
Improving Univariate Time Series Anomaly Detection Through Automatic
Algorithm Selection and Human-in-the-Loop False-Positive Removement

Cynthia Freeman,1 2 Ian Beaver,1 Abdullah Mueen2

1Verint Intelligent Self-Service, 2University of New Mexico
cynthia.freeman@verint.com, ian.beaver@verint.com, mueen@cs.unm.edu

Abstract

The existence of a time series anomaly detection
method that performs well for all domains is a myth.
Given a massive library of available methods, how can
one select the best method for their application? An ex-
tensive evaluation of every anomaly detection method is
not feasible. Many existing anomaly detection systems
do not include an avenue for human feedback, essen-
tial given the subjective nature of what even is anoma-
lous. We present a technique for improving univariate
time series anomaly detection through automatic algo-
rithm selection and human-in-the-loop false-positive re-
movement. These determinations were made by exten-
sively experimenting with over 30 pre-annotated time
series from the open-source Numenta Anomaly Bench-
mark repository. Once the highest performing anomaly
detection methods are selected via these characteristics,
humans can annotate the predicted outliers which are
used to tune anomaly scores via subsequence similarity
search and improve the selected methods for their data,
increasing evaluation scores and reducing the need for
annotation by 70% on predicted anomalies where anno-
tation is used to improve F-scores.

Introduction
Time series are used in almost every field, and one im-
portant use of time series is for the detection of anoma-
lies, patterns that do not conform to past patterns of be-
havior in the series. Unfortunately, anomaly detection in
time series is a notoriously difficult problem for a mul-
titude of reasons: (1) What is defined as anomalous may
differ based on application. The existence of a one-size-
fits-all anomaly detection method that works well for all
domains is a myth (Laptev, Amizadeh, and Flint 2015;
Vallis, Hochenbaum, and Kejariwal 2014). (2) Anomaly de-
tection often must be done on real-world streaming applica-
tions. (3) It is unrealistic to assume that anomaly detection
systems will have access to thousands of tagged time series.
(4) Non-anomalous data tends to occur in much larger quan-
tities than anomalous data. This can present a problem for a
machine learning classifier approach to anomaly detection as
the classes are not represented equally. (5) It is important to
detect anomalies accurately, but minimizing false positives

Copyright © 2021by the authors. All rights reserved.

is also of great necessity to avoid wasted time in checking for
problems when there are none. (6) There is a massive wealth
of anomaly detection methods to choose from (Chandola,
Banerjee, and Kumar 2009; Blázquez-Garcı́a et al. 2020;
Hodge and Austin 2004). Because of these difficulties inher-
ent in time series anomaly detection, we make the following
contributions:
• A novel, efficient, human-in-the-loop technique for the

classification of time series and choice of anomaly detec-
tion method based on time series characteristics;

• An empirical study determining these methods by exper-
imenting on over 30 pre-annotated time series from the
open-source Numenta anomaly benchmark repository;

• A description of how to incorporate user feedback on pre-
dicted outliers by utilizing subsequence similarity search,
reducing the need for annotation by over 70% on pre-
dicted anomalies while also increasing evaluation scores.

Related Works
In comparing with similar techniques in the literature, we
considered the following three requirements for an anomaly
detection framework: 1) Easy to use for non-technical ana-
lysts rather than limited to those with intimate understanding
of anomaly detection methods, 2) Computationally efficient,
and 3) Include human feedback due to the subjective nature
of anomalies and varied datasets from different domains.

Some popular anomaly detection frameworks include:
LinkedIn’s Luminol (LinkedIn 2018), Etsy’s Skyline (Etsy
2015), Mentat Innovation’s datastream.io (Ltd. 2018), and
Lytics Anomalyzer (Lytics 2015), but none of these include
human-in-the-loop techniques, failing requirement 3.

Yahoo EGADS (Laptev, Amizadeh, and Flint 2015) and
Opprentice (Liu et al. 2015) are human-in-the-loop anomaly
detection systems with similar aims to ours. However, there
are some key differences: EGADS gives users two options:
the user can choose (1) how to model the normal behavior
of the time series such that a significant deviation from this
model is considered an outlier or (2) which decomposition-
based method to use with thresholding on the noise com-
ponent. For example, the user could choose ARIMA for the
forecasting component, the prediction error for the detecting
component, and k-sigma for the alerting component. How-
ever, the user must know the existence of such methods and
understand how to choose these components, failing require-

ment 1. The alternative is to have the user choose a large
variety of methods to input to EGADS, but this would not
be computationally efficient, failing requirement 2. Oppren-
tice makes use of a classifier to detect anomalies where fea-
tures are the results of multiple anomaly detectors ran over
the same data. These detectors are expected to output a non-
negative value that measures the severity of the anomaly and
use a threshold to determine if the severity is high enough to
be considered an anomaly. The severity levels of the detec-
tors with human outlier labeling comprise the training data.
Not only is the analyst expected to know which anomaly
detectors to include, but ALL classifiers/anomaly detectors
are used by Opprentice. This also does not include the time
needed to train Opprentice’s classifier.

