Automated Assessment of Quality of Jupyter Notebooks Using Artificial
Intelligence and Big Code

Priti Oli, Rabin Banjade, Lasang Jimba Tamang, Vasile Rus
Department of Computer Science, Institute of Intelligent System
University of Memphis, Memphis, TN, USA
{poli,rbnjade1,ljtamang,vrus } @memphis.edu

Abstract

We present in this paper an automated method to as-
sess the quality of Jupyter notebooks. The quality of
notebooks is assessed in terms of reproducibility and
executability. Specifically, we automatically extract a
number of expert-defined features for each notebook,
perform a feature selection step, and then trained su-
pervised binary classifiers to predict whether a note-
book is reproducible and executable, respectively. We
also experimented with semantic code embeddings to
capture the notebooks’ semantics. We have evaluated
these methods on a dataset of 306,539 notebooks and
achieved an F1 score of 0.87 for reproducibility and
0.96 for executability (using expert-defined features)
and an F1 score of 0.81 for reproducibility and 0.78 for
executability (using code embeddings). Our results sug-
gest that semantic code embeddings can be used to de-
termine with good performance the reproducibility and
executability of Jupyter notebooks, and since they can
be automatically derived, they have the advantage of no
need for expert involvement to define features.

Introduction

In this paper, we present a machine learning-based approach
to automatically assess the quality of Jupyter notebooks,
which, together with Python, are key elements in fully har-
nessing the data revolution in many domains. Data and Data
Science have the potential to improve products, services, and
processes and are already impacting science, business, eco-
nomics, engineering, and government. Thus, the quality of
Jupyter notebooks can have a significant impact across many
domains.

Jupyter Notebooks are the most widely-used tools for data
science that make it easier to create and share live code, re-
sults, visualizations, and narrative text. The popularity of
Jupyter notebooks for literate programming and computa-
tional narrative is corroborated by the fact that there are
over 2.5 million Jupyter notebooks in GitHub as of Septem-
ber 2018, which is ten times more than in 2015 (Wang, Li,
and Zeller 2020). (Kery et al. 2018) reveal three use cases
of Jupyter notebooks: preliminary scratchpad, production

Copyright © 2021by the authors. All rights reserved.

pipeline, and work intended to be shared. When used as pro-
duction pipelines and for sharing, the quality of notebooks is
very important as errors can easily propagate. Unfortunately,
many shared notebooks are of low quality, which is a major
challenge that needs to be addressed, as explained next.

A recent study found that only 24.11% of a large number
(863,878 attempted executions) of notebooks in GitHub ran
without errors and only 4.03% produced the same results.
The study reveals the need to have ways to assess the qual-
ity of Jupyter notebooks at creation or publishing time. Bad
notebooks can propagate bad practices among professionals
in various fields and among members of the scientific com-
munity. since Jupyter notebooks are heavily used for literate
programming and sharing of scientific results (Shen 2014),
the quality of shared notebooks can have cascading effects.

To address these issues, we describe here methods to au-
tomatically assess the quality of existing Jupyter notebooks.
The methods can be used either at notebook creation time
or at publishing time. Thus, the proposed methods and re-
sulting tools can be used by notebook authors as a quality
assurance step, prior to publishing their notebooks.

Our definition of notebook quality is based on the princi-
ple that any shared notebook of good quality should execute
correctly and be easily read, understood, and their results
reproduced by other users, e.g., fellow programmers, scien-
tists, or other professionals such as business analysts(Wilson
et al. 2014). Therefore, we define the quality of Jupyter note-
books using the following two proxies: (i) executability and
(ii) reproducibility. Executability is the ability of a program
to run without any execution errors. In our case, we define
executability as the ability to run all the cells of a Jupyter
notebook without any errors. Similarly, reproducibility is the
extent to which consistent results are obtained when experi-
ments are repeated. In our case, we define reproducibility as
the ability of all the cells of a Jupyter notebook to produce
the same set of results for the same set of inputs. There-
fore, our operational goal is to develop automated methods
that can predict whether a notebook is executable and re-
producible. To this end, the proposed general approach to
assessing notebooks' quality is based on recent advances in
Artificial Intelligence/Machine Learning, e.g., deep learn-
ing, and Big Code, i.e., large repositories of notebooks such
as GitHub.

