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Abstract

Business managers using Intelligent Virtual Assistants
(IVAs) to enhance their company’s customer service
need ways to accurately and efficiently detect anomalies
in conversations between the IVA and customers, vital
for customer retention and satisfaction. Unfortunately,
anomaly detection is a challenging problem because of
the subjective nature of what is defined as anomalous.
Detecting anomalies in sequences of short texts, com-
mon in chat settings, is even more difficult because in-
dependently generated texts are similar only at a se-
mantic level, resulting in an abundance of false posi-
tives. In addition, literature for detecting anomalies in
time ordered sequences of short text is shallow consid-
ering the abundance of such data sets in online settings.
We introduce a technique for detecting anomalies in se-
quences of short textual data by adaptively and itera-
tively learning low perplexity language models. Our al-
gorithm defines a short textual item as anomalous when
its cross-entropy exceeds the upper confidence interval
of a trained additive regression model. We demonstrate
successful case studies and bridge the gap between the-
ory and practice by finding anomalies in sequences of
real conversations with virtual chat agents. Empirical
evaluation shows that our method achieves, on average,
31% higher max F1 scores than the baseline method
of non-negative matrix factorization across three large
human-annotated sequences of short texts.

Introduction
We work for a company that designs and builds domain-
specific Intelligent Virtual Assistants (IVAs) on behalf of
other companies and organizations, typically for customer
service automation. Many companies deploy IVAs for prob-
lem resolution and cutting costs in call centers.

A business manager using an IVA to enhance his com-
pany’s customer service can analyze interactions between
customers and IVAs to identify interactions leading to cus-
tomer complaints like in Figure 1. This interaction indicates
the business manager may need to include options to reprint
a gift certificate on the company’s website and have the IVA
direct customers to it, or if such an option already exists, the
IVA is unaware of the option and should be updated and the
website should make the printing option more conspicuous.
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CUSTOMER : Reprint a gift certificate?
IVA : Gift Certificates can be purchased
at XXXXX.com.

Figure 1: An anonymized anomalous conversation between
a customer and a live airlines IVA. Printing, not purchasing,
gift certificates is the customer’s intent.

The increasing adaptation of IVAs creates a problem;
there is a corresponding increase in the number of human-
computer interactions to be reviewed for quality assurance.
Therefore, discovering a means to expedite review and
analysis of these interactions is critical. This requires ef-
ficient detection of anomalies in conversations. Conversa-
tional turns tend to be short (45 characters per user turn on
average in our data) and are ordered by time.

Detecting anomalies under such conditions is difficult.
Textual anomaly detection, even without such constraints,
is already a notoriously difficult problem for a multitude of
reasons: 1) What is defined as anomalous may differ based
on application. The textual item lmao doc martens
are just emo timbswould probably be anomalous to
an IVA answering questions about airline travel but not so
on Twitter. 2) What is anomalous today may not be anoma-
lous tomorrow which is especially true for applications such
as IVAs. Introduction of a new type of promotion such as
a credit card offer may create textual items that are found
to be anomalous initially. However, they must be considered
normal soon after introduction. 3) It is unrealistic to assume
that anomaly detection systems will have access to thou-
sands of tagged data sets. For chat text, annotated data sets
for anomalies are even more limited; we have the NPS Chat
Corpus (Forsythand and Martell 2019) which is only tagged
for speech and dialogue acts, the Twitter Triple Corpus (Sor-
doni et al. 2015) and Ubuntu Dialogue Corpus (Lowe et
al. 2015) where both are not annotated for anomalies, and
UseNet (Shaoul and C. 2013) which is also not annotated
and specifically omits documents with less than 500 words.
4) Non-anomalous data occurs in much larger quantities
than anomalous data. This can present a problem for a ma-
chine learning classifier approach to anomaly detection as
the classes are not represented equally. Thus, an accuracy
measure might present excellent results, but the accuracy is



only reflecting the unequal class distribution in the data (the
accuracy paradox).

We address these difficulties in detecting outliers in se-
quences of short textual data by using cross-entropies from
iterative language models.

As we work for an IVA company, we have access to mas-
sive quantities of chat data. For our experiments, we selected
a large international airlines IVA which interacts with users
on the airline’s website and mobile application, providing
travel advice such as flight status information, baggage and
security rules, and even helps with the booking process. This
particular assistant was selected as it is a very active IVA
with a diverse user base. On average, it responds to 4.6 user
inputs per second and engages in 115.5 unique conversations
per minute with a global user base.

