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Abstract

Twitter serves as a data source for many Natural Language
Processing (NLP) tasks. It can be challenging to identify top-
ics on Twitter due to continuous updating data stream. In this
paper, we present an unsupervised graph based framework
to identify the evolution of sub-topics within two weeks of
real-world Twitter data. We first employ a Markov Clustering
Algorithm (MCL) with a node removal method to identify op-
timal graph clusters from temporal Graph-of-Words (GoW).
Subsequently, we model the clustering transitions between
the temporal graphs to identify the topic evolution. Finally,
the transition flows generated from both computational ap-
proach and human annotations are compared to ensure the
validity of our framework.

I. Introduction

Continuously updating data streams make it challenging to
identify real-time topics from platforms like Twitter. Previ-
ously, topic identification has mainly been studied on static
dataset (Stoyanov and Cardie 2008; Lo, Chiong, and Corn-
forth 2017; Pappagari, Villalba, and Dehak 2018). However,
oftentimes, real-world events are dynamic. During a contin-
uously evolving event, the center of topic can shift as new in-
formation being updated throughout the event duration. We
are interested in learning the underlying structure of how an
event unfolds in the online community, especially when the
data are limited for studying user behaviors.

Stream based event detection aims to identify a sequence
of temporal states of the event(s). Given a continuous event
across a set of timepoints {t1, t2, ..., t,, }, we define a tempo-
ral (sub)-event as the state s; of the event at any timepoint
t;(i < n), with ¢, being the final timepoint whereas the
event has no further updates. One of the biggest challenges
in stream based detection lays in locating the temporal state
boundary across the timepoints. When a dynamic event
evolves over time, the temporal state s; may remain un-
changed across several timepoints, however, suddenly con-
verting to state so then subsequently emerging to ss. In other
words, the temporal state at each timepoint is not indepen-
dent of each other. There is a transition between the states
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when a change is to occur. Thus, the detection of a signifi-
cant change in state becomes crucial in stream based tasks.
Previously, burst based detection (McMinn and Jose 2015;
Kaneko and Yanai 2016) and anomaly based detection
(Guille and Favre 2015; Fedoryszak et al. 2019) have been
explored. Burst based detection exploits a frequency based
approach, which does not emphasize the semantic content of
the events. On the other hand, anomaly based detection fo-
cuses on the change of semantic topic in textual content. In
this paper, we are interested in the latter type, which traces
the semantic topic change in a continuous time space.

We propose to employ graph structure to model tempo-
ral states due to its flexibility in relationship assignment and
scalability in computational cost. Graphs have been adopted
for similar tasks in event identification (Meladianos et al.
2015; Jing and Rayz 2020). A graph G = (V, E) generally
consists of a set of vertices V' and a set of edges EF which
connects the vertices. The vertices can be words, sentences,
or documents, and the edges can be used to model the statis-
tical or semantic relationships between the textual elements.
Our approach utilizes Graph-of-Words (GoW) to construct a
temporal graph for tweets content at each timepoint, allow-
ing the graph clustering to group temporal topics. Conse-
quently, we develop topic transition flow by modeling clus-
ter transitions at global level across all timepoints. Our main
contributions are: 1) development of a clustering with nodes
removal algorithm to find the optimal graph clusters over
topical dataset; 2) improvement on cluster transition model-
ing to simulate the transition across all timepoints as well as
taking re-emerging clusters into consideration; 3) visualiza-
tion of topic transition flows in the time space.

II. Related Work

In this section, we review previous work on event identifica-
tion on Twitter and graph based event modeling.

We start with event clustering graphs, for which Jin and
Bai (2016) proposed a long document clustering approach
utilizing a directed GoW for representing the word features
contained in each document. The document clusters were
generated based on the maximum common subgraphs be-
tween each document graph. In a similar attempt, Edouard
et al. (2017) proposed an event clustering model which



Table 1: Statistics of the dataset split by day

Timepoint  8/19 820 8/21 8/22 8/23 824 8/25 826 8/27 8/28 /29 8/30 /31 9/1 9/2
Tweets 38 89 87 65 27 68 53 29 19 53 23 18 40 35 16
Nodes 139 218 167 177 69 189 204 101 65 137 72 56 122 128 113

leveraged named entities (NE) based directed GoW struc-
ture. The GoW was improved by using surrounding context
of the graph nodes, NE, to enrich node level information.
The approach is capable to automatically detect different
events with the same keywords without any prior knowl-
edge. Jinarat et al. (2018) employed a GoW combined with
pretrained Word2Vec embedding (Mikolov et al. 2013) for
tweet clustering. The Word2Vec similarity served as a met-
ric for edge removal in generating tweet clusters. However,
since abbreviations and hashtags occur regularly in tweets,
pre-trained embeddings can be vulnerable to these irregular-
ities which may not present in the training data.

