Goal Lifecycle Networks for Robotics

Mark Roberts! Laura M. Hiatt' Vivint Shetty?
Benjamin Brumback' Brandon Enochs® Piyabutra Jampathom?
The U.S. Naval Research Laboratory
ICode 5514 | 2Code 8245 | *Code 5545
Washington, DC, USA | {first.last} @nrl.navy.mil

Abstract

A Goal Lifecycle Network (GLN) is a conceptual process
model that captures the progression of goals from their formu-
lation to their completion, including planning and execution
concerns. GLNs synthesize the literature on hierarchical goal
networks, goal lifecycles, and plan execution. We formalize
GLNs based on a state-variable representation, extend GLN's
with an execution lifecycle, describe a partial reference im-
plementation of GLNs, and show how the temporal PDDL
language can be translated into GLNs for dispatchable exe-
cution. We integrate GLNs in three proof-of-concept robotics
demonstrations: (1) a two-armed robot sorting items into bas-
kets; (2) a multi-vehicle quad-rotor team surveying a region;
and (3) centralized planning for a simulated disaster relief
based on the Robocup Rescue League. The theory, implemen-
tation, and demonstrations highlight that GLNs are effective
for goal management in the robotics systems we study.

1 Motivation and Contributions

Goals are a characteristic of intelligent behaviour (e.g.,
(Hawes 2011; Aha 2018)) and goal lifecycles are often used
to manage them in agents. Goal lifecycles have been ap-
plied to agent-oriented systems (Thangarajah et al. 2010;
Harland et al. 2014) as well as robotic systems (e.g., (Roberts
et al. 2016; Niemueller, Hofmann, and Lakemeyer 2019))
and cognitive systems (e.g., (Cox, Dannenhauer, and Kon-
drakunta 2017)). This family of lifecycles complement each
other, each providing perspective on goal management.

We present a Goal Lifecycle Network (GLN) that synthe-
sizes three lines of research by simplifying an existing goal
lifecycle, linking it to a PDDL planner, and demonstrating
its use in robotics. Our contributions include: (/) formal-
izing GLNS using a state variable representation (Ghallab,
Nau, and Traverso 2016) with a simplified variant of the
goal lifecycle by Roberts et al. (2016) and goal networks
by Shivashankar et al. (2012; 2013); (2) extending GLNs
with a simplified Execution Lifecycle; (3) revising work by
Veloso, Pérez, and Carbonell (1990) to convert a temporal
PDDL plan into a dispatchable GLN; (4) providing a GLN
reference implementation, called ACTORSIM!, that includes
cognitive architecture elements; and (5) applying ACTORSIM
and GLNs to three proof-of-concept robotics demonstrations.

Copyright (©) 2021 by the authors. All rights reserved.
"Please email primary author for latest code.

2 Preliminaries

GLNs synthesize a considerable literature, some of which
will be new to most readers. So we review the state-variable
representation (Section 2.1), Hierarchical Goal Networks
(Section 2.2), and the goal lifecycle we extend (Section 2.3).

2.1 State-Variable (SV) Representation

For representing GLNs, we will adapt the notation of Ghal-
lab, Nau, and Traverso (2016) and ANML as implemented in
FAPE (Dvorak et al. 2014). PDDL is a common language for
automated planning (Fox and Long 2003). Figure 1 shows the
first few lines of a PDDL domain for the CrazySwarm Demo
in Section 5. In this PDDL, vehicles traverse waypoints to
take observations. A vehicle can have a status of landed, hov-
ering, flying, or sensing. Several boolean predicates capture
the state of objects in the world. Finally, actions are the way
that agents modify the world; the example shows an action
template (operator) for navigation. We will use this example
in discussing the state-variable representation.

A domain is a triple D = (S, A,), where S is a finite
set of states (i.e., state variables), A is a finite set of actions,
which are composed of statements, and y: S x A — Sisa
partial transition function.

States are composed of objects with their attributes and
relations. Object instances can have a type, such as v0 is a
VEHICLE and w1 or w2 are WAYPOINTSs. Objects can only be
assigned or bound to an appropriate variable type.