The iterative language model updates in an adaptive man-
ner, based on the perplexity of the language model. We com-
pare the iterative language models to a non-negative ma-
trix factorization method built for textual anomaly detection
that has been reported to outperform many other commonly
used baselines such as robust principal component analysis
(RPCA) and singular value decomposition (SVD). Our iter-
ative language model achieves, on average, 31% higher max
F1 scores on a large human to IVA conversational data set
and is also unsupervised.

Related Work
Existing studies cannot address the problem of how to detect
outliers in sequences of short text. Of the anomaly detection
methods that are designed for a textual domain:

1. Existing methods often assume that the pieces of text are
large (Guthrie 2008) containing at least 1000 words or are
full-length newspaper articles as in (Zhuang et al. 2017).
Short text does not have enough content or words which
hinders the application of conventional machine learning
and text mining algorithms (Chen, Jin, and Shen 2011).

2. Existing methods are often built for very specific tasks
such as authorship identification (Guthrie, Guthrie, and
Wilks 2008) or detecting outlier sections in legal doc-
uments (Aktolga, Ros, and Assogba 2011). For exam-
ple, in (Aktolga, Ros, and Assogba 2011), outliers in le-
gal documents are detected by exploiting bill structure,
specifically Sections, the smallest units of a bill. How-
ever, detecting anomalies in sequences of short text is
more general and includes not just IVA conversations but
also social domains like Twitter and Facebook (Bakarov,
Yadrintsev, and Sochenkov 2018; Nedelchev, Usbeck, and
Lehmann 2020).

3. Existing methods are typically not built for anomaly
detection in time ordered text. For example, the work
in (Jain et al. 2019) involves time ordered text, but the
goal is to detect malicious chatbots instead of anomalous
texts from real users.

4. Existing methods do not take into account the dynamic
nature of data such as chat or tweets that make it diffi-
cult to keep models up to date. In (Xia, GAO, and others
2005), support vector machines (SVMs) trained on chat

data annotated for anomalies need to be frequently up-
dated or performance suffers. Frequent periodic retrain-
ing of the SVM is not feasible as this requires constant
annotation of chat corpora.

We address these problems by identifying outliers via
language model cross-entropies, inspired from the work
in (Danescu-Niculescu-Mizil et al. 2013) where cross-
entropies are used to predict how long a user will stay active
in an Internet community.

Language models can be parametric or nonparametric.
Parametric approaches include deep learning techniques but
require large quantities of data and often cannot adapt to
rapid changes in the distribution of the data in an online set-
ting. Nonparametric approaches include count-based tech-
niques. Although they tend to perform worse compared to
parametric approaches, nonparametric approaches can ef-
ficiently incorporate new information and require signifi-
cantly less data (Jozefowicz et al. 2016). Given our data’s
sparse and dynamic nature, we restrict ourselves to nonpara-
metric approaches (more specifically, statistics on N-grams).
By incorporating nonparametric techniques to account for
short text and updating the language model on a sliding win-
dow when its perplexity is too high, we can also account for
our data’s dynamic nature.

Methods
We begin by giving some background on language models
and how we use cross-entropies to detect anomalies in se-
quences of short text. We then introduce our iterative lan-
guage models1 and discuss our baseline.

Language Models
A language model is a probability distribution over se-
quences of symbols pertaining to a language (Jurafsky
2000), and the perplexity is used to evaluate the quality of
a language model where the lower the value, the better. For
bigrams, the perplexity of the sequence W = w1w2...wN

is: (
∏N

i=1
1

P (wi|wi−1)
)1/N . Our iterative language model

“slides” (retrains) when the perplexity reaches a threshold.

Cross-Entropy
The cross-entropies of textual items (Danescu-Niculescu-
Mizil et al. 2013) are used to determine anomalies. The
cross-entropy of a textual item p given a language model
LM is: H(p, LM) = − 1

N

∑
j log(PLM (pj)) where pj =

n-grams making up p, N = number of n-grams making up
p, and PLM (pj) = probability of n-gram pj under the LM.
Higher n-grams are left for future work due to the short-
ness of data. The higher H(p, LM) is, the more surprising
the item p is given the recent, past linguistic state. In other
words, a low H(p, LM) means that p reflects what is com-
monly seen in the past.