Extracting event streams of an ongoing event from Twit-
ter has a goal of detecting how an event unfolds as people
post updates. Meladianos et al. (2015) improved the GoW
approach by integrating the tweet length with the global co-
occurrence frequency to identify the sub-events of a World
Cup match on Twitter. Tweets containing the top k degen-
erated subgraph were used to describe each sub-event. Fe-
doryszak et al. (2019) proposed an interpretation of Twit-
ter event streams - a chain of clustered trending entities ar-
ranged in chronological order. Additionally, Fedoryszak et
al. overcame the limitation of lack of coverage in event de-
tection with the aid of Twitter’s internal knowledge graph
(KG). Jing and Rayz (2020) introduced Graph of Tweets
(GoT) for modeling popular events with both word and doc-
ument level structures. GoT treat a tweet as a collection of
conceptualized token nodes, whereas tokens of contextual
similarities were merged prior to the GoT construction. Pop-
ular sub-events were extracted by detecting cliques among
the similar tweet nodes.

Last but not least, we review previously proposed event
representation on Twitter as there has not been a formal def-
inition due to the various nature of the tasks. Hashtag based
event identifications (Feng et al. 2015; Yang and Rayz 2018)
treat an event as “a group of hashtags that focus on the
same topic”. Another approach utilizes NE to define event,
whereas each NE is treated as an individual event and a set of
NE as a merged event (McMinn and Jose 2015). Text triplet
(subject, predicate, object) has also been adopted to describe
a Twitter event (Tonon et al. 2017). In such approaches,
OpenlE (Angeli, Johnson Premkumar, and Manning 2015)
has been one of the top candidates for triplet extraction. Fi-
nally, embedding based approach which treats each tweet
embedding as an event has also been explored (Dhingra et
al. 2016). All of the above representations have their pros
and cons — hashtags are excellent carries of topical infor-
mation, but they may not be present in every tweet; NE can
support details of the event, but they may also cause crucial
information to be excluded (i.e. pronouns which are often
subjects of an event); triplets can provide relational infor-
mation, but entities that are not involved in a triplet cannot
be captured; Embeddings allow efficient mathematical com-

putations but also requires an adequate amount of data to
train. We combine hashtags, NE and nouns in this paper to
represent Twitter topics due to the limited amount of data we
could collect for our experiment.

II1. Proposed Method

We are interested in identifying topic transitions in speci-
fied events. We break the task into the following steps: 1)
constructing a temporal graph for each timepoint; 2) apply-
ing clustering with node removal on each temporal graph; 3)
modeling cluster transition flow across timepoints.

Dataset

Opportunistically, we chose to model local responses to the
on-going event "COVID-19” for a short duration. Thus,
tweets were collected from a local community from Aug
19th to Sep 2nd. "COVID-19” related tweets were identi-
fied by matching a set of manually selected hashtags for the
corpus. The tweets of interests are pre-processed with Stan-
ford CoreNLP ! to annotate the part-of-speech and named
entities. The statistics of the dataset is shown in Table 1.

Graph Construction

We treat each day as a timepoint and split the collected
dataset based on the timestamp of the tweets. Temporal
graphs are constructed using GoW with the nodes being
the unique nouns or named entities extracted from tweets
of the day. Furthermore, we employ normalized Point-wise
Mutual Information (PMI) value as the edge weights be-
tween two nodes (1). In Equation (1), the marginal proba-
bilities p(z) and p(y) and the joint probability p(x,y) are
computed as the proportions of the occurrence of tokens x
and y in a total of N tweets, where n, n,, and n,, denote
the (joint) frequency of tokens = and y. For consistency and
computational efficiency, we further normalize the PMI with
self-information h(x, y) which sets the boundary of the PMI
value to [—1,1] (2).

pmi = logip(a77 v) = Nzy N (D
p(z)p(y) Ny
—— pmi pmi 2

h(z,y)  —logp(z,y)

