Backtracking Restarts for Deep Reinforcement Learning

Zaid Marji and John Licato
Advancing Machine and Human Reasoning (AMHR) Lab
Department of Computer Science and Engineering
University of South Florida

Abstract

Manipulating the starting states of a Markov Decision
Process to accelerate the learning of a deep reinforcement
learning agent is an idea that has been proposed in several
ways in the literature. Examples include starting from
random states to improve exploration, taking random walks
from desired goal states, and using performance-based
metrics for starting states selection policy. In this paper,
we explore the idea of exploiting the RL agent’s trajectories
generated during training for use as starting states. The main
intuition behind this proposal is to focus the training of the
RL agent to overcome its current weaknesses by practicing
overcoming failure states by resetting the environment to a
state in its recent past. We shall call the idea of starting from a
fixed (or variable) number of steps back from recent terminal
or failure states ‘backtracking restarts’. Our empirical
findings show that this modification yields tangible speedups
in the learning process.

1 Introduction

Reinforcement learning (RL) is a powerful learning
paradigm in the fields of machine learning and artificial
intelligence. It is concerned with decision-making problems
where the goal is to maximize the expectation of a
specific objective function. Deep reinforcement learning
(DRL), which incorporates deep neural networks into
the reinforcement learning paradigm, has demonstrated
tremendous promise at solving complex tasks. There are
many examples, including board games (Schrittwieser et al.
2019), video games (Mnih et al. 2013), and autonomous
driving simulations (Sallab et al. 2017). The performance
on those tasks varies from adequate performance to
super-human performance. All of those successes of
DRL motivate exploring various techniques to enhance its
performance in order to solve problems more efficiently and
effectively.

In classical RL settings, tabular methods are used to
evaluate policies from all states in the state space. While
this is guaranteed to produce optimal results, it places a very
insurmountable computational burden that can only be met
for simple tasks where the number of states that need to be
evaluated is reasonably small. To overcome this burden,
approximate solutions were developed, most commonly

Copyright © 2021by the authors. All rights reserved.

deep reinforcement learning (DRL), that take advantage of
the generalization abilities of deep neural networks.

In this paper, we propose a heuristic strategy for setting
the initial states in an episode. The main idea is to let an
agent perform a task until it reaches a terminal or failure
state, after which the next episode is started at a point in
the recent past during the previous episode. The intuition is
that the agent will get multiple chances to explore alternative
strategies to overcome their recent failure and allow it to
focus its training on its current weaknesses. We empirically
verify the effectiveness of this strategy in the game of 2048.
This is a single-player game with simple rules which will
be briefly explained. Our findings indicate that this heuristic
does produce tangible speedups in the learning process.

2 Background

A standard Markov Decision Process (MDP) (Puterman
2014) is represented as a tuple of M = (S, A, P, r,), where
S is the state space containing all the available states s € S.
P is the state transition operator, representing the probability
distribution of p(s;1|st, at), which is the probability of the
next state s,y after an action a; has been executed at the
current state s;. A is the action space such that a € A, r is
the reward function 7 : S X A X S — R and ~ is the reward
discounting factor.

Reinforcement Learning (RL) uses MDP as the primary
model of the world. An agent, the entity that makes
decisions, chooses actions to perform in a given state.
The MDP represents the environment in which the agent
executes their decisions. RL is the task of finding decision
policies that maximize the expected sum of discounted
future rewards. Deep reinforcement learning (DRL) extends
RL using deep learning techniques to allow RL to be usable
in complex tasks with large state spaces that are intractable
using less sophisticated techniques.

3 Related Work

The effects that start state distributions have on DRL have
been studied before. One of the major contributions to the
discussion was a paper by Kakade and Langford (2002)
that discusses the advantages of what they called ‘restart
distributions,” which are separate from the start distribution
associated with the original MDP. The main argument is that

when using function approximations (as opposed to tabular
methods) the approximations will be insensitive to unlikely
or infrequently visited states. They argue for a more uniform
restart distribution that allows more exploration and more
accurate function approximations for a wider range of the
state space.