1Implementations available on https://anon-share.
s3-us-west-2.amazonaws.com/ilm_2020.zip



Iterative Language Models
How the iterative language model (ILM) is updated and used
to detect anomalies is highlighted in Algorithm 1. If a lan-
guage model is trained on texts from dates or indices a to b,
we represent this language model as LMa:b.

The model takes as input a list of textual items. In our IVA
application, every textual item is a user turn in conversations
with an IVA. This list is sorted by time. The ILM takes as
parameters the following: 1) threshperplex= the threshold
for perplexity to retrain the language model, 2) x = train-
ing window size, and 3) n = the n-gram to use for cross-
entropy calculation. The LM is trained on the first x many
textual items, creating LM0:x. For every textual item i on-
wards from x, the cross-entropy and perplexity are deter-
mined using the language model and chosen n-gram. If the
perplexity > threshperplex, we slide the language model
forward by retraining on new textual items.

We input the cross-entropies to Facebook Prophet (Taylor
and Letham 2018), an additive regression model involving
a special time series decomposition method with a piece-
wise linear or logistic growth curve trend, a yearly seasonal
component modeled using Fourier series or a weekly sea-
sonal component, an optionally user-provided list of holi-
days, and an error term that is assumed to be normally dis-
tributed. Parameters are estimated using MAP. Prophet for-
mulates the forecasting problem as a curve-fitting exercise,
similar to generalized additive modeling. Thus, Prophet can
innately handle time series with missing time steps. For our
iterative language model, we have a time series of cross-
entropies, and we do not necessarily have cross-entropies for
every time step; this is dependent on when a customer chats
with an intelligent virtual assistant, but Facebook Prophet
can deal with these irregularly sampled time series. We in-
put the cross-entropies to Facebook Prophet and train a fore-
casting model, using the confidence interval of the model to
detect anomalies. Prophet was chosen due to its ease of use,
requiring little expert knowledge, and its open availability,
but other viable options include any time series anomaly de-
tection method that can incorporate irregular sampling.

Baseline: TONMF
There are no existing studies that can address the problem
of how to detect outliers in sequences of short text. How-
ever, we provide the closest baseline possible that we could
find for this task. We use as a baseline a non-negative matrix
factorization method adjusted for detecting outliers in text
called Text Outliers using Non-Negative Matrix Factoriza-
tion (TONMF) developed in (Kannan et al. 2017).

Non-negative matrix factorization (NMF) approximates a
non-negative matrix X ∈ Rp×n to a lower rank approxima-
tion r ≤ rank(X). A non-negative basis matrix W ∈ Rp×r

and coordinate matrix C ∈ Rr×n are determined that mini-
mizes ||X −WC||2F where F is the Frobenius norm.

In (Kannan et al. 2017), the authors model the outliers
along with the low rank space of the input matrix. Suppose
A is the term-document matrix. In our application, every row
represents a word, and every column represents a user turn
in conversations with an IVA. A ∈ Rm×n is represented as

Algorithm 1: Iterative Language Model
input : textualItems, a list where every element is

a user turn in a human to IVA conversation
output : allCES, a list of lists containing the

cross-entropies of textual items for every
slide

parameter : x (initial training size), n (for n-gram),
threshperplex (perplexity threshold)

textualItems← sorted(textualItems);
LM← trainLM(textualItems[0:x], n);
CES← [];
allCES← [];
lastSlide← x;

for i in range(x+1, length(textualItems)) do
p← textualItems[i];
pj ← determineNgrams(p,n);
N ← length(pj);
CES.append(− 1

N

∑
j log(LM(pj)))

if (
∏N

k=1
1

P (wk|wk−1)
)1/N > threshperplex then

LM← trainLM(textualItems[i-x:i], n);
allCES.append(CES);
CES← [];

return allCES

a sum: A = L0 + Z0 where L0 = W0C0 and W0 ∈ Rm×r

and C0 ∈ Rr×n. In other words, every document in A is
represented as a linear combination of r topics. In situations
where a document cannot be well-represented by L0, it is
placed in the outlier matrix Z0 as a non-zero entry.