To assess the quality of Jupyter notebooks, we experi-

mented with the following two approaches: classical Ma-
chine Learning (ML) and Deep Learning (DL), i.e., auto-
matically derived code representations in the form of em-
beddings. For the classical ML approach, we defined a set
of features/predictors after which we trained various ML al-
gorithms. For the predictors to be used, we did an extensive
analysis of the literature on software quality metrics. For in-
stance, we started with the metrics suggested by Pimentel
and colleagues (2019) and others (Biswas et al., 2019) such
as the length of notebook titles, the placement of imports, the
presence of dependency requirements files, and the use of
relative paths to access the data. Similarly, for the DL-based
approach, we adopted a highly successful approach that has
been developed recently by the DL community: automati-
cally learn suitable representations, i.e., embeddings (Efs-
tathiou & Spinellis, 2019). Such representations are known
to improve the performance of downstream learning tasks
or applications such as contextual search and analogical rea-
soning in the case of natural language semantics. We inves-
tigate here to what extent such learned representations are
suitable for detecting the quality of Jupyter notebooks. DL
methods have been proven to be very good at analyzing
large repositories of data related to a given task and discover
statistical regularities. Similarly, our hypothesis is that they
will be good at capturing regularities about software artifact
quality.

In sum, we developed, validated, and report results with
two categories of novel methods to assess the quality of
Jupyter notebooks. The goal is to explore a process to de-
velop methods that automatically assess the quality of note-
books, investigate how good machine learning methods are
at predicting notebook quality, offer insights into what are
the major characteristics of quality notebooks, and what best
practices are needed in terms of development processes us-
ing notebooks to assure their quality during creation and
publication.

We answer here the following two key research questions:

* QI: Is it possible to predict the reproducibility and exe-
cutability of a Jupyter notebook based on expert-defined
features?

* Q2: Can semantic notebook embeddings accurately pre-
dict notebooks’ reproducibility and executability?

Related Work

Several studies have focused on various aspects of Jupyter
notebooks. (Rule, Tabard, and Hollan 2018) described three
case studies about how notebooks are used to document and
share exploratory data analyses. They found that one in four
notebooks in a set of over 1 million notebooks in GitHub
had no explanatory text. (Kery et al. 2018) highlights that,
as notebooks go through many changes and grow in size
they often are difficult to understand, limiting sharing and,
when shared, limits their use to others. To address this issue
(Head et al. 2019) proposed and developed code gathering
tools, extensions to computational notebooks that help ana-
lysts find, clean, recover, and compare versions of code in
cluttered, inconsistent notebooks.

(Pimentel et al. 2019) presented a study of various struc-
tural characteristics of Jupyter notebooks as well as their re-
producibility. In their work, they collected a large corpus of
more than 1 million notebooks, which we also use in our
work reported here, and executed each notebook to deter-
mine their executability (execution with no errors) and re-
producibility (reproduced the same results). Based on their
analysis, they outline a set of recommendations in the form
of suggested best practices. Our work here proposes an au-
tomated method to predict reproducibility and executabil-
ity and in the process automatically extract and identify the
most discriminating features that define reproducibility and
executability.

