMC Medical Informatics and Decision 
Making 19(1):1–14. 
Katzman, J. L.; Shaham, U.; Cloninger, A.; Bates, J.; Jiang, T.; and 
Kluger, Y. 2018. DeepSurv: Personalized treat- ment recommender 
system using a Cox proportional hazards deep neural network. BMC 
Medical Research Methodology 18(1):1–15. 
Lamy, J. B.; Sekar, B.; Guezennec, G.; Bouaud, J.; and Séroussi, 
B. 2019. Explainable artificial intelligence for breast cancer: A vis-
ual case-based reasoning approach. Artificial intelligence in medi-
cine, 94, 42-53. 
Lee, C.; Zame, W. R.; Yoon, J.; and Van Der Schaar, M. 2018. 
DeepHit: A deep learning approach to survival analysis with com-
peting risks., AAAI 2018 2314–2321. 
Lundberg, S. M.; Nair, B.; Vavilala, M. S.; Horibe, M.; Eisses, M. 
J.; Adams, T.; ... and Lee, S. I. 2018. Explainable machine-learning 
predictions for the prevention of hypoxaemia during surgery. Na-
ture biomedical engineering, 2(10), 749-760. 
Martini, P.; Chiogna, M.; Calura, E.; and Romualdi, C. 2019. 
MOSClip: multiomic and survival pathway analysis for the identifi-
cation of survival associated gene and modules. Nucleic acids re-
search 47(14):e80. 
Silva, T. C.; Coetzee, S. G.; Gull, N.; Yao, L.; Hazelett, D. J.; Noush-
mehr, H.; Lin, D.-C.; and Berman, B. P. 2018. Elmer v.2: An r bio-
conductor package to reconstruct gene regulatory networks from 
dna methylation and transcriptome pro- files. Bioinformatics. 


	Abstract
	Conclusion
	References