Outlier scores for documents are calculated by the L2
norm of columns in Z0. We feed these outlier scores to
Prophet (Taylor and Letham 2018) as like with the iterative
language model. W0, C0, and Z0 are determined via block
coordinate descent for computational simplicity.

Empirical Evaluation
We begin with a description of the large, real world data
sets used and how they were annotated. We then proceed
with a description of how data was preprocessed and param-
eters chosen and conclude with results comparing the per-
formance of the iterative language model and TONMF.

Data Set and Annotation
The airlines IVA that we selected for our experiments can
recognize 1,230 unique user intentions, or interpretations of
a user input that allows one to formulate the best response.
For example, if the customer asks about upgrading his flight
due to health issues, the IVA determines that the customer’s
intent is about First Class Upgrades and responds accord-
ingly. The intentions are used as a class label within the IVA.
Once the IVA determines the user intention, the response as-
sociated with that intention is returned.

We selected three intents of varying popularity levels to
monitor for our experiment: Find Companion Fare Dis-
count Code, First Class Upgrades, and Gift Certificates.
Find Companion Fare and First Class Upgrades are in the
top ten most frequently hit intents; in one year of logs First



Class Upgrades was hit 58,187 times and Find Companion
Fare Discount Code was hit 56,389 times. We also wanted
to experiment with an intent that was only moderately popu-
lar, so we included Gift Certificates which has 8,378 textual
items.

Unlike newspaper articles or movie reviews, customer
text in IVA conversations tends to be much shorter, present-
ing a significant challenge for tagging. For every intent, the
user text was fed to a language model. IVA responses are ex-
cluded because the response is usually identical for the same
intent. However, the IVA response was provided for anno-
tators. A graduate student fully tagged the Gift Certificates
intent data set for anomalies. However, for Find Companion
Fare Discount Code and First Class Upgrades, only 3,000
user inputs of each intent were annotated due to the enor-
mity of these two data sets. The annotator was instructed to
mark any of the following as anomalous:

1. Missed Intent (not due to preprocessing): Sometimes
the IVA will incorrectly classify a user’s intent in the con-
versation (such as in Figure 1). As another example: in the
Gift Certificates intent, the user may ask about Amazon
gift cards, but the IVA incorrectly assumes this involves
gift cards that can only be used for airline miles. For the
Find Companion Fare Discount Code intent, the customer
may ask about where to apply the code when purchasing
a ticket online, but the IVA directs the user to an account
link to see existing discount codes instead. For the First
Class Upgrades intent, the IVA provides options on how
to buy such upgrades instead of helping the customer de-
termine if upgrades are even available in the first place or
are already bought out for a particular flight.

2. Spelling Mistakes and New Vocabulary: A spelling
mistake may be infrequent, and, therefore, be
marked as an anomaly such as: buyiing gift
certificates. Novel terminology assigned to an
existing intent may mean that a new product or service
has been released that needs to be added to the IVA’s
intent library.

3. Preprocessing Errors: A preprocessing step done by
the IVA may cause an error in intent classification. For
example, the user may state that he is looking for gift
certificates because they are missing in his account.
However, the preprocessing step converts looking
for gift certificates to search for gift
certificates which brings up a menu of gift certifi-
cates one can buy instead of pre-bought gift certificates
under one’s account.

4. Multiple Intents: The user may ask something that has
multiple possible intents. For example, the user may ask
for a gift certificate for miles because of a death in the
family. Acceptable intents would include Gift Certificates
as well as Bereavement Fare.

Most of these categories require attention from the busi-
ness manager to improve IVA performance and prevent is-
sues from reaching a larger set of customers over a longer
duration of time. For example, assuming the intent under re-
view was defined for answering questions around Gift Cer-

tificates that can only be used for flights, a business user may
see the following anomalous scenarios that need attention:

• For category 1: Missed Intent, if customers ask about
using Amazon gift cards and the IVA incorrectly returns
the Gift Certificates response which states they may be
used for purchasing flights, this is indicative of user con-
fusion on how other types of gift cards can be applied. If
other gift cards cannot be used for purchasing flights, the
requirements must be made more explicit on the airlines
website or there needs to be a new intent generated in the
IVA for these type of redemption questions.