Clustering with Node Removal

For the dataset used in this paper, nodes that are closely
related to the fetching keywords of the tweets tend to co-
occur with every other node, while their neighboring nodes
might observe no connections between each other. We re-
fer to this type of nodes as the bridging nodes in this paper.
Many common graph clustering methods, such as spectral

!'Stanford CoreNLP ver. 3.9.2.



clustering (Ng et al. 2002) and highly connected subgraph
clustering (Hartuv and Shamir 2000), achieve the grouping
from graph cutting. One drawback of applying cutting based
algorithm on graphs with bridging nodes is that no obvious
local structures can be observed due to the inter-connectivity
introduced by these nodes. More precisely, the cluster as-
signments for the neighboring nodes of a bridging node tend
to fail as the graph cannot be cut in an appropriate way. As
a result, the graph cutting mechanism tends to cluster each
node into individual cluster. Thus, we propose to exclude
the bridging nodes from the GoW during the clustering pro-
cess, and treat them as belonging to each resulting clusters
which have at least one edge in between. We locate a bridg-
ing node by its clustering coefficient C; € [0, 1] (Watts and
Strogatz 1998). As defined in Equation 3, clustering coeffi-
cient measures the embeddedness of a single nodes among
its neighbors. A larger C; indicates the neighbors of 4 tend
to be more connected to form a community. In our case, the
smaller the C; is, the more likely the node is to serves as
bridging node.

26i
e (A ©
1 kik,;
Q=5 D (A - o )0(cis ) 4

)
* ¢;: number of edges between the neighbors of node ¢
* k; and k;: degree of node ¢ and j
» A;;: the edge weight between nodes ¢ and j
e 2m: sum of all edge weights
* ¢; and ¢;: communities of nodes 7 and j
* §: an indicator function, 6 = 1if ¢; = c;, 0 = 0 otherwise

To achieve an optimal clustering, we determine the num-
ber of bridging nodes to exclude by incrementally removing
the denser node from the graph based on a clustering qual-
ity metric. Modularity (Newman 2006) is a common met-
ric used for measuring community quality in graph theory.
Given a partitioning of graph G, modularity Q € [—1,1]
computes the difference between actual and expected num-
ber of edges within groups (Equation 4). A larger modularity
value () indicates more significant community structure. Al-
gorithm 1 outlines our method for finding optimal clustering.
During each iteration, a node with the lowest C; is removed
(with its edges) from the graph G and the rest of the sub-
graph is clustered. The modularity value () is computed on
the subgraph to determine the current clustering quality. The
best clustering is achieved at the (first) max () value.

We adopt the random walk based Markov Clustering
(MCL) (Van Dongen 2008) as our choice of graph clustering
algorithms over other common graph cutting based cluster-
ing algorithms due to the drawbacks mentioned above. MCL
simulates the stochastic flow in a graph which makes it more
scalable. Furthermore, unlike other clustering algorithms,
the number of clusters does not need to be pre-determined
in MCL.

Modeling Cluster Transitions

In many stream based data analysis tasks, modeling clus-
ter transitions is the key to identify the evolution of the tar-

Algorithm 1 Finding Optimal Graph Clustering

for node v; € V : {vy, v, ..., v, } do
C; = Equation_3(v;)
end for
V =sort_asc(V, key = C;)
best_clustering = None
Q_-mar = -1
for v; € V do
G .remove(v;)
clusters = Clustering(QG)
Q = Equation_4(clusters)
if Q > Q_max then

Q-mazx =Q
best_clustering = clusters
end if
end for

return best_clustering

get of interests. Given a timepoint ¢;, a cluster transition
can be defined as ’the change experienced by a cluster that
has been discovered at an earlier timepoint” (Spiliopoulou et
al. 2006). Previously proposed frameworks such as MONIC
(Spiliopoulou et al. 2006) and MEC (Oliveira and Gama
2012) define a set of transition types between clusters across
consecutive timepoints and use a matching function with a
threshold to identify these types. We adopt the basic transi-
tion types defined in MONIC and MEC, and further extend
them to make the framework more robust for our task. From
timepoint ¢; to ¢;1, we define pairwise transition types for
consecutive timepoints in Table 2 (first 7 types), where X
and Y are clusters at timepoints ¢; and t;; respectively, a
is the threshold for the match function to measure the over-
laps between two clusters. In addition to transition types de-
fined between pairs of consecutive timepoints, we introduce
another transition type, namely, “a cluster has re-emerged”,
which measures the transition across non-consecutive time-
points. To visualize the transitions of a cluster in a global
view, we model the set of transitions starting at a newly
emerged cluster as a flow. In other words, we treat the
pairwise transitions as the edges between the cluster nodes
across different timepoints. When a transition exists between
two cluster nodes, an edge with the transition type as value
is assigned to connect them. It should be noted that to be
computationally consistent with the basic transition types,
the re-emergence transition is matched in respect of the last
node in the sequence of the consecutive transitions.