A state relation (SR) relates objects and is defined by a state
relation template (SRT), e.g., can—-traverse(WAYPOINT,
WAYPOINT). An SR instance binds objects to its parameters,
e.g., can-traverse(wl, w2).

State variables are central to this representation because
they are used to define goals in the form of statements. A state
variable (SV) defines attribute of an object and its allowed
values. An SV has variables that are parameters and variables
that are values. For clarity, we will list variable parameters
first and underline their values. An SV is defined with a state
variable template (SVT) over types, such as at(VEHICLE,
WAYPOINT). An SV instance binds objects to its parameter(s),
such as svy=at(v0, WAYPOINT), where sv; labels the SV.

Returning to the example in Figure 1, it is straightfor-
ward to translate the predicates of temporal PDDL to SRTs
and SVTs. Any single argument predicate is converted to an
SVT with a boolean value. Multi-valued predicates convert to

(define (domain vehicle) (:requirements :typing :durative-actions)
(:types vehicle waypoint stat)
(:constants LANDED HOVER FLYING SENSING - stat)
(:predicates (can_traverse ?x - waypoint ?y - waypoint)
(inspected ?w - waypoint)
(phenomenon_at ?w - waypoint)
(at ?v - vehicle ?value-w - waypoint)
(status ?v - vehicle ?value-s - stat))
(:durative-action navigate
:parameters (?v - vehicle ?fr - waypoint ?to - waypoint)
:duration (= ?duration 1)
:condition (and (over all (can_traverse ?fr ?to))
(at start (at ?v 2fr))
(at start (status ?v HOVER)))
:effect (and (at start (not (at ?v ?fr)))
(at start (not (status ?7v HOVER)))
(at start (status ?v FLYING))
(at end (not (status ?v FLYING)))
(at end (status ?v HOVER))
(atend (at ?v ?t0)))) ...)

Figure 1: The beginning of the Temporal PDDL domain for
the CrazySwarm demo in Section 5.

SRTs unless their last variable starts with ?value-, in which
case it is converted to an SVT. Let BOOLEAN= {true, false}
and STAT be the constant symbol in Figure 1. The only SRT
of the domain is can_traverse(WAYPOINT, WAYPOINT)
and the SVTs are: inspected(WAYPOINT, BOOLEAN),
phenomenon_at(WAYPOINT, BOOLEAN), at(VEHICLE,
WAYPOINT), and status(VEHICLE, STAT). We manually pro-
vide the ?value- annotations for our demos, but it should be
easy to infer these automatically for many domains.

A statement wraps an SV with an assigned value and tem-
poral extent. A temporal interval [¢;, t2]sv; indicates that svq
holds over ¢; < t < to and the shorthand [t3]sv; indicates
that sv; holds for a single time point ¢3. There are three base
statements. Let sv; = at(v0, WAYPOINT). A persistence
statement [t 514, tend]Sv; == value indicates a value re-
mains constant over its interval. This is sometimes referred
to as a temporal assertion. For example, sv; == w0 says
that vO stays at w0 over the interval. A transition statement
[tstart; tend]Sv; = £rom — to indicates a change of value
over the interval. This is sometimes referred to as a change
assertion. For example, sv; = w0 — w1l says that vO starts
at w0 and transitions to w1l at some point during the interval.
An assignment statement [ts:q,¢, tend|Sv; := value sets
the value of sv; at the start of its interval and remains true
during the interval. It is useful for establishing the initial
conditions of a situation. For example, sv; := w0 sets the
value of sv; to w0 at ¢; and this value does not change for
the interval. Additional statements may be created from these
base statements. For example, the EXECUTIONSTATEMENT in
Section 3.3 is a variety of transition statement. In Section 4, a
negated persistence statement [ts1q.t, tena]Sv; # value
indicates sv; must not equal value over its interval.