• For category 2: Spelling Mistakes and New Vocab-
ulary, identifying novel spelling mistakes are helpful
for our IVA developers in building our word to vocabu-
lary term mappings. As a preprocessing step in the IVA,
words are stemmed and then mapped to specific vocab-
ulary terms. For example, words such as baggage or
carry-on are mapped to a Luggage vocabulary la-
bel. We have a standalone tool to build up this vocabulary
by loading a set of user inputs and then exposing all of
the words that are unknown to the IVA. Content creators
can then quickly associate misspellings to which vocabu-
lary labels they belong to and then export these changes
for inclusion in the next IVA version. Also, the identifica-
tion of unexpected words in a given intent may mean the
context around the words intended to map to the intent
may have changed. For example, before 2013, the word
pixel in a device help desk IVA would have been associ-
ated with a measurement of screen resolution. But within
that year, there would begin to be occurrences of the bi-
gram Google pixel in conversations for device sup-
port that would be flagged as anomalous during the first
several occurrences. This would alert IVA designers that
they need to differentiate between questions about screen
resolution and a specific smart phone device in the IVA
intents.

• For category 3: Preprocessing Errors, converting
looking for gift certificates to search
for gift certificates also indicates a problem
in our word to vocabulary term mappings in our IVA pre-
processing step. Normalizing looking to search may
be too great an assumption, and we must consider the pos-
sibility of the word looking to apply to multiple situa-
tions such as a missing gift certificate in an account.

• For category 4: Multiple Intents, we can identify cases
where the IVA can be more personable. If a customer asks
for gift certificates because of a death in the family, the
IVA can still direct the user to the Gift Certificates intent
but also use apologetic language.

As our experimental data is IVA to human conversa-
tions, one might ask why we do not just consider senti-
ment analysis, escalation detection (e.g. Can I talk to
a human?), or intent misclassification for anomaly detec-
tion. Simply performing sentiment analysis or escalation de-
tection on the text, although possibly helpful, is not enough.
For our IVA to human conversational data, once customers
determine that their concerns are not being addressed, they
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Figure 2: Run time (in seconds) versus F1 scores for the
intents Gift Certificates, First Class Upgrades, Find Com-
panion Fare Discount Code for the iterative language model
(ILM, blue dots) and baseline (TONMF, orange stars) where
every point represents a parameter configuration. The confi-
dence interval was .95.

very frequently just leave the chat instead of spewing ex-
pletives or expressing frustration. Anomalies in IVA con-
versations also encompass more than just multi-label clas-
sification errors as shown in the above four anomaly cate-
gories. Note, however, there still needs to be a way to de-
tect any missed intent classification. This is not as simple as
just looking at classifier confidence. Intent classification can
be done via a unique combination of machine learning clas-
sifiers, regular expressions, and conversation flow decision
trees. We wanted a generic enough methodology that only
requires customer text which is independent of the imple-
mentation details of the IVA.

Application
We use the adaptive update language model, set x = 2000,
and experiment with various threshperplex (where 2 <
threshperplex < 3). Every intent data set has its own lan-
guage model. In calculating cross-entropies, we normalize
by just using the first c words of p. This form of normaliza-

tion is employed in (Danescu-Niculescu-Mizil et al. 2013)
as there is no consensus on how to normalize entropy mea-
sures. We use c = 30 where results are stable across multiple
choices of c.

We also perform TONMF on every 2, 000 many textual
items (to make it comparable to the ILM) and test various
parameter configurations. Every intent data set has its own
application of TONMF. In our implementation of TONMF,
we restricted β = 1 as the creators of TONMF have stated
that the algorithm is not overly sensitive to choice of β. We
experiment with r =10 to 45 topics per intent. As for α,
it balances the importance given to outliers against the ma-
trix sparsity criterion during regularization. The larger α is,
the more important the outlier portion of the regularization.
However, for lower ranks of r, the increase in the value of
α does not make any predictions. This is because, beyond a
particular limit, the weights given to the outlier criterion do
not supersede the optimization’s main objective of extract-
ing low-rank patterns from the data.

Results
Figure 2 shows the run time and F1 scores for every pa-
rameter configuration for the iterative language model ver-
sus the baseline TONMF, using a confidence interval of .95.
For nearly all parameter configurations, the iterative lan-
guage model (ILM) has higher F1 scores than the baseline
(TONMF) across all time. In addition, the ILM can perform
faster than TONMF in several cases.