An interesting line of research relevant to our work is on
automatically inferred representations of code, i.e., code em-
beddings. (Zhang et al. 2019) uses a combination of unsu-
pervised representation learning and weak supervision for
computing joint representations of code from both abstract
syntax trees and surrounding natural language comments.
Similarly, (Pradel and Sen 2018) proposed DeepBugs to
identify name-based bug detection using semantic represen-
tations of code. Likewise, (Efstathiou and Spinellis 2019)
proposed distributed code representations for six different
programming languages: Java, Python, PHP, C, C++, and
C#. They used fastText for learning semantic representa-
tions and studied dissimilarities between code and natural
language, proposing various applications and limitations. In
related work, (Kanade et al. 2019) used BERT embedding
of source code for five benchmark classification tasks: vari-
able misuse classification, wrong binary operator, swapped
operand, function-docstring mismatch, and exception type.
While prior work focused on either the study of various as-
pects of reproducibility of Jupyter notebooks or on the rep-
resentation of source code, we explore a combination of the
two, i.e., using effective Jupyter notebook representations
for assessing reproducibility.

Approach

As noted, we model both reproducibility and executability as
a binary classification task. We explored both a standard ML
method where the features or predictors are expert-defined
and a novel method based on code embeddings, i.e., auto-
matically inferred representations of notebooks in our case.

Feature based classification For the standard ML
method, we started with identifying a set of features to pre-
dict both the reproducibility and executability of Jupyter
notebooks. We defined a set of features based on an exten-
sive analysis of the literature on software quality metrics.
(Wilson et al. 2014) describes the following code character-
istics as indicators of software quality and best practices for
scientific computing: modularizing code, documentation of
design and purpose, the embedding of documentation, con-
sistent code style, and formatting, consistent, distinctive, and
meaningful names, use of version control, re-use of code,
testing of code using assertion, and unit test. Based on these
expert-defined features, we hand-picked 42 features for our
classification.

Feature selection Instead of using all the 42 hand-picked
features, we selected a subset as a way to avoid over-fitting
a model with too many features. The goal is to design a
simpler model that should generalize better according to
Occam’s Razor principle. Using the Random Forest fea-
ture selection algorithm, we identified 32 features that are
more discerning in terms of information gain for both re-
producibility and executability. Based on this feature im-
portance analysis and selection, we note that the length of
meaningful words, meaningful lines, the number of mark-
down cells, use of modules, use of assertion, and exception
handling are the most important features for reproducibility
and executability. Table 1 shows the 32 selected features
included in the model for binary classification of both repro-
ducibility and executability.

Feature Description

code_cells no. of code cells
markdown_cells no. of markdown cells
raw_cells no. of raw cells
functions_decorators | no. of functions with decorators
classes_decorators no. of classes with decorator
total_classdef no. of class definitions
ast_-module no. of modules in the repository
ast_statements no. of statements

ast_raise no. of statements with exception
ast_try no. of try statements
ast_tryexcept no. of try-except statement
ast_tryfinally no. of try-finally

ast_assert no. of assertion made for test
total_import no. of modules imported

len length of words (markdown)
lines no. of lines (markdown)
meaningful_lines no. of lines in markdown
meaningful_words no. of words in markdown
local_importfrom no. of local module imported
global _assign no. of global assignments
class_assign no. of class assignments
local_assign no. of local assignments
class_functiondef no. of class function definitions
local_functiondef no. of local function definition
ast_ifexp no. of if expression

ast_lambda no. of lambda expression
ast_dict no. of dictionary

ast_set no. of set

ast_listcomp no. of list comprehension
ast_lambda no. of lambda functions
ast_dictcomp no. of dictionary comprehension
ast_param no. of parameters used

Table 1: List of selected features based on information gain.

Notebooks Quality Embeddings

In this approach, we used deep neural networks to automati-
cally learn embeddings of source code. We could have used
both the code and the narrative text of the notebooks to gen-
erate the embeddings. However, in the work presented here,
we only used the code to generate the notebook embeddings
and for this reason, we refer to them as code embeddings.
We fine-tuned Elmo, a deep learning-based contextualized

semantic representation model to get distributed vector rep-
resentations of source code in [Python notebook (Peters et
al. 2018). The output from the ELMO embedding is a vec-
tor of size 1,024, which we used as a feature vector for the
classification step. The Elmo embedding was then fed to a
dense layer of 256 nodes with a ReL.U activation. The output
of the dense layer was fed to a prediction layer with softmax
activation to predict one of the two binary classes for each
of the two dimensions of notebook quality that we operate
with: executability and reproducibility. The loss was calcu-
lated using binary cross-entropy; an Adam optimizer was
used for iterative updating of weights, i.e., training.