Various strategies have been proposed to manipulate the
initial states of RL episodes to achieve better learning
performance. A strategy called reverse curriculum
generation (Florensa et al. 2017) proposes training an agent
in reverse. The agent is trained on states that are few
steps away from a goal state, and is then incrementally
trained from states that are further and further from the
goal states, until it eventually learns to reach the goal state
from the initial states which are expected in the original
task. Reverse curriculum generation avoids the need to
incorporate domain knowledge into the reward function as it
only requires providing at least one known goal state, which
is cited as one of its main advantages.

A more recently proposed strategy uses some
performance metrics (such as goal-reaching probability)
that are dynamically estimated as part of the training process
to set the restart distribution (Wohlke, Schmitt, and van
Hoof 2020). This technique combines rollouts from states
based on current policies to get a measure of how likely it is
to reach goal states, and artificial neural networks are used
to generalize those measurements over the state space.

In (Ecoffet et al. 2019), the authors propose a method
called ‘Go-Explore.’” One of its main principles is the
idea of revisiting previously encountered promising states
to enhance exploration and accelerate learning. They
provide strong evidence that remembering and revisiting
previously encountered states is a useful strategy. In a
similar vein, the authors in (Tavakoli et al. 2018) propose
three different strategies for restart distributions which are
based on previously encountered states. The first is called
‘uniform restart,” where recent states are stored in a visited
states buffer, and the initial states are uniformly selected
from the set of visited states and a sample of the start
states of the original MDP. The second is called ‘prioritized
restart, where states are stored in a buffer similar to the
first approach. However, the states are prioritized based on
the TD-error. The third approach is called ‘episode restart,’
where only states from episodes that received high total
undiscounted rewards are stored. When the visited episodes
buffer is full, the agent maintains the most rewarding
episodes in its buffer.

4 Backtracking Restarts

In this paper, we propose a technique we shall call
‘backtracking restarts.” The idea is to let an agent perform
a task until it reaches a terminal state or a failure state.
Once such a state is reached, we take a number of steps
backward from that state on the trajectory of that specific
episode or some recent episode. The number of steps
backward can be a fixed number of steps, a fixed percentage
of the trajectory length, a random number of steps, or
dynamically decided. The number of steps is intended
to be enough in most situations to change the outcome

Algorithm 1: Pseudocode for Backtracking Restarts

Require: Backtracking probability p;, Backtracking
length L, Exploratory random start probability p,

for each episode do

if backtracking = on and length(buf fer) > L
and random|0, 1] < p; then

state <— buffer[length(buffer)-L]

truncate(buffer, L)

else if exploring = on and random|0, 1] < pe

then

state <— random state

clear(buffer)

else

state <— normal start state

clear(buffer)

end

for each environment step do

Observe state s

append(buffer, s)

a~n(ls)

Apply action a and observe s’,r

Update with < s,a,s’,r >

end
end

of the episode. In other words, it is intended to provide
a meaningful second chance for the agent to make an
improvement over its previous performance or to explore a
different evolution of the trajectory from a previous decision
point. We are assuming that either the environment has
enough stochasticity for different outcomes to occur, or the
agent has enough variance in its decision-making to affect
the outcome (or both).

Unlike the previously discussed techniques that start
the training from states close to the goal states and go
backward, this technique moves the initial states forward as
the agent becomes more capable of making progress in the
environment. This means that for this technique to work,
we need a dense reward function that signals the agent’s
progress towards its goals, or a task that is naturally defined
in terms of dense reward functions. On the other hand, this
means that we do not need to provide goal states or expert
demonstrations as in the aforementioned techniques. This is
especially useful for tasks with no natural goal states and
problems with a more open-ended nature where the total
reward achievable has no well-known upper limit.

Moreover, this strategy addresses the need to focus the
training where the agent is lacking. In many tasks, the
episodes might be lengthy, and the agent has more or less
mastered the early phases of a task. As the task gets
progressively harder, the RL agent will fail at the later
phases. By focusing on the later phases, it should learn
faster. It is still important to let the RL agent keep its skill
of the early stages; therefore, it should start normally with
some probability.