For Gift Certificates, the highest F1 score for the ILM was
.49 whereas the baseline can only reach .15. For First Class
Upgrades, ILM achieves .15, and TONMF can only reach
.05. For Find Companion Fare Discount code, ILM hits .49
whereas the baseline can only hit .014.

First Class Upgrades was the most difficult data set
for both the ILM and TONMF. This is because this intent
was quickly discovered by the annotator to encompass too
many user questions that the IVA was not customized to
address. The IVA response to a user question hitting the
First Class Upgrades intent is: You can use your
miles to upgrade in advance, request a
Paid Upgrade during check-in or at the
departure gate, or if you’re an XXXXX
member, you can upgrade for free. However,
this does not cover questions regarding if a first class
upgrade for a particular flight is available or bought out, first
class upgrade code usage, or how to buy coach seats when
only first class seats are available. Yet all of these questions
are classified by the IVA under the First Class Upgrades
intent. In addition, midway through the year, a new premium
upgrade was promoted by the airlines company, but the IVA
was never updated to reflect this change. Thus, all questions
involving these premium upgrades was directed to First
Class Upgrades, confusing customers. There was a lot
more variety in the kinds of questions customers asked in
the First Class Upgrades intent compared to the other two
intents, making it difficult for ILM and TONMF to establish
a textual norm.

The four types of anomalies were not distinguished dur-
ing annotation for the sake of time and effort on the anno-



tator’s part (especially as the IVA data is proprietary, and,
thus, we cannot utilize annotation crowdsourcing tools like
Mechanical Turk), but a deeper analysis on the categories
would be valuable and is left for future work. For example,
we determined that TONMF favors detecting anomalies be-
longing in the category of unique codes and numbers (e.g.
a customer asks if a Discount Code XYZ is valid or if their
ticket number is available for an upgrade). In fact, for Find
Companion Fare Discount Code, textual items containing
codes comprised over 85% of TONMFs predictions whereas
textual items containing codes only comprise 40% of Find
Companion Fare Discount Code. Such predictions make up
20% of predictions made by the ILM. Similarly, for First
Class Upgrades, predictions containing only codes make up
8% of the data set, 20-30% of predictions made by TONMF,
and 1-6% of predictions made by the ILM. TONMF gen-
erally performs worse; this is most likely due to the fact
that TONMF expects larger bodies of text. In (Kannan et
al. 2017), TONMF was only tested on Reuters newspaper
articles, RCV20, and Wiki People. It would be beneficial to
include such analysis on the other anomaly categories.

Accuracy-speed trade-off is universal. For the iterative
language model, the higher threshperplex is, the fewer
slides the language model makes (fewer updates), and, in
turn, the number of times the language model is retrained
is decreased. Thus, the time required to determine cross-
entropies for the entire data set goes down. However, even
the slowest of the ILM runs was able to process over 6 user
turns per second, which is fast enough to deploy in real-
time alongside this airline IVA which answers 4.6 turns/sec.
For TONMF, an increase in r (number of topics) increases
the time needed to solve the optimization problem. Non-
negative matrix factorization is a NP-hard problem; thus, the
authors make use of block coordinate descent for computa-
tional efficiency.

Significance and Impact
Detecting outliers in sequences of short text is a difficult
problem because text is typically sparse and high dimen-
sional. However, this detection is vital for IVAs in use by
business managers who seek ways to improve the customer
experience. Existing techniques assume that the text samples
either have no ordering or are long; however, this is not al-
ways the case especially in the domains of chat, Facebook
comments, or Twitter. The shortage of publicly available,
annotated resources compounds our problems, and even if
annotated data is available, the dynamic nature of conversa-
tional data necessitates constant retraining of models. In this
paper, we demonstrate our technique for detecting outliers
in sequences of short text using cross-entropies from itera-
tive language models. We take advantage of our company’s
massive repository of chat data sets to address the lack of
publicly available, annotated data. We compare the iterative
language model to TONMF as a baseline and achieve, on
average, 31% higher max F1 scores on real human to IVA
conversations.

Our ultimate goal is to determine how to improve our
IVAs given the outliers and the categories they belong to.

By deploying our textual anomaly detection system along-
side the IVA, we can record anomalies as they happen in
real-time for downstream health monitoring of live produc-
tion IVAs and help identify how the IVA can be improved.
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