Statements are used within actions to denote its precondi-
tions and effects. To illustrate, the navigate operator from
Figure 1 would be translated as follows. For easier reading
of this example, we “instantiate” variables with placeholder
instances; that is ?v will be written v. Let [tsq7¢, Lena] be the
interval of the entire action. Its conditions and effects are:

[tstarts tend] can-traverse(fr, to)
[tstart] at(v)==fr
[tstart] status(v) == HOVER

[tstart,tend] at(v) = fr — to
[tstart] status(v) :=FLYING
[tend] status(v) :=HOVER

2.2 Simple Goal Networks

Hierarchical Goal Networks provide a way to order and link
goals together. A goal network is solved when it is empty;
i.e., there are no more goals to pursue. We will adapt the
original definition of the Hierarchical Goal Network from
Shivashankar et al. (2013), although here we call it a Simple
Goal Network (SGN) and introduce it informally to mention
its salient points. As defined in that original work,

Definition 1. A simple-goal-network sgn = (G, <) is a
pair where G is a set of nodes, each g € G is a predicate
statement of ground literals in disjunctive normal form, and
< describes a partial order over G.

A problem for an sgn is a triple Py, = (Dstrips, S0, Sg70)
where Dstrips is a domain, sy is the initial state
(i.e., a conjunction of ground literals), and sgng is a
simple-goal-network. Dsrrips follows from the standard
PDDL definition.

Several definitions apply to nodes of an sgn, as adapted
from Alford et al. (2016), that help define the set of solutions.
A node g € G is unconstrained if it has no predecessors;
that is, Vyrcqg’ # g. The operation release removes an un-
constrained node g € G from sgn, yielding sgn’; that is
sgn’ = (G\ g,(91,92) €< 191 # 9)-

A solution for P, is defined recursively: (1) an empty
network (i.e., G = () is a solution; (2) if a state can entail any
unconstrained node g € G then any solution for P’ where
g can be released is a solution for P; (3) if an action a is
applicable to s, resulting in state s' = apply(a, s¢), and
some plan 7 can reach s’, then a o 7 is a solution.

Case (3) above means that classical planners can solve
these problems by producing 7 for any valid g. Further, meth-
ods such as landmark extraction can identify which g € G is
best to solve next.

Adding hierarchy is accomplished using methods. A
method decomposes a goal g by inserting its subgoals into
T and ordering them to occur before g. A method m is
composed of a head head(m), preconditions pre(m), and
a goal network m4,. The head consists of the name and
parameters of the method, and the preconditions determine if
the method is applicable. When applied, 1,4, is prepended
into the existing network. Methods allow a domain designer
to write domain-specific decompositions for goals. Shiv-
ashankar et al. (2013) showed that methods substantially
improve search, when they are available. In the absence of
methods, however, standard classical planning techniques
still apply because classical planners work on goals

2.3 The Goal Node and an Existing Goal Lifecycle

The simple-goal-network provides a convenient way to or-
der goals in disjunctive normal form. But a robotic system
often tracks more detail about a goal than just the objec-
tive. At a minimum, the execution status of a goal is usually
tracked. A goal lifecycle provides a way to track goals as
they progress through a system.

Roberts et al. (2016) extended the goal node with a goal
lifecycle. Key contributions of that 2016 lifecycle included
the goal node, goal mode, and goal strategies. The goal node
is a data structure that holds the history and future commit-
ments for a goal. A goal mode is the “state” of the goal,
which is progressed using a goal strategy. Goal strategies are
a special kind of method (cf. Section 2.2) that progress a goal
network. For example, a goal is created using the formulate
strategy, which results in the formulated mode. On their way
to being finished, goals progress through selected, expanded,
committed, dispatched, and evaluated.

Figure 2 shows a variant of that lifecycle, which we sim-
plified in three ways: (1) We remove task networks, which
focuses the problems on goals. (2) We commit to a state
variable representation, as opposed to a generic description
provided in the 2016 discussion. (3) We show only the transi-
tions that are actually used for this study.

3 New Goal Networks

We are now in a position to introduce the core contributions of
this paper. We first synthesize simple goal networks with the
SV representation into an extended goal network (Section 3.1).
Then, we introduce the GLN (Section 3.2). Finally, we extend
the GLN with an EXECUTIONSTATEMENT (Section 3.3).

3.1 Extended Goal Network (GN)

We can now update Definition 1 to use SV representations
with the more general goal node.

Definition 2. An Extended Goal Network gn = (G, <) is
a pair where G is a set of goal nodes, < describes a partial
order over G, and each goal node g € G is a node containing
a statement, as defined above. We will refer to this class of
networks as GNs and specific network instances as a gn.

