
Ontology-based Knowledge System and Team Verification Tool
for Competitive Pokémon

Daniel Verdear and Ubbo Visser
University of Miami, Department of Computer Science

1365 Memorial Drive
Coral Gables, FL, 33146

{verdear|visser}@cs.miami.edu

Abstract

Competitive Pokémon is a domain with rich semantics and
complex relationships between its elements. Current research
in the domain has focused on developing AI agents to select
moves within a match, ignoring the problem of team build-
ing. We propose a team verification tool based on ontologies
to model the complexities of the domain. A user can input
their team into the tool, and the tool uses a description logic
reasoner to classify Pokémon into their appropriate roles. The
tool exports a visual representation of the team and a score
evaluating its competitive viability. The classifications made
by the TeamVerify tool have 87.7% precision and 86.0% re-
call in a multiclass, multilabel domain. We expect such a tool
to reduce the learning curve for novice players who have not
yet built intuitions on proper team structure.

Introduction
Nintendo’s Pokémon is the third best-selling video game
franchise of all time, with 24 main series releases since 1996
(The Pokémon Company 2020). As the games’ popularity
grew, communities of players began organizing tournaments
for the game’s player-vs-player battle mode. This compet-
itive community flourished because of the game’s strategic
elements and its frequent updates keeping the game from
becoming stale or boring. Competitive Pokémon battling
shares many structural similarities to chess, a game that is
the subject of influential AI research. Both are turn-based
games where individual pieces are constrained in their po-
tential moves. Similarly, tactical decisions are made by syn-
thesizing hard knowledge about a player’s own strategy and
soft knowledge inferred from observing their opponent.

However, unlike in chess, Pokémon players are allowed to
select their six Pokémon from an ever-growing roster (cur-
rently set at 893) and select each Pokémon’s four moves
from a list of dozens of potential moves. Although competi-
tive Pokémon is a two-player game with each player having
up to nine potential moves (four potential attacks and five
potential switches), there are numerous player-chosen vari-
ables that can greatly affect the outcome of each move and
its state transition. This complicates the procedure for cal-
culating the state space of a competitive Pokémon match.
Even by making perfect plays on every turn, a player or

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

AI agent may still lose because their team is outclassed by
their opponent’s. Another consideration for AI systems play-
ing Pokémon is that a significant amount of information is
leaked before the first turn. In a chess match, an opponent’s
strategy must be determined by examining their moves. The
six Pokémon on a player’s team can reveal many details on
that player’s planned strategy, and failing to understand this
information will consistently disadvantage AI agents.

In most contexts, a decision-making system based on in-
formation storage and retrieval would be built on top of a
database system. Building a database system for this do-
main would require hard-coding many key concepts, which
decreases their generality. We hypothesize that using a
knowledge-based system will lead to a more robust tool ca-
pable of inferring key concepts and allowing the system to
generalize better than a database system.

Related Works
Competitive Pokémon asks two fundamental research ques-
tions, the first of which is whether you can decide a player’s
next move given each player’s team and the sequence of
moves leading up to the current turn. Current academic re-
search is primarily focused on this question (Simões et al.
2020; Huang and Lee 2019). Researchers benefit from the
discrete, turn-based context of Pokémon battles when de-
signing their AI systems. However, this project tackles the
second research question posed by competitive Pokémon.

This larger problem of building an effective and versa-
tile team of six Pokémon has been ignored through as-
sumption. Previous works on tactical AI agents have as-
sumed that the team being used is optimal, but for nearly
all but the highest-level tournament games, this property
should not be assumed (Huang and Lee 2019). Additional
work on automated team building has been done outside of
the academic realm, with several tools being developed and
shared in online forums (DigitalFlow 2019; Pyrotoz 2020;
Sciarrone 2020). These tools are built on simple heuristics
rather than semantic understanding of the game.