5 The Game of 2048

The game 2048 is a simple single-player game where the
objective is to create a tile with the numeric value 2048.!
The game is played on a 4x4 board. The game starts with
two tiles randomly placed on the board. Each location on
the board can be either an empty slot or contains a tile with
a numeric face value. The initial tiles can be either 2s or
4s. The player has four moves to consider: Up, down, left,
and right. All tiles slide towards the direction of the player’s
move whenever possible. If a tile slides towards another tile
of the same face value, they will merge into a single tile that
is the total sum of their individual values. If the player’s
move was a legal move that is at least one tile has moved or
merged, then a new tile will be added that is either a 2-tile
or a 4-tile at a randomly chosen empty slot. The game ends
when no legal moves are possible. For additional details,
please refer to the link in the footnotes.

In some variations of the game, the game ends in
a winning state if a 2048-tile has been created, which
is considered the goal of the game and where the
name originates. In other variations, the game is
open-ended, and the goal is to create the highest tile
possible. In this paper, we consider the second open-ended
variant. Creating 2048-tiles is a challenging task for most
human players, let alone creating 4096-tiles or higher.
However, our experiments show that the agent obtains a
2048-tile consistently after some training, and therefore the
open-ended variant is well suited for our purposes.

6 Experimental Setup

In order to establish some empirical results, we ran several
experiments. All experiments were performed with an
algorithm that we shall refer to as ‘DQN with lookahead.’
This algorithm is very similar to standard DQN (Mnih et
al. 2015). In all experiments, we used a replay buffer of
size 1 million. We update the target network every 25
thousand agent steps. We perform an evaluation run every
250 thousand agent steps, and each evaluation is 20 thousand
agent steps long. However, in our experiments, the DQN
was unstable and failed to produce any meaningful results.
We modified the DQN by adding 1 step of lookahead at
decision time, which can be thought of as a form of truncated
rollouts. The algorithm works as follows: When deciding
which action to take, DQN would pass the current state
through the Q-Network, which outputs an estimate for the
action-values Q(s, a) for all possible actions and selects the
action with the highest estimated action-value. When acting
greedily, DQN’s unmodified decision policy is:

mg(s) = argmax Q(s, a) (1

However, instead of using estimates based on the current
state, we select all actions in turn. For each action a; € A,
we obtain 5 samples of the next state s} ; ~ p([s,a;),j €
{1,..,5}, and obtain a state-value estimate by finding the
maximum action-value for the next state max, Q(s; ;,a’).
Finally, we average over the state-value estimates and

'The game can be played at: https://play2048.co/

choose the action with the highest estimate. The following
formula summarizes our modified decision policy:

7g(s))
Zj [T(Sa a, 8/) + ymaxgy Q(S/a a/)] s'~p(-|s,a)
= arg max | — ~

Since the game is played in an open-ended setting, the
reward structure is designed to reflect progress. The higher
valued tiles present on the board, the more the agent is
rewarded. We decided to use a non-linear scoring system
that favors higher valued tiles such that -for example- one
1024-tile is more valuable than two 512-tiles. We used the
following formula to calculate the score:

Z v * logy v 3)

vEtiles(s)

score(s) =

The reward is defined as the difference between the score
of the current state and the next state.

r(s,a,s’) = score(s’) — score(s) 4)

We performed the experiment in six configurations.
The first parameter in those configurations is whether
backtracking restarts are used and with what probability. We
used three settings for this parameter: 98%, 80%, and not
used. The probability defines how likely an episode will
be started from the history buffer of the previous episode.
If using the history buffer is chosen, the episode will
start 50 steps back from the terminal state of the previous
episode. The second parameter is whether exploratory
random starts are used or not. If using the history buffer
is not selected, then this setting will be selected with a
fixed probability of 80%. If selected, the episode will start
from a randomly generated state. Otherwise, the episode
will start from an initial state according to the game’s rules.
All of those configurations only affect episodes used for
training purposes. Algorithm 1 shows pseudocode for the
backtracking algorithm in training mode. All episodes used
for evaluation purposes start from an initial state according
to the game’s rules.

7 Empirical Results

Figure 1(a) shows the moving average of the undiscounted
sum of rewards (ie. the score) during the evaluations on
different configurations using exploratory random starts.
The X-axis represents the number of evaluation runs (which
happen after every 250 thousand agent steps in training
mode). Each point on the Y-axis represents the average
score of all episodes in the last 20 evaluation runs. As it
can be observed, the backtracking restarts positively affect
the RL agent’s learning speed. Figure 1(b) shows similar
results when exploratory random starts are not used.