The problem statement and solutions to the GN are the same
as for the simple-goal-network. The GN provides several
innovations over Definition 1. Firstly, instead of a predicate
in disjunctive normal form, the use of a statement restricts a
goal node to a single temporal assertion or change assertion,
simplifying how nodes can relate and making it easier to track
execution. Secondly, the inclusion of a temporal interval will
eventually allow a GN to incorporate more sophisticated
temporal relationships beyond <; for example, future work
can extend these temporal intervals to represent conjunctions
and disjunctions. These improvements make the GN much
easier to use for goal management and easier to integrate
with the goal lifecycle, described next.

3.2 Goal Lifecycle Networks (GLN)

Goal Lifecycle Networks extend GNs with the goal lifecy-
cle from Section 2.3. (i.e., (MODES) and STRATEGIES). We
only need to update Definition 2 with a modest extension to
incorporate the goal lifecycle.

Definition 3. A Goal Lifecycle Network gin = (G, <) is
a pair where G is a set of goal nodes, < describes a partial
order over G, and each goal node g € G contains a statement

as well as a (MODE). We will refer to this class of networks
as GLNs and specific networks instances as a gin.

A GLN is a specialization of a GN that further restricts
possible transitions via the goal lifecycle. A problem for
a GLN is a tuple Py, = (D,N,R) where D is an SV
domain, N' = (sg, gln,) is a pair of the starting state sg
and initial GLN gin,, and R is a set of refinement strate-
gies for progressing goals shown in Figure 2. Similar to a
simple-goal-network, a solution for a GLN is a sequence of
refinement strategies (ry, .., 7,) where gln,, = . In other
words, the sequence releases goals until no goals remain.
(Maintenance goals do not result in an empty network, which
will be addressed in future work.)

A GLN’s transitions for g are more restricted due to R,
which we denote as STRATEGIES. Applying a strategy pro-
gresses a goal through the lifecycle. Strategies are adapted
from the lifecycle by Niemueller et al. (2019), which is a
variant of the lifecycle by Roberts et al. (2016).

3.3 The EXECUTIONSTATEMENT

To track the execution state of a goal node, the
EXECUTIONSTATEMENT is a transition statement
[tstart, tenalexecuted(a) == (INACTIVE) — (COMPLETED)
where: executed is an SV, a € A is an action, and the values
of executed are (EXECUTION-STATES) shown in Figure 2.
Additionally, the [OUTCOMES] can be one of [SUCCESS],
[INTERRUPTED], or [FAILED]. Each Executive in Section 5
uses a domain-specific mechanism update the execution state
and outcome. One or more EVALUATE strategies process
these updates, eventually resulting in a goal.

4 Creating Partially Ordered Plans

Many PDDL planning systems produce plans that can be
more flexible with post processing. We adapt an algorithm
due to Veloso et al. (1990) to relax PDDL plans that fosters
effective, parallel execution of plans. The algorithm relaxes a
totally ordered plan to a partial order plan by analyzing depen-
dencies among the plan steps. The algorithm adds ordering
constraints for: (1) an action a; from each of the closest, prior
action adding the preconditions of a;, (2) an action a; from
each of the earlier actions requiring a;’s delete effects, and
(3) an action a; from each of the earlier actions deleting a
condition added by a;. Finally, transitive edges are pruned.

We modified this algorithm to accommodate our use of
statements instead of the prior formulation of preconditions
and effects. The original algorithm assumes that effects are
added and deleted after an operator is executed. Statements
hold over more flexible temporal intervals. Therefore, we
modified the algorithm to account for positive or negative
statements that can reconcile at any given time. For example,
in Step 1, we expand the reasoning to account for how the
operators added for sequencing with a; could add the effect
supporting the preconditions of a;, either at the start or finish
of its execution. We changed Steps 2 and 3 similarly.