Before even playing a single match, a player must decide
which six Pokémon to use on their team. This poses a chal-
lenge in knowledge modeling and storage, as the universe
of all competitively viable Pokémon has complex relation-
ships that are essential to model in order to build an effec-
tive team. These relationships are fluid; for example, using



the same Pokémon with a different item may change its rela-
tionships to its teammates. Ontologies have been used exten-
sively to store knowledge in a format that encourages com-
plex relationships between entities (Niaraki and Kim 2009;
Toledo et al. 2011). These techniques have not been intro-
duced to any esports context, but the complexity of most
competitive video games lends itself to the strength of onto-
logical modeling.

General Approach
We propose to develop an ontology-based team verification
tool (TeamVerify). The tool takes as input a competitive
Pokémon team expressed in the official Smogon team string
format. The team string format provides all information nec-
essary to uniquely identify an instance of a Pokémon, and
an example of the representation is available on github. For
each Pokémon on the user’s team, the tool compares the
given information to the classes defined within the ontol-
ogy and places each Pokémon in the roles that they fill. It
then outputs relevant information to the player, such as the
role membership lists, and allows the player to have a quan-
titative measure of their team’s viability within seconds. The
knowledge base is written as an ontology in OWL2-DL, and
the reasoning system used for inferences is HermiT, which
has been shown to optimize the tableau calculus required
for description logic (Shearer, Motik, and Horrocks 2008;
Glimm et al. 2014).

The Pokémon domain is comprised of numerous, often
overlapping, classes of Pokémon. In most cases, the class
membership of a Pokémon can be determined using prop-
erties lifted from a Pokémon’s set (the unique combination
of a species, four moves, an ability, an item, and a distribu-
tion of the Effort Value stats). These initial classifications
can then be used to infer a more complex classification.
The TeamVerify tool reasons on input rather than access a
database of pre-inferred information, so description logic is
chosen over first-order logic. Computational efficiency is a
primary goal of TeamVerify, and there should be no con-
texts where a reasoning task keeps the tool from terminating.
Despite this focus on complexity, description logic is still
preferred over less complex logics because of Pokémon’s
use of quantifiers and other logical concepts. Less complex
logics are unable to model the domain fully (Baader et al.
2003). Because of these characteristics of the domain, de-
scription logic was chosen as the method for team anno-
tation. Similarly, modeling the domain as an ontology is a
natural knowledge representation. Ontologies are also well-
suited for organizing knowledge that may change over time.
As will be discussed with the data domain, the concern of
shifting knowledge is well-founded.

The current state of competitive team generation is not
rigorous. Applications rely on heuristics to make decisions
about team structure, and the popularity of certain applica-
tions changes frequently as the data for a previous tool be-
comes outdated. Therefore, it is an open question whether
automated team generation for Pokémon is even a solv-
able problem. Using the TeamVerify tool, we seek to dis-
cover whether the problem is verifiable, whether software
can decide which of two teams is more competitively viable.

TeamVerify stops short of being a full generator, while still
providing key features that are useful to players.

The Pokémon Ontology
As mentioned earlier, a Pokémon set includes the unique
combination of a Pokémon species, four moves, an item,
and an ability. Each of these elements is required for infer-
ence. These four disjoint classes form the base of the ontol-
ogy. Items and Abilities need no further segmentation, and
Moves require a simple segmentation between Stat-Boosting
moves and all others. The hierarchy of Pokémon involves the
most segmentation, and most of these segmentations require
inferences.

Any instance of a Pokémon is classified into the general
Pokémon class. This level of the ontology checks that each
instance has the four elements of a valid set. A Pokémon is
then put into two independent classes, one corresponding to
its typing and another, Offense or Defense, corresponding to
its Effort Values. The Offense and Defense classes are then
divided further into classes for each of the Primary Roles, or
what the Pokémon contributes to a strategy. The Secondary
Roles, additional useful traits, involve integrating informa-
tion from each of these previous classifications, and each
secondary role is a direct descendant of the Pokémon class.
With this taxonomy in place, asserting a Pokémon based on
its team string data classifies it with the classes relevant for
TeamVerify. The result of this modeling step is an ontol-
ogy with 61 classes, 14 object properties, 7 data properties,
and an expressivity of ALCROIQ(D), showing the degree to
which the domain is connected (github link to ontology).