Evaluation

We validate the topic transition results from our computer
generated approach by applying the same transition frame-
work to human annotated clusters. Each tweet is annotated
with at most three noun (-phrase) labels which summarize
the tweet the most by a human expert. The majority of the
labels are directly selected from the tweets. Out-of-content
labels are only generated when the tokens in a tweet cannot
meaningfully summarize it.

A preliminary inspection over the manually and compu-
tationally generated clusters showed a mismatch in quantity



Table 2: Cluster transition types for cluster X at timepoint ¢;

Transition Type

Mathematical Definition

the cluster stays unchanged

X — X', where X' = match,(X)

the cluster is absorbed

X — Y, where match,(X) CY and X — matchy(X)

the cluster is dissolved

X — Y, where match,(Y) C X and Y — match,(Y)

7Y
7 X

the cluster splits into multiple clusters

X = {V1,Ys,..., Y., }, where | J]" Y; = match, (X)

the cluster is merged from multiple clusters

{X1,X5,...,X,,} =Y, where | J]' X; = match,(Y)

the cluster disappears

X—=0

a new cluster has emerged

Y

a cluster has re-emerged

X — @— X', where X' = match,(X)

Table 3: Statistics of the GoW During Clustering

Timepoint  8/19  8/20 8/21 8/22 8/23 8/24 8/25 8/26 8/27  8/28 8/29 8/30 8/31 9/1 9/2
C:’Tm 041 047 0.47 0.48 0.46 0.48 0.39 074 033 041 043 04 044 042 028
Can 095 0.89 0.93 0.91 0.93 0.92 0.93 096 095 092 094 093 094 096 096
Chest 0.99  0.99 0.99 0.99 0.99 0.99 0.99 1.0 099 099 098 098 098 099 0.98
Dorm 7.19 18.81 1198 1695 11.59 1481 10.78 16.83 6.15 1241 694 893 82 547 354
of labels. In addition, we observed several co-occurring top- 0%°0s

ics in the annotated clusters due to retweets. To merge the N ke

co-occurring topics in human annotated clusters, we employ =

frequent itemsets (Hornik, Griin, and Hahsler 2005) to dis- S

cover strongly associated topics. Support supp is calculated N PR £ o

as an indication of how frequently an itemset appears in the
data (Equation 5). If two itemsets share the same supp value
and one itemset is the subset of another, we merge the subset
into its parent.

_teT; X Ct

- IT|

e T aset of transactions of a given dataset.
It should be noted that the methods of clustering between

computer generated and human-annotated data are very dif-

ferent. However, the trends should be visible regardless of
the methods, provided that the clusters are done well.

supp(X) &)

IV. Experimental Results

The number of nodes distributed in each temporal GoW sep-
arated by timepoint is shown in Table 1. As previously men-
tioned, we are interested in learning the responses and inter-
ests of a local community, and the real-world data we col-
lected is limited in both quantity and quality. Thus, the num-
ber of nodes in each GoW varies largely depending on the
community’s activity of that day. Reporting global average
based results would not guarantee an accurate evaluation to
our framework. We instead will report results by timepoint
and evaluate our framework by trend based comparison be-
tween computer and human generated clusters to ensure the
validity of this work.