Experiments and Results

In this section, we first present the data we used for our ex-
periments, the experimental setting, and the results obtained.

Data Description

To evaluate the methods described above, we used a dataset
of annotated Jupyter notebooks from (Pimentel et al. 2019).
The dataset consists of notebooks written in Python, R, Ju-
lia, and Scala. We only retained the Python notebooks that
are related to data science and containing only Roman char-
acters. Also, we discarded any notebooks that have less than
two cells. After discarding the duplicate notebooks and note-
books flagged as assignments or homework, we ended up
with a total of 306,539 notebooks which we use for our ex-
periments.

Of the 306,539 selected notebooks, only 4.4% were found
to be reproducible and only 4.69% executable. Because only
a small fraction of the notebooks in the dataset were re-
producible/executable, to avoid problems of highly skewed
data for further analyses, we decided to generate a balanced
subset through under-sampling. After under-sampling, the
resulting dataset of 32,188 notebooks is balanced: 16,094
reproducible notebooks and 16,094 non-reproducible note-
books. Similarly, we obtained a balanced dataset of 34,372
notebooks for executability: 17,186 executable notebooks
and 17,186 non-executable notebooks.

Results for Machine Learning Models based on
Expert-defined Features

We have used four standard machine learning classifiers in
our experiments: Decision Trees, Random Forests, Multi-
layer Perceptron (MLP), and Naive Bayes.

Reproducibility: Table 2 shows the results for the dif-
ferent classifiers for predicting reproducibility. We can see
that Random Forest outperforms other classifiers on all per-
formance metrics (precision, recall, F1, kappa) in predicting
the reproducibility of the Jupyter notebooks. All classifiers
perform significantly better than chance as indicated by Co-
hen’s kappa scores.

Executability: Table 3 shows the performance of the dif-
ferent classifiers for predicting executability. We note that
Random Forest again has the best performance across all
metrics in predicting the executability of Jupyter notebooks.

Classifier F1 Precision | Recall | Cohen’s
Score Kappa
Decision Tree 0.82 0.81 0.81 0.64
Random Forest 0.87 0.87 0.87 0.73
MLP 0.73 0.76 0.73 0.46
Naive Bayes 0.64 0.67 0.64 0.29

Table 2: Results for reproducibility.

Classifier F1 Precision | Recall | Cohen’s
Score Kappa
Decision Tree 0.93 0.93 0.93 0.86
Random Forest | 0.96 0.96 0.96 0.91
MLP 0.89 0.90 0.89 0.79
Naive Bayes’s 0.71 0.79 0.71 0.43

Table 3: Results for executability.

Results with Code Embeddings

We ran the previously described DL classifiers with Elmo
embeddings for 4 epochs on the balanced datasets for re-
producibility and executability, respectively. Table 4 sum-
marizes the results. We can see that the DL classifier per-
forms well relative to the classical ML classifiers for repro-
ducibility. The performance of the DL approach in the case
of executability is still good but less comparable to that of
the classical ML approach. However, given the fact that the
DL approach does not need expert-defined features, it is a
more scalable and portable approach, i.e., easily portable to
assess the quality of notebooks for other languages.

Quality F1 Precision | Recall | Cohen’s
metric Score Kappa
Reproducibiltiy | 0.81 0.81 0.81 0.42
Executability 0.78 0.78 0.78 0.35

Table 4: Reproducibiltiy and executability performance re-
sults using the deep-learning approach (code embeddings).