The strategy of data collection and data assumptions have
the final goal of populating a Pokémon ontology that can be
used to model the complexities of the competitive Pokémon
domain. A robust ontology allows for a reasoning system to
recognize patterns in user-provided team data. The Pokémon
ontology used in this project was manually developed using
the domain knowledge of the first author and from a sur-
vey of high-level Pokémon tournament players. Every player
was asked how they defined each of the essential roles and
what they viewed as the defining characteristics of each role.
Their responses were aggregated and used to develop the
class definitions in the ontology.

Pre-Loaded Knowledge
Aside from the class hierarchy, the ontology requires a cer-
tain amount of pre-loaded knowledge to facilitate proper
classifications. As will be mentioned in greater detail in
the following section, the roster of top-tier competitive
Pokémon is recalculated monthly. Each month, the ontol-
ogy is refreshed with the new list of Pokémon, and this af-
fects the determination of what common Pokémon should
be addressed by a team. This constant refreshing allows for
the re-definition of certain secondary roles, mainly counters
to common offensive and defensive Pokémon. This feature
calls upon previous research in the fields of ontology ver-
sioning and provenance. The versioning protocol has not yet
been implemented, but we intend to follow the insights of
(Plessers and De Troyer 2005) which propose versioning

https://github.com/danielverd/teamverify
https://github.com/danielverd/teamverify


protocols. Some information is also unique to each species
of Pokémon but not included in the team string. Data such
as typing or speed stats are pulled from online resources and
asserted to the ontology.

Most of the raw data obtained in the data collection
phase is stored as individuals in the ontology. All Pokémon
species, items, moves, abilities, and typings are pre-loaded
into the ontology. Using individuals to model scraped data
also allows set notation to be used in class definitions. For
example, the Sweeper role is dependent on having a move
that boosts a Pokémon’s speed. Since moves are stored as
individuals, the set of speed-boosting moves can be enumer-
ated, leading to a more efficient ontology on which to run
the HermiT reasoner.

The relationships between individuals are modeled as ob-
ject properties. Each Pokémon can hold a single item, so a
Pokémon can be linked to at most one Item with the has-
Item object property. Similar properties exist for linking a
Pokémon to its four moves, a Pokémon to its Ability, or a
Pokémon to the types it is weak to. This is not an exhaus-
tive list of all object properties but provides a high-level
overview of how object properties are used to model com-
plex relationships within this domain.

The result of this modeling step is a knowledge base of
Pokémon, each semantically linked to the set of their moves,
item, ability, base speed stat, and EV distribution. The size
of this base ontology is 4,430 axioms that connect 214 indi-
viduals with 14 object properties and 7 data properties. As
noted previously, there are 61 classes into which an individ-
ual can be assigned. However, a majority (3,141) of the ax-
ioms are object property assertions asserted or inferred from
the pre-loaded knowledge.

Data Domain and Collection
The goal of the data collection phase is to populate the
Pokémon ontology with information that is not available in
the Smogon team string format but is necessary for deter-
mining what roles a Pokémon fills. A Pokémon record in-
cludes: Species name, Typing, Base Statistics (Hit Points,
Attack, Defense, Special Attack, Special Defense, Speed),
and the Smogon tier it is a member of. The content of
these records is unique to each species of Pokémon and is
not subject to user-chosen variability. Therefore, for each
Pokémon, the record information can be gathered and used
to pre-populate the ontology without concern for potential
changes. This information is collected automatically from
Smogon web resources using a scraper script written in
Python (Smogon community 2020b).