We focus on the characteristics present in the time series
to first discard subpar anomaly detection methods. By filter-
ing subpar methods (the first such paper to our knowledge
to use this strategy), we save users time as they can directly
begin working with more promising methods.

One potential direction for choosing anomaly detection
methods and parameters is Automated Machine Learn-
ing (AutoML). Unfortunately, existing AutoML approaches
struggle with anomaly detection as exemplified in the
ChaLearn AutoML Challenge (Hutter, Kotthoff, and Van-
schoren 2019). Large class imbalance was identified as be-
ing the reason for low performance by all teams in this
challenge, even more so than data sets with a large num-
ber of classes. By definition of an anomaly, non-anomalous
data should occur in much greater quantities than anoma-
lous data, presenting a challenge for AutoML systems. Our
method could in fact be considered a form of AutoML
specifically tailored to anomaly detection, where class im-
balance is present by definition. We first use an automated,
data-driven approach to filter out less performant or inap-
plicable methods based on characteristics of the given time
series. Hyperparameter optimization is difficult as large, an-
notated training datasets specific to an application are un-
likely to preexist. Therefore, we apply a human-in-the-loop
approach where human feedback is used to tune the output
of the best performing anomaly detection method, eliminat-
ing erroneous anomalies for a specific application without
requiring the user to be an expert in anomaly detection.

Our human-in-the-loop technique for tuning anomaly
scores is similar to (Herath et al. 2019) and (Madrid et al.
2019). The former uses matrix profiling, but our system can
be applied with any time series anomaly detection method
that outputs an anomaly score. The latter is not built for
anomaly detection but for insect behavior classification.

Our Proposed Approach

We propose a filtering approach based on the characteristics
a given time series possesses followed by a tuning phase.
This is essential as some anomaly detection methods per-
form better on certain characteristics than others. For exam-
ple, if the time series in a user’s application exhibits concept
drift but no seasonality, the user may want to consider GLiM
and not Twitter AnomalyDetection (Twitter 2015).

Figure 1: Left: A time series exhibiting concept drift. Right:
Posterior probabilities of the run length at each time step of
the left time series using a logarithmic color scale.

Time Series Characteristics
Our list of characteristics are not comprehensive but occur
in many real world time series; they were present in all time
series in Numenta’s benchmark repository.

First, missing time steps make it difficult to apply certian
anomaly detection methods without interpolation. However,
other methods can handle missing time steps innately. The
system determines the minimal time step difference in the
input time series to find missing time steps, a technique em-
ployed in works such as (Xu et al. 2018a). The user can then
decide if the missing time steps should be filled using some
form of interpolation (e.g. linear) or if the system should
limit the selection of anomaly detection methods to those
that can innately deal with missing time steps.

Next, the system determines if concept drift (Figure 1) is
present in the time series where the definition of normal be-
havior changes over time (Saurav et al. 2018). To detect con-
cept drift we use an implementation of (Adams and MacKay
2007)1 which utilizes t-distributions for every new concept,
referred to as a run. The posterior probability (P (rt|x1:t)) of
the current run rt’s length at each time step (xi for i = 1...t)
can be used to determine the presence of concept drifts. The
user selects a threshold for the posterior probability for what
is considered to be a run and also how long a run must be
before it is a concept drift.

The system then determines if a time series contains
seasonality, the presence of variations that occur at spe-
cific regular intervals. Our system makes use of the
FindFrequency function in the R forecast library (Hynd-
man, Khandakar, and others 2007) which first removes trend
from the time series if present and determines the spectral
density function from the best fitting autoregressive model.
By determining the frequency f that produces the maximum
output spectral density value, FindFrequency returns 1

f

as the periodicity of the time series. If no seasonality is
present, 1 is returned.

Finally, the system determines if trend is present in
the time series. Our system detects two types of trend: 1)
stochastic trend which is removed via differencing the time
series and identified using the Augmented Dickey-Fuller
(ADF) test (Cheung and Lai 1995) and 2) deterministic trend

1https://github.com/hildensia/bayesian_
changepoint_detection

which is removed via detrending or removing the line of best
fit from the time series and identified using the Cox-Stuart
test (Linden 2000).

In the case where a time series does not display any of
these characteristics, we simply consider all anomaly detec-
tion methods initially. This does not provide the run time
savings, but the less performant methods will quickly drop
out of consideration after the first few disagreements by the
human annotator.