5 Demonstrations using ACTORSIM

We describe three robotics demonstrations that use GL NS in
varying ways?. For the first two systems, COVID-19 restric-

2Videos are available at: http://makro.ink/actorsim/

S s S s
@g@’ &o‘ Q?,@ < Q?,&Q . &P &
QOQ“ B Q}f‘ o 0\% 1 @qb Q@
—>(FORMULATED}—>(SELECTED)—{EXPANDED)—*(COMMITTED)—*(DISPATCHED)- - = #(EVALUATED -—>(FINISHED)
7y
! CONTINUE |

Figure 2: The simplified goal lifecycle. Goals progress via STRATEGIES into (MODES). The dashed lines show how the Executive

tracks and updates (EXECUTION-STATE) and [OUTCOMES|, which are managed by one or more EVALUATE strategies.

tions prohibited us from accessing our physical platforms, so
we discuss simulations instead.

Overview of the Cognitive Architecture ACTORSIM uses
a Cognitive Architecture for its agents. Cognitive architec-
tures provide a way to characterize the design of an agent
(Laird, Lebiere, and Rosenbloom 2017). Figure 3 shows an
abstraction of ACTORSIM and how the contributions of this
paper fit together. The central process in ACTORSIM is a
CognitiveCycle that loops through four steps:

(1) Update Working Memory When the agent perceives,
the CognitiveCycle converts these perceptions and updates
the FactMemory, which holds objects and statements that are
true about the world; cf. Section 2.1.

(2) Determine Applicable Strategies The StrategyMemory
holds the goal strategies that progress goals in the GoalMem-
ory; cf. Section 3.2. The CognitiveCycle determines which
goal strategies in StrategyMemory are applicable.

(3) Rank Applicable Strategies The CognitiveCycle ranks
applicable goal strategies using goal priorities and goal or-
derings held in the root of the goal network in <.

(4) Apply Applicable Strategies The Cognitive Cycle ap-
plies goal strategies from Figure 2, which progress a goal
through the system. For example, the EXPAND strategy either
decomposes a goal into subgoals or calls a temporal PDDL
planner to create a plan for one or more goals. The COMMIT
strategy converts a plan’s steps into EXECUTIONSTATEMENTS,
cf. Section 3.3, which track a goal during execution. For ex-
ecutives that can execute parallel plans, we convert the plan
into a partial order plan; cf. Section 4.

In an independent process, the Executive reads these
EXECUTIONSTATEMENTS from the GoalMem-
ory, executes them on the platform, and updates state in the
WorkingMemory for the next cycle.

Controlling a two-armed robot We use GLNs to control
a two-armed robot that manually sorts cans into different
bins. The robot platform we use is the DRC-Hubo humanoid
robot®. The robot has two 7-DOF arms that are equipped
with a 1-DOF gripper. The robot has additional degrees of
freedom in its waist and legs, which we do not use here.

We developed a temporal PDDL model for the robot for
this sorting task. Temporal PDDL planning is done via TFD*
(Eyerich, Mattmiiller, and Roger 2009). Motion plans are
computed using the Open Motion planning Library (OMPL)>
(Sucan, Moll, and Kavraki 2012). Target positions are passed
to the motion planner from the executive. These positions are

3http ://www.rainbow-robotics.com
41’1ttp ://gki.informatik.uni-freiburg.de/tools/tfd/
5https ://ompl.kavrakilab.org

WorkingMemory

CognitiveCycle
GoalMemory

[Vehicle / Agent]

[StrategyMemory]

Figure 3: Overview of the key components in ACTORSIM.

converted to a set of joint angles for the Hubo’s arm using
inverse kinematics. Using the set of solved joint angles of
the target positions, OMPL finds a path from the current
position to the end position, while abiding by any required
constraints, for example staying level with the table when
pushing an object. This path of joint angles is then returned
to the Hubo’s hardware interface, or the Gazebo simulator®,
which executes the sequence of steps.

The architecture controls the Hubo by connecting ACTOR-
SIM and GLNs with the robot executive, motion planner and
hardware. The main control loop is the executive, which that
executes nodes in the goal memory. The Hubo
in the Gazebo simulator sorts four different cans into two
different bins. Because of the spatial nature of the task, some
actions can be executed concurrently without interfering with
others (such as pre-positioning the hands for pickup). Other
actions can only be done one at a time (such as an arm push-
ing a can into a basket on the other side of the table). We
simplify perception by providing the robot with the positions
of the cans directly.