Smogon Usage-based Tiering
The Smogon community developed a usage-based tiering
approach to classify Pokémon based on their competitive
viability (Smogon community 2020a). This approach func-
tions under the assumption that players will generally use
the best Pokémon available, and this asumption allows usage
rates to act as a proxy for viability. Except in cases where
newly released Pokémon need to be tiered quickly, usage
rate is calculated using a weighted average of usage over the
preceding three month period.

Tiers are defined using a simple heuristic, which can be
translated to inferential statistics, that a Pokémon is clas-
sified into a tier if there is a 50% chance it will appear in
at least one of 15 randomly selected games. Tiering begins
with the OverUsed (OU) tier, where all Pokémon are al-
lowed. Once sufficient data is available, a tier cutoff is estab-
lished - typically 4.52% usage - and all Pokémon above that
threshold are classified as OU (Smogon community 2020c).
Remaining Pokémon are added to the subsequent Under-
Used (UU) tier, and the process is repeated until all Pokémon
are tiered.

The scope of this project is teams built for the OverUsed
tier. Therefore, our ontology is only preloaded with data
from Pokémon in the OverUsed and UnderUsed tiers. Play-
ers in the OverUsed tier are allowed to use Pokémon from
the OverUsed tier or any lower tiers. However, we make the
assumption that Pokémon in tiers lower than UnderUsed are
outclassed by higher tiered Pokémon in nearly all cases.

Data Assumptions
Applying description logic to an ontology knowledge sys-
tem is an exponential time algorithm (Baader et al. 2003).
Therefore, since the result of this project is a user-facing ap-
plication, several assumptions about the data are made in
order to limit the practical running time of the reasoner. The
primary assumption made is described in the preceding sub-
section, where omitting tiers below UnderUsed reduces the
number of Pokémon from 890 to approximately 100.

The tool assumes that the user will be inputting a valid
team. If the user inputs a team with fewer than six Pokémon,
the tool issues a warning and continues without addressing
this specific issue. If the user inputs a Pokémon without an
item or with fewer than four moves, the tool terminates while
parsing. We also assume that the user knows a Pokémon’s
optimal candidate roles. For example, if a Pokémon has
very high defenses and support capabilities, but the user
chooses to equip them with offensive moves, an offensive
item, and and offensive ability, the tool is not able to rec-
ognize that mistake and instead treats the Pokémon as an
offensive Pokémon.

The TeamVerify Tool
The result of this project is a Python package, available
on github, that includes the command-line team verification
tool as well as several scripts used to populate the ontology
upon which the tool is based. The tool uses the Owlready2
Python library (Lamy 2017) to interact with the ontology,
allowing users to interface with a simple command-line pro-
gram rather than an ontology manager such as Protégé (Noy
et al. 2001). Aside from the trivial task of transforming string
input into a Python dict, there are two primary features that
TeamVerify provides. Each will be discussed briefly.

Interface with the Ontology
Once the user-inputted data is processed, each of the six
Pokémon is asserted into the ontology as an individual. If the
team has any syntactic flaws, the tool alerts the user and halts

https://github.com/danielverd/pokemon-teambuilder


Table 1: Results of TeamVerify: automatic classification compared to manually labeled data
Classification Primary Roles Secondary Roles Average Per Team Total

Ground-Truth 186 267 616 34.5 1,069
Predicted 184 242 622 33.8 1,048
Ratio 98.9% 90.6% 100.9% 97.9% 98.0%

gracefully. Given a syntactically sound set of data, the ontol-
ogy reasoner is then called. TeamVerify uses the optimized
HermiT reasoner with a memory allocation of 2GB, and the
process of completing all annotations takes 40.4 seconds on
average (std=9.4) using an Intel i5 processor with 1.80GHz
clock speed. Following the rules outlined in the description
of the class hierarchy, each role is filled during the reason-
ing process, and this populates membership lists for each
primary and secondary role. This set of membership lists is
then passed to the functions that generate output. An exam-
ple of one type of inference can be seen in Figure 1. After
adding a new individual and asserting hasSpecies specCha-
ndelure under object properties, the system infers that the
individual isResistantTo tyFire.