8 Conclusions and Future Work

Reinforcement learning is at the forefront of advancing
machine capabilities beyond human performance.
Supervised learning and imitation learning approaches

28000 1 —— BT=98% + RS IS
BT=80% + RS (7
26000 | — BT=0off +RS

—— 2048 threshold

N‘v
24000 A /‘/\/“

22000 4

20000 4

18000 A

16000 A

14000 -

0 20 40 60 80 100
(a) Using exploratory random starts

32500 1 BT=98%
BT=80%
30000 4 —— BT=off
—— 2048 threshold

27500 1
25000 1 /N
22500 A
20000 A
17500 A
15000 A

T T T T T T

0 20 40 60 80 100

(b) Not using exploratory random starts

Figure 1: Summary of empirical results

are generally limited by human capabilities. For machines
to become an indispensable and proactive asset to human
goals, they need to be trusted to provide knowledge and
insights that are at least on par, if not even exceed, human
capabilities. Reinforcement learning is a computationally
demanding learning paradigm. We need to find reliable
ways to improve its effectiveness and efficiency to learn
tasks within reasonable computational, financial, and time
resource constraints. For this reason, it is essential to
research ways to optimize its learning process.

This work presents some heuristics to accelerate the
learning of DRL agents under certain assumptions,
including the ability to start a MDP at an arbitrary state, and
the availability of a reward function that signals progress
towards a goal. However, it does not require knowledge
of goal states or access to expert demonstrations. We
have demonstrated the utility of this heuristic on the game
of 2048 and verified it empirically, and demonstrated the
potential for its use in other applications. Next steps
include performing more experimentation to get a clearer
idea of the conditions and applications where this approach
works effectively and investigate means of optimizing the
parameters for various applications.

9 Acknowledgements

This material is based upon work supported by the Air
Force Office of Scientific Research under award numbers
FA9550-17-1-0191 and FA9550-18-1-0052. Any opinions,
findings, and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily
reflect the views of the United States Air Force.

References
Ecoffet, A.; Huizinga, J.; Lehman, J.; Stanley,
K. O.; and Clune, J. 2019. Go-explore: a new

approach for hard-exploration problems. arXiv preprint
arXiv:1901.10995.

Florensa, C.; Held, D.; Wulfmeier, M.; Zhang, M.; and
Abbeel, P. 2017. Reverse curriculum generation for
reinforcement learning. In Conference on robot learning,
482-495. PMLR.

Kakade, S., and Langford, J. 2002. Approximately optimal
approximate reinforcement learning. In In Proc. 19th
International Conference on Machine Learning. Citeseer.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.;
Antonoglou, I.; Wierstra, D.; and Riedmiller, M. 2013.
Playing atari with deep reinforcement learning. arXiv
preprint arXiv:1312.5602.

Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A;
Veness, J.; Bellemare, M. G.; Graves, A.; Riedmiller, M.;
Fidjeland, A. K.; Ostrovski, G.; et al. 2015. Human-level
control through deep reinforcement learning. Nature
518(7540):529-533.

Puterman, M. L. 2014. Markov decision processes: discrete
stochastic dynamic programming. John Wiley & Sons.

Sallab, A. E.; Abdou, M.; Perot, E.; and Yogamani, S. 2017.
Deep reinforcement learning framework for autonomous
driving. Electronic Imaging 2017(19):70-76.

Schrittwieser, J.; Antonoglou, I.; Hubert, T.; Simonyan, K.;
Sifre, L.; Schmitt, S.; Guez, A.; Lockhart, E.; Hassabis, D.;
Graepel, T.; et al. 2019. Mastering atari, go, chess and
shogi by planning with a learned model. arXiv preprint
arXiv:1911.08265.

Tavakoli, A.; Levdik, V.; Islam, R.; Smith, C. M.; and
Kormushev, P. 2018. Exploring restart distributions. arXiv
preprint arXiv:1811.11298.

Wohlke, J.; Schmitt, F.; and van Hoof, H. 2020.
A performance-based start state curriculum framework
for reinforcement learning. In Proceedings of the
19th International Conference on Autonomous Agents and
MultiAgent Systems, 1503-1511.