At the start of the demonstration, a FORMULATE strategy
creates goals to move each can to the basket with the match-
ing color, and then have the two arms move back to their
home position. EXPAND creates a TFD plan to inspect the
phenomena, and translates it to a partial-order representation
as described in Section 4. COMMIT converts this plan into
EXECUTIONSTATEMENTS, while DISPATCH then sends one at
a time to the Hubo executive described above.

Controlling multiple quadrotor systems We connected AC-
TORSIM to the CrazySwarm quadrotor environment (Preiss et
al. 2017), which is an environment for controlling teams of
micro-quadrotor systems. Each vehicle can accept commands
to takeoff, land, and move to specific locations. Although the
vehicles can move in continuous space, we command them
to move along grid locations.

We developed a temporal PDDL model for the
CrazySwarm environment, the first part of which is shown

6http: //gazebosim.org

CrazySwarm RoboRescue

HEIIOT pane 060

Figure 4: Video snaps and architectures for our demonstra-
tion: CrazySwarm (left) and RoboRescue (right).

in Figure 1. The model has four actions corresponding to
the commands that be given to the vehicles. This model is
converted into the SV representation and into GLNs.

We simulate three vehicles moving to different cells to
inspect phenomena. Figure 4 (left) shows the control archi-
tecture. A Gantt-like User Interface (UI) displays the dy-
namic execution of goals; it connects to ACTORSIM through
a javascript-xml bridge called IMX. This web-based UI adds
goals as they are dispatched and provides updates as the goals
complete. The executive reads any dispatched EXECUTION-
STATEMENTS from the goal memory and submits them to the
simulator. When physical quadrotors are attached, these are
also forwarded via WiFi to physical vehicles.

Vehicles start at the (z,y) origin (0,0) and inspect phe-
nomena at three points: (0,5), (2,2), and (5,0). The UI
translates these latitude-longitude coordinates to display the
goals. A FORMULATE strategy creates goals to inspect the
phenomena. During the EXPAND strategy, the POPF2 plan-
ner’ (Coles et al. 2011) creates a centralized plan for the
vehicles. COMMIT converts this plan into EXECUTIONSTATE-
MENTS, while DISPATCH then sends one at a time to the vehi-
cle executive. A matplot1ib visualization is shown of the
vehicles executing their plans. As the vehicles move to the
inspection points, goal status appears in the UL

Controlling Teams for Disaster Relief The RoboCup Res-
cue Agent Simulator, or Roborescue, models a situation
immediately following a natural disaster (Sheh, Schwertfeger,
and Visser 2016). It is the basis of the RoboCup Rescue Sim-
ulation League (Akin et al. 2012). We simulate six agents
helping civilians (green dots) reach a refuge (bottom-right
building). Figure 4 (right) shows a screenshot from our video
and the control architecture. Civilians will move along roads
(light gray) if they are able but may become trapped under
or behind rubble (solid black). If a civilian is trapped for

7https ://nms.kcl.ac.uk/planning/software/popf.html

too long or suffers too much damage then they turn black,
indicating that they have died.

Controllable agents consist of police (blue dots), ambu-
lance (white dots), and fire brigades (red dots). All three
agents can explore an road or building. Only police can
clear rubble to unblock a human. Ambulances can unbury
any human and can rescue a single civilian, which is to trans-
port a civilian too damaged to walk on its own. Fire patrols
can douse fires using water from hydrants.

There are 71 STRATEGIES used in this demo. These
are composed of ten strategies for seven goal types.
A goal of explored(BUILDING) can be performed by
any agent. Ambulance goals are wunburied(HUMAN)
and rescued(CIVILIAN), brigades can douse(BUILDING),
and police can unblock(AGENT), unblock(CIVILIAN), or
clear(RUBBLE). The ten strategies for each of these goals in-
clude: FORMULATE when appropriate, SELECT when an agent
is available, SELECT by preempting an agent due to a goal
ordering, always EXPAND because agents do their route plan-
ning, always COMMIT because agents do their route planning,
DISPATCH the goal for execution, EVALUATE a goal as new
information arrives, EVALUATE a preempted goal to place it
back in (FORMULATED), FINISH a goal that is (COMPLETED),
and DROP a goal that is (FINISHED).