Scoring and Generating Output
TeamVerify provides output through the command-line and
in a text file report. The report includes a copy of the team
string submitted by the user, membership lists for each of the
essential roles, and a team score that quantifies the team’s
viability. At the end of the report, TeamVerify displays a list
of suggestions it has reasoned from the knowledge base. For
any essential role that is empty, TeamVerify will query the
knowledge base to find a suitable candidate. Additionally,
TeamVerify identifies the Pokémon that fills the fewest roles
and suggests that it be replaced.

The membership lists are generated using the DL Query
feature of OWL2. A DL query allows for a defined class that
contains reasoned information to be queried for basic infer-
ences such as member instances. The list of Pokémon filling
each role follows trivially from this feature. Team sugges-
tions are executed using SPARQL queries. The more formal
structure of SPARQL queries allow complex querying based
on membership in an inferred class and filtered by number
of occurrences.

The defining feature of TeamVerify, that sets it apart from
a simple ontology interface, is team scoring. Once a team’s
membership lists have been inferred, these lists are used to
calculate a score that roughly translates to a team’s com-
petitive viability. For each role in TeamVerify, there is a
membership list of length n and the score for that role is∑n

i=1 1/i. The purpose of this summation is to provide di-
minishing returns for redundancies in team building. If two
Pokémon are used exclusively for a single role, their score
will be reduced to an average of 0.75. This scoring forces
redundant Pokémon to provide versatility or have their im-
pact greatly reduced. An exception to this scheme is primary
roles such as Wallbreaker or Sweeper, where having multi-
ple win conditions provides versatility in overall strategy.
For a membership list of length n for these roles, the score
is n. The sum of these role scores is the overall team score.

Evaluation

We have evaluated the TeamVerify tool from two perspec-
tives, whether its classifications (and therefore its team
scores) are accurate and whether its scores are indicative of
more competitively viable teams.

Evaluating Classifications

A set of 31 competitive Pokémon teams were gathered
from Smogon tournament forums (such as the private The
Academy forums on Discord) (The Academy community
2020). The data was manually annotated by a team of two
experienced players, and the final dataset contains 1,069 an-
notations. Within these annotations, 186 contain Pokémon
classifications, 267 primary roles, and 616 secondary roles.
The raw team strings for these 31 teams were inputted into
the TeamVerify tool, and a summary of the results is shown
in Table 1.

We can see that misclassifications are present in each ma-
jor category that the TeamVerify tool tests. The automated
classification correctly labels 920 examples, for a precision
of 0.8778 and recall of 0.8606 (F1 score = 0.8691). Sev-
eral quirks in the TeamVerify reasoning system are the cause
of these misclassifications. For primary roles, the decision
boundary separating Defensive Walls from Defensive Piv-
ots requires further refinement as several Walls were erro-
neously classified as Pivots. Additionally, the union of all
Wallbreakers, Sweepers, and Offensive Pivots does not per-
fectly equal the set of possible Offensive Pokémon. This
leads to an Offensive Pokémon running a niche strategy not
being classified within a primary role.

Some secondary roles are also victims of systemic
misclassification. Pokémon are classified as counters if
their typing is super-effective against a common defensive
Pokémon. However, offensive Pokémon commonly carry
moves that are super- effective against defensive Pokémon
but do not match their own typing. This leads to a Pokémon
failing to be classified as a counter to a Pokémon it easily
defeats. The same issue occurs in the opposite direction.
A Pokémon may be classified as a counter to a Pokémon
despite not carrying a move corresponding to the super-
effective type. These issues can be corrected by creating a
new object property that links a Pokémon to the types of its
moves.