Offline Experimentation and Guidelines
The anomaly detection methods we chose to experiment
with cover a wide breadth of techniques. Some are proba-
bilistic (Variational AutoEncoders (Xu et al. 2018b)), others
are frequency-based (Anomalous (Hyndman 2018)), some
rely on neural networks (Hierarchical Temporal Memory,
HTMs), and others rely on decomposition of the signal it-
self (SARIMAX, STL (Cleveland et al. 1990)). We first per-
formed an offline, comprehensive experimental validation
on over more than 20 time series on a variety of anomaly
detection methods over different time series characteristics
to form guidelines.2

We used 10 time series for every characteristic as deter-
mined by using the techniques discussed above. Thus, ev-
ery characteristic had a corpus of 10 time series. For exam-
ple, we determined how well Facebook Prophet performs
on concept drift by observing its results on 10 time se-
ries all exhibiting concept drift. Some of the time series we
used came from the Numenta Anomaly Benchmark repos-
itory (Numenta 2018) which consists of 58 pre-annotated
time series across a wide variety of domains and scripts for
evaluating online anomaly detection algorithms. No mul-
tivariate time series are provided in Numenta’s repository.
Meticulous annotation instructions for Numenta’s time se-
ries are available in (Numenta 2017) and (Lavin and Ah-
mad 2015). In cases where we did not use Numenta time
series, we had undergraduate students tag the time series for
anomalies following the same Numenta instructions. There
were also several instances where we injected outliers, a
technique employed in (Liu, Wright, and Hauskrecht 2017;
Choudhary, Hiranandani, and Saini 2018). For seasonality,
trend, and concept drift corpi, any missing time steps were
filled using linear interpolation. For the missing time step
characteristic corpus, we either chose time series with miss-
ing time steps already or we randomly removed data points
from time series with originally no missing points to gen-
erate the corpus. For anomaly detection methods that in-
volve forecasting such as Facebook Prophet, we performed
grid search on the parameters to minimize the forecasting
error. Otherwise, we choose models and parameters as intel-
ligently as possible based on discovered time series charac-
teristics.

We experimented with two different anomaly detec-
tion evaluation methods: windowed F-scores and Numenta
Anomaly Benchmark (NAB) scores (see (Numenta 2018)
for details on evaluation methodologies). Using these two

2See https://s3-us-west-2.amazonaws.com/
anon-share/ts2020.zip for offline experiments.

Seasonality Trend Concept
Drift

Missing Time
Steps

Windowed Gaus-
sian

N/A

SARIMAX ? † ? † †
Prophet † ?

Anomalous N/A
STL
Twitter ? N/A
HOT-SAX N/A
GLiM † ? ? †
HTM ? † ? † N/A

Table 1: Which anomaly detection method is more promis-
ing given a time series characteristic? A ? indicates the win-
dowed F-score scheme favors the method whereas a † in-
dicates Numenta Anomaly Benchmark scores (NAB) favors
the method. If there is a N/A, it means that method is not
applicable given that time series characteristic. A method is
more favored in this table if, after the results of our offline
experiments, the method had the best performance with time
series displaying that characteristic.

scoring methodologies, we derived guidelines (Table 1)
based on our experiments. For example, for seasonality
and trend, decomposition-based anomaly detection methods
such as SARIMAX (Seasonal Auto-Regressive Integrated
Moving Average with eXogeneous variables), and Facebook
Prophet perform the best. SARIMAX and Prophet have de-
composition methods with components specifically built for
seasonality and trend which might explain their performance
on this characteristic. For SARIMAX, seasonal versions
of the autoregressive component, moving average compo-
nent, and difference are considered. The integrated portion
of SARIMAX allows for differencing between current and
past values, giving this methodology the ability to support
time series data with trend. For concept drift, more complex
methods are necessary such as HTMs (Hierarchical Tem-
poral Memory networks) (Hawkins, Ahmad, and Dubinsky
2010). For missing time steps, the number of directly ap-
plicable anomaly detection methods is drastically reduced.
Although interpolation is an option, this does introduce a de-
gree of error. If no interpolation is desired, SARIMAX, STL
(Seasonal decomposition of Time series by Loess), Prophet,
and Generalized Linear Models (GLiMs) are options.

We emphasize that the analyst does not select an optimal
method; the analyst is not even aware multiple methods are
being considered. The analyst inputs a time series, but it is
the system that determines which characteristics are present
and then refers to Table 1 to determine which anomaly de-
tection methods should be used.

As there is an ever expanding library of anomaly detection
methods we save users time by surfacing the most promising
methods. The definition of what is an anomaly is highly sub-
jective, so human input is essential in the decision-making
process. Although we automate as