There are also three goal orderings: Ambulances should
unbury other agents before civilians; this ensures the most
agents are enabled. Ambulances should unbury civilians be-
fore attempting to rescue them. Ambulances should rescue
civilians before exploring new buildings. These goal order-
ings are specified in < at the root node of the GLN, which
means they propagate through all subgoals.

At the start of the demonstration, the CognitiveCycle up-
dates WorkingMemory (cf. Figure 3) that there are new
buildings and roads to explore. A FORMULATE strategy for
each goal type creates goals to explore these entities. These
goals require an agent to process them, so they remain in
until an agent is assigned. Once assigned, the
goal moves to (DISPATCHED). When a building is explored by
a vehicle entering it, it is and then DROP removes
them from memory.

6 Related Work

The inclusion of a temporal interval and ordering constraints
in the GLN is reminiscent of a Simple Temporal Network
(STN) (Dechter, Meiri, and Pearl 1991) and its extensions
for dispatchable execution (e.g., (Muscettola et al. 1998;
Tsamardinos, Muscettola, and Morris 1998; Kim, Williams,
and Abramson 2001). It should be straightforward to extend
the GN with an STN and incorporate standard consistency
checking algorithms.

The EXECUTIONSTATEMENT is similar to the program step
described in (Ghallab, Nau, and Traverso 2016, 98ff). where
a program step can indicate execution state using RUNNING,
DONE, or FAILED. There are many examples of more sophisti-
cated execution state machines (e.g., (Niemueller, Hofmann,
and Lakemeyer 2019; Estlin et al. 2006)) that we will inte-
grate in future work.

Lima et al. (2020), during execution, also converts a totally-
ordered plan into partially-ordered plan by relaxing causal

links in ROSPlan (Cashmore et al. 2015). The partially-
ordered plan is then translated into a set of totally-ordered
plans that can be flexibility selected between to take advan-
tage of non-determinism in the environment. Our plan relax-
ation preserves causal sequencing and focuses on parallel
execution of the plan.

A variety of Cognitive Architectures have been studied
for decades. For example, in addition to SOAR, ACT-R,
Sigma (Laird, Lebiere, and Rosenbloom 2017), there is the
MIDCA system (Cox, Dannenhauer, and Kondrakunta 2017)
and Icarus (Choi and Langley 2018). Our work complements
these by integrating a simple Cognitive Cycle with the GLN.

7 Summary

We formalized the Goal Lifecycle Network (GLN), which
synthesizes the literature on Hierarchical Goal Networks and
goal lifecycles while updating both to use a state-variable rep-
resentation. We then demonstrated GLNs being used in three
robotics applications. Future work will extend this analysis
to other theories on goal management (e.g., (Thangarajah et
al. 2010; Harland et al. 2014; Cox, Dannenhauer, and Kon-
drakunta 2017)) and develop a richer execution model such
as those by Niemueller et al. (2019) or Estlin et al. (2006).

Acknowledgments
The authors thank NRL and ONR for funding this work.

References

Aha, D. W. 2018. Goal Reasoning: Foundations, Emerging
Applications, and Prospects. AIMag 39(2):3-24.

Akin, H. L.; Ito, N.; Jacoff, A.; Kleiner, A.; Pellenz, J.; and
Visser, A. 2012. Robocup rescue robot and simulation
leagues. Al magazine 34(1):78.

Alford, R.; Shivashankar, V.; Roberts, M.; Frank, J.; and Aha,
D. W. 2016. Hierarchical planning: Relating task and goal
decomposition with task sharing. In Proc. IJCAI, 3022-3028.
New York, New York, USA: AAAI Press.

Cashmore, M.; Fox, M.; Long, D.; Magazzeni, D.; Ridder,
B.; Carrera, A.; Palomeras, N.; Hurtos, N.; and Carreras, M.
2015. ROSPIan: Planning in the robot operating system. In
Proc. ICAPS.

Choi, D., and Langley, P. 2018. Evolution of the Icarus
Cognitive Architecture. Cog. Sys. Research 48:25-38.
Coles, A.; Coles, A.; Clark, A.; and Gilmore, S. 2011. Cost-
sensitive concurrent planning under duration uncertainty for
service-level agreements. In Proc. ICAPS.