Table 2: Team Scores and Game Records for each team
Gener. A Gener. B Gener. C Manual

Team Score 22.000 21.083 23.166 23.250
Game Record 21-9 19-11 25-5 26-4



tyFire isResistantTo _Ind_1

More subclasses

subclass/type/equiv. relation

individual object property relation

Legend

+

Primitive/defined classPokemon ontology class

inferred individual

Anonymous class

myInd

Type

specChandelure

asserted individual class object property relation

T-Box

A-Box

class/individual datatype property
inferred relation/type

hasSpecies

Domain:
Pokemon

EquivalentTo TypedPokemon
+EquivalentTo

FirePokemon+

_annonyClass1

subClassOf

_annonyClass2

hasCompTyping

_Ind_2

hasType

_annonyClass4

Type EquivalentToType Type

ElementalTypings+

hasSpecies o hasType = hasCompTyping

Pokemon+

_annonyClass5

isResistantTo

Figure 1: Inference for new individual: isResistantTo tyFire.

Evaluating Team Scores
The classification test has shown that in most cases, the
TeamVerify tool can recognize a team’s structure with over
86% precision and recall. Therefore, we can use these auto-
mated classifications as the basis to score several teams and
compare their viability in play with the viability computed
by TeamVerify. Four teams will be compared: one manually
designed by a domain expert, and one from each of three
state-of-the-art automated team generators. Their team score
will be computed by TeamVerify, and each team will be used
for a series of 30 games on the Pokémon Showdown battle
simulator. Given the complexity of the Pokémon domain, for
this experiment we expect that teams generated with simpler
heuristics should score lower than more complex heuristics
or our control team generated by a human expert. Similarly,
we expect team score to correlate positively with the team’s
record in playtesting.

Generator A uses a purely statistical approach to team
building (DigitalFlow 2019). Given a starting point, namely
a single Pokémon, the tool scrapes usage statistics from
smogon.com to fill out the team. The five most common
teammates of the seed Pokémon are chosen, and all six
Pokémon are given their most common moves. This tool in-
tegrates no semantic understanding and is prone to mixing
strategies.

Generator B selects Pokémon from a pool of human-
generated Pokémon sets (Sciarrone 2020). Given a seed
Pokémon, the tool selects five teammates randomly from the
pool. This tool integrates basic semantic understanding by
ensuring that each individual Pokémon is viable.

Generator C also selects Pokémon from a pool of human-
generated sets, but the team composition is subject to a hand-
ful of rule-based constraints (Pyrotoz 2020). The tool inte-
grates slightly more semantic understanding because it re-
jects teams with certain basic deficiencies. If Pokémon Y
requires support from Pokémon X to be most effective, the
tool will not select Y without also selecting X.

Each of these three generators was given the same seed
Pokémon, and the teams created by each generator, along
with a team built by a human domain expert, were scored
using the TeamVerify tool. To test the strength of the scor-
ing scheme, each team was used for a 30 game sample on
the Pokémon Showdown online matchmaker. The results of
these games, along with team scores, are shown in Table 2.

The results of the experiments show that the scoring

scheme used by TeamVerify is valid. Our initial hypothesis
that Generator A would create the weakest team was false,
given its 70% winrate. However, this reality was evident in
the TeamVerify score given to Generator A. Each team’s
score roughly correlates to the eventual winrate. There are
issues of scale present in the data. Records are skewed
slightly higher due to the fact that random games are less
competitive than official tournament matches, but these con-
ditions are consistent among all four data samples. All four
team scores are also within a 2.5 point range, since none are
particularly unviable. These issues ultimately only affect the
ease of analysis and have no effect on the results themselves.

Inspecting the results in Table 2 shows a division between
two groups of two teams. The manually built team and Team
C are similar in both team score and record. These corre-
spond to the most competitively viable teams. Both have
multiple win conditions and a strong defensive core to pro-
vide stability. Each Pokémon on either team is versatile, pro-
viding an average of approximately 3.8 points from its roles.
Most importantly, the roles that TeamVerify measures are
seemingly the factors that make these teams superior.