Clustering with Node Removal

To summarize, the average percentage of bridging nodes re-
moved in each temporal GoW is 10.71% with an average C;
of 0.44. Timepoint specific data of the clusterings is shown

universit:
student Y

#covidl9

Figure 1: An instance of event graph for Aug 19, 2020 with
12 clusters. Each color represents a cluster and the bold
(anonymized) words are the bridging nodes.

in Table 3, where C,.,,, Caii, Chest denote the average C}
for removed nodes, the original GoW, and the best clus-
tered subgraph respectively; and %,.,, denotes the percent-
age of nodes removed. The best subgraphs across all time-
points showed an increase in average C; after the removal of
bridging nodes, which confirms that the global embedded-
ness of the graph have become stronger. It is noteworthy that
many of the best subgraphs achieve a nearly 1.0 (maximum
boundry) average C;, which suggests that the neighbors of
each node in the subgraph are inter-connected. This can oc-
cur when the resulting subgraph is a complete graph or con-
sists several fully connected components which are not inter-
connected. Our results are latter. Another metric should be
considered for future tasks as the clustering coefficient C;
lacks the ability to differentiate the structural characteristics
since it only considers the internal variance of the clusters.
In addition, we observed consistent converging trends
among the modularity plots over all timepoints. As the nodes
with lower C; get excluded from the subgraph, the result-
ing clustering quality starts to increase and gradually con-
verges. Once a maximal modularity value is achieved, re-
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Figure 2: Cluster progression charts for (a) computed clusters vs. (b) human annotated topics from Aug. 19, 2020 to Sep. 02,
2020. Numbers below each date indicate the total number of clusters for the given date.

moving more bridging nodes will cause a decay in qual-
ity. Currently, our approach chose the result at the maximal
modularity value as the optimal clustering. To increase gen-
eralizability and reduce computational cost, Algorithm 1 can
be updated to stop when the modularity value starts to con-
verge. Figure 1 illustrates an example clustering on Aug 19.

Comparing Cluster Transition

We applied the metrics defined in Table 2 to construct tran-
sition flows for both the computer generated clusters and
human annotated label sets. An opportunistic threshold of
a = 2/3 is used for the match function to determine if two
clusters are considered as the same, no other threshold have
been attempted. The computational approach generated 34
independent transition flows with an average length of 2.41
timepoints per flow, while 151 clusters only exist across a
single timepoint. On the other hand, the human annotation
suggests that there are 17 independent transition flows with
an average length of 4.53 timepoints per flow, and 68 sets
only exist across a single timepoint.

It should be noted that the computer generated clusters are
based on nouns and NE from tweets with no order in mind,
while human-annotated clusters are based on three summa-
rized terms per tweet. Thus, computer generated clusters
group all topic per day together irrespective of which tweet
they come from, while human annotated ones have an addi-
tional layer of summarization: each tweet to keywords. The
mismatch in the number of clusters can thus be explained by
this additional layer of complexity, and should not necessar-
ily be treated as a negative result. What is more interesting to
see is the patterns that emerge from repeating topics, within
both layers, throughout two weeks of data.

Figure 2 demonstrates the cluster progression charts of the

computational approach and human annotated topics side by
side. It can be seen that many clusters, both computer and
human generated, reappear overtime. One clear outlier is a
sequence of human-annotated clusters that contains a series
of various transitions for over a week. A shared label be-
tween these clusters denotes the name of a policy that the lo-
cal community is enforcing to ensure safety during the pan-
demic. Coincidentally, the same policy name has been de-
tected as the bridging node in computer generated clusters in
nearly all timepoints during the clustering process. Further
analysis suggests that the longest sequence of transitions in
both computer and human generated clusters can be traced
to the same topic not mentioned here due to anonymity re-
quirement. Despite the differences between the cluster gen-
erating mechanisms, both transition flows progress similarly
in trends of emergence, re-appearance, and disappearance.

V. Conclusion and Future Work

In this paper, we proposed a graph based framework in mod-
eling topic transitions of a local online community through-
out two weeks of Tweets. Our proposed clustering with node
removal approach attempted to resolve the drawback of the
traditional hard clustering method on topical datasets. The
cluster transition modeling provided insides on how topic
flows can be traced in a continuous time space. Finally, the
flow comparison between computer generated clusters and
human annotated label sets demonstrated the applicability
of our framework on real-world data.

Several improvements can be made in the future: 1) using
a convergent schema to locate the best modularity value for
the best subgraph to increase the model’s robustness and re-
duce computational costs; 2) the assignments of membership
for the bridging nodes to each resulting clusters as currently



they are considered to belong to all inter-connected cluster
with equal weights; 3) incorporating conceptual level infor-
mation (i.e. knowledge graph) into the temporal graph to re-
fine the events/topics clusters. However, even without these
improvements, our framework is capable of tracing the evo-
lution of the topics and the duration of the progressions as
evident by comparison with human annotation.
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