Cox, M.; Dannenhauer, D.; and Kondrakunta, S. 2017. Goal
operations for cognitive systems. Proc. AAAI 31(1).
Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporal constraint
networks. Art. Intel. J. 49:61-95.

Dvorak, F.; Bit-Monnot, A.; Ingrand, F.; and Ghallab, M.
2014. A flexible ANML actor and planner in robotics. In
Proc. ICAPS PlanRob Workshop, Portsmouth, United States.
Estlin, T.; Jonsson, A.; Pasareanu, C.; Simmons, R.; Tso, K.;

and Verma, V. 2006. Plan Execution Interchange Language
(PLEXIL). Tech. Rep. NASA/TM-2006-213483, NASA.

Eyerich, P.; Mattmiiller, R.; and Roger, G. 2009. Using the
context-enhanced additive heuristic for temporal and numeric
planning. In Proc. ICAPS.

Fox, M., and Long, D. 2003. PDDL2.1: An extension to
PDDL for expressing temporal planning domains. J. of Art.
Intell. Res. 20:61-124.

Ghallab, M.; Nau, D.; and Traverso, P. 2016. Automated
Planning and Acting. Cambridge University Press.

Harland, J.; Morley, D. N.; Thangarajah, J.; and Yorke-Smith,
N. 2014. An operational semantics for the goal life-cycle in
bdi agents. Proc. AAMAS 28:682-719.

Hawes, N. 2011. A survey of motivation frameworks for
intelligent systems. Art. Intel. J. 175(5-6):1020-1036.

Kim, P.; Williams, B. C.; and Abramson, M. 2001. Exe-
cuting reactive, model-based programs through graph-based
temporal planning. In Proc. IJCAI, 487—-493.

Laird, J. E.; Lebiere, C.; and Rosenbloom, P. S. 2017. A
standard model of the mind. Al Magazine 38(4):13-26.
Lima, O.; Cashmore, M.; Magazzeni, D.; Micheli, A.; and
Ventura, R. 2020. Robust execution of deterministic plans in
non-deterministic env’ts. In ICAPS IntEx-GR Workshop.
Muscettola, N.; Nayak, P.; Pell, B.; and Williams, B. C. 1998.
Remote agent: To boldly go where no Al system has gone
before. Art. Intell. 103(1-2):5-47.

Niemueller, T.; Hofmann, T.; and Lakemeyer, G. 2019. Goal
reasoning in the CLIPS executive for integrated planning and
execution. In Proc. ICAPS, 754-763.

Preiss, J. A.; Honig, W.; Sukhatme, G. S.; and Ayanian, N.
2017. Crazyswarm: A large nano-quadcopter swarm. In Proc.
ICRA, 3299-3304.

Roberts, M.; Shivashankar, V.; Alford, R.; Leece, M.; Gupta,
S.; and Aha, D. 2016. Goal reasoning, planning, and acting
with actorsim, the actor simulator. In Poster Proc. ACS.
Sheh, R.; Schwertfeger, S.; and Visser, A. 2016. 16 years of
robocup rescue. K1J 30(3):267-277.

Shivashankar, V.; Kuter, U.; Nau, D.; and Alford, R. 2012. A
hierarchical goal-based formalism and algorithm for single-
agent planning. In Proc. of AAMAS, volume 2, 981-988.
Shivashankar, V.; Alford, R.; Kuter, U.; and Nau, D. 2013.
The GoDeL planning system. In Proc. IJCAI, 2380-2386.
Sucan, I. A.; Moll, M.; and Kavraki, L. E. 2012. The open
motion planning library. IEEE Robotics and Automation
Magazine 19(4):72-82.

Thangarajah, J.; Harland, J.; Morley, D. N.; and Yorke-Smith,
N. 2010. Operational behaviour for executing, suspending,
and aborting goals in bdi agent systems. In DALT.
Tsamardinos, I.; Muscettola, N.; and Morris, P. 1998. Fast
transformation of temporal plans for efficient execution. In
Proc. AAAI 254-261. USA: AAAL

Veloso, M. M.; Pérez, M. A.; and Carbonell, J. G. 1990.
Nonlinear planning with parallel resource allocation. In Proc.
DARPA Workshop of Innovative Approaches to Planning,
Scheduling and Control. Morgan Kaufmann.