That can be further seen by examining Teams A and B,
which score lower and have worse winrates. The two main
ways to reduce a team’s score are including Pokémon with
few roles and including too many redundancies in an indi-
vidual role. The main problem with Team B was the second
factor. Though Generator B suggested three defensive Walls,
all three were counters to similar typings. This redundancy
left the team incredibly weak to certain offensive Pokémon
that were able to defeat all three defensive Walls. Team A
suffered from a lack of versatility among its Pokémon, the
first factor. The team had only one win condition, which is
very apparent to an opposing player. Any team with only
one win condition is easy to defeat, as it is incredibly one-
dimensional. These weaknesses seem to be calibrated well
in the scoring scheme used by TeamVerify.

Conclusion
We have proposed the TeamVerify tool for determining
whether a Pokémon team is competitively viable. The tool is
based on a Pokémon ontology that allows for a more robust
system than could be built using a database. By hard-coding
a handful of logical axioms about the competitive Pokémon
domain, a standard DL reasoner can infer properties of any
user-submitted data. This compares favorably to a database
where all information must be encoded and checked for vi-
ability before a user submits their team. A knowledge base
with logical axioms rather than inserted facts allows the tool
to continue working even with the shifting strategies in a
competitive domain. A database system would require con-
stant updates to its knowledge base.

The TeamVerify tool represents the foundation of an aca-
demic approach to strategic decision making in competi-
tive Pokémon. The tool provides several benefits to players
even without the capability to generate a team from scratch.
The representation of a team through membership lists al-
lows players to view their own teams from a more strategic
perspective than other team visualization tools. Certain key
concepts, such as the need for versatile Pokémon in order to

http://smogon.com


respond to a multitude of opponent strategies, become ap-
parent through the membership list format. The team score
feature allows players to get a quantitative measure of their
team’s viability and the effects of adjustments they make.
Typically, players would need to test a team by playing
games against random opponents. Less experienced players
may not come to conclusions quickly from testing, and even
experienced players will only have a qualitative judgement.
The feature set of TeamVerify, therefore, provides value to
players and acts as the foundation for a compelling area of
research in esports.

Future Work
The TeamVerify tool is the first step toward rigorous analysis
of strategic decision making in competitive Pokémon. With
this base there are several directions for future work in the
area. As shown in the evaluation of TeamVerify’s automatic
annotations, there are weaknesses in the decision boundary
between several roles. Therefore, effort should be made to
define the decision boundaries more rigorously, potentially
using a neural network approach over a manual approach.
The data assumption that limits the number of Pokémon can
be relaxed if a more efficient data structure is used. Future
work should consider pre-inferring information and index-
ing it into a graph database. This may lead to faster reasoning
times and the capacity to consider more species of Pokémon.

The evaluation of team scores has demonstrated that a tool
built on top of an ontology-based knowledge system can ver-
ify the competitive viability of a competitive Pokémon team.
With this foundation, future work should also look to deter-
mine how TeamVerify can be used as the basis for a genera-
tive team building tool like the three generators compared in
the previous section. Such work may look to integrate addi-
tional information from a combination of user-generated and
automatically-generated team building sources. New chal-
lenges will arise in information storage and retrieval, as any
information added to the ontology will slow down the rea-
soning process. Segmenting data that is not involved in rea-
soning tasks will provide another semantic challenge. How-
ever, the eventual result will be a generative model that
can mimic human team building at least as well as current
heuristic models.

References
[Baader et al. 2003] Baader, F.; Calvanese, D.; McGuinness,
D.; Patel-Schneider, P.; Nardi, D.; et al. 2003. The descrip-
tion logic handbook: Theory, implementation and applica-
tions. Cambridge University Press.

[DigitalFlow 2019] DigitalFlow. 2019. Programming -
Smogon Team Assistant. [Online; accessed 13-Oct-2020].

[Glimm et al. 2014] Glimm, B.; Horrocks, I.; Motik, B.;
Stoilos, G.; and Wang, Z. 2014. HermiT: an OWL 2 rea-
soner. Journal of Automated Reasoning 53(3):245–269.