Conclusions and Future Work

This paper presented our investigation of the role of both
classical machine learning and deep learning-based ap-
proaches to predict the quality of Jupyter notebooks Note-
book quality was operationalized using the two criteria of re-
producibility and executability. While the classical machine
learning approach performed better overall, the deep learn-
ing approach has the advantage of being more scalable and
portable. The proposed methods can be used to check the
quality of publicly released notebooks or future notebooks
before being shared and will thus lead to improved note-
books with broad downstream impact resulting in better sci-
ence through better data analysis and software processes and
artifacts.

Plans for future work include experimenting with meth-
ods that represent code using Abstract Syntax Tree and gen-
erate embeddings from both the code and the narrative text
of the notebooks.

Acknowledgments

This work has been supported by two NSF awards: the
Learner Data Institute (NSF; award 1934745) and CSEdPad:
Investigating and Scaffolding Students’ Mental Models dur-
ing Computer Programming Tasks to Improve Learning, En-
gagement, and Retention (NSF award 1822816). The opin-
ions, findings, and results are solely the authors’ and do not
reflect those of NSF.

References

Efstathiou, V., and Spinellis, D. 2019. Semantic source code
models using identifier embeddings. In 2019 IEEE/ACM
16th International Conference on Mining Software Reposi-
tories (MSR), 29-33. 1EEE.

Head, A.; Hohman, F.; Barik, T.; Drucker, S. M.; and De-
Line, R. 2019. Managing messes in computational note-
books. In Proceedings of the 2019 CHI Conference on Hu-
man Factors in Computing Systems, 1-12.

Kanade, A.; Maniatis, P.; Balakrishnan, G.; and Shi, K.
2019. Pre-trained contextual embedding of source code.
arXiv preprint arXiv:2001.00059.

Kery, M. B.; Radensky, M.; Arya, M.; John, B. E.; and My-
ers, B. A. 2018. The story in the notebook: Exploratory data
science using a literate programming tool. In Proceedings of
the 2018 CHI Conference on Human Factors in Computing
Systems, 1-11.

Peters, M. E.; Neumann, M.; Iyyer, M.; Gardner, M.; Clark,
C.; Lee, K.; and Zettlemoyer, L. 2018. Deep contextualized
word representations. arXiv preprint arXiv:1802.05365.

Pimentel, J. F.; Murta, L.; Braganholo, V.; and Freire, J.
2019. A large-scale study about quality and reproducibil-
ity of jupyter notebooks. In 2019 IEEE/ACM 16th Interna-
tional Conference on Mining Software Repositories (MSR),
507-517. 1IEEE.

Pradel, M., and Sen, K. 2018. Deepbugs: A learning ap-
proach to name-based bug detection. Proceedings of the
ACM on Programming Languages 2(O0OPSLA):1-25.

Rule, A.; Tabard, A.; and Hollan, J. D. 2018. Exploration
and explanation in computational notebooks. In Proceedings
of the 2018 CHI Conference on Human Factors in Comput-
ing Systems, 1-12.

Shen, H. 2014. Interactive notebooks: Sharing the code.
Nature 515(7525):151-152.

Wang, J.; Li, L.; and Zeller, A. 2020. Better code, better
sharing: on the need of analyzing jupyter notebooks. Pro-
ceedings of the ACM/IEEE 42nd International Conference
on Software Engineering: New Ideas and Emerging Results.

Wilson, G.; Aruliah, D. A.; Brown, C. T.; Hong, N. P. C;;
Davis, M.; Guy, R. T.; Haddock, S. H.; Huff, K. D.; Mitchell,
I. M.; Plumbley, M. D.; et al. 2014. Best practices for scien-
tific computing. PLoS Biol 12(1):e1001745.

Zhang, J.; Wang, X.; Zhang, H.; Sun, H.; Wang, K.; and
Liu, X. 2019. A novel neural source code representation
based on abstract syntax tree. In 2019 IEEE/ACM 41st Inter-
national Conference on Software Engineering (ICSE), 783—
794. IEEE.