[Huang and Lee 2019] Huang, D., and Lee, S. 2019. A Self-
Play Policy Optimization Approach to Battling Pokémon. In
2019 IEEE Conference on Games (CoG), 1–4. IEEE.

[Lamy 2017] Lamy, J.-B. 2017. Owlready: Ontology-
oriented programming in Python with automatic classifica-

tion and high level constructs for biomedical ontologies. Ar-
tificial Intelligence in Medicine 80:11–28.

[Niaraki and Kim 2009] Niaraki, A. S., and Kim, K. 2009.
Ontology based personalized route planning system using
a multi-criteria decision making approach. Expert Systems
with Applications 36(2):2250–2259.

[Noy et al. 2001] Noy, N. F.; Sintek, M.; Decker, S.;
Crubézy, M.; Fergerson, R. W.; and Musen, M. A. 2001.
Creating semantic web contents with Protégé-2000. IEEE
Intelligent Systems 16(2):60–71.

[Plessers and De Troyer 2005] Plessers, P., and De Troyer,
O. 2005. Ontology Change Detection Using a Version Log.
In Gil, Y.; Motta, E.; Benjamins, V.; and Musen, M., eds.,
The Semantic Web – International Semantic Web Conference
(ISWC), volume 3729, 578–592. Springer.

[Pyrotoz 2020] Pyrotoz. 2020. Random Pokémon Generator,
Pyrotoz’s Pokémon Teambuilder. Webpage. Last accessed
13-Oct-2020.

[Sciarrone 2020] Sciarrone, J. 2020. Team Generator. Web-
page. Last accessed 13-Oct-2020.

[Shearer, Motik, and Horrocks 2008] Shearer, R.; Motik, B.;
and Horrocks, I. 2008. HermiT: A Highly-Efficient OWL
Reasoner. In Ruttenberg, A.; Sattler, U.; and Dolbear, C.,
eds., Proc. of the 5th Int. Workshop on OWL: Experiences
and Directions (OWLED 2008 EU).

[Simões et al. 2020] Simões, D.; Reis, S.; Lau, N.; and Reis,
L. P. 2020. Competitive Deep Reinforcement Learning over
a Pokémon Battling Simulator. In 2020 IEEE International
Conference on Autonomous Robot Systems and Competi-
tions (ICARSC), 40–45.

[Smogon community 2020a] Smogon community.
2020a. An introduction to smogon’s tier system.
https://www.smogon.com/bw/articles/bw tiers.

[Smogon community 2020b] Smogon com-
munity. 2020b. Smogon strategy dex.
https://www.smogon.com/dex/ss/pokemon/.

[Smogon community 2020c] Smogon community. 2020c.
Tiering for Generation 8 - Smogon Forum Announce-
ments. https://www.smogon.com/forums/threads/tiering-
for-generation-8.3657121/.

[The Academy community 2020] The Academy
community. 2020. The Academy Forums.
https://discord.com/invite/nykYGrN.

[The Pokémon Company 2020] The Pokémon
Company. 2020. Pokémon in Figures.
https://corporate.pokemon.co.jp/en/aboutus/figures/.

[Toledo et al. 2011] Toledo, C. M.; Ale, M. A.; Chiotti, O.;
and Galli, M. R. 2011. An ontology-driven document re-
trieval strategy for organizational knowledge management
systems. Electronic Notes in Theoretical Computer Science
281:21–34. Proceedings of the 2011 Latin American Con-
ference in Informatics (CLEI).


	Introduction
	Related Works
	General Approach
	The Pokémon Ontology
	Pre-Loaded Knowledge

	Data Domain and Collection
	Smogon Usage-based Tiering
	Data Assumptions

	The TeamVerify Tool
	Interface with the Ontology
	Scoring and Generating Output

	Evaluation
	Evaluating Classifications
	Evaluating Team Scores

	Conclusion
	Future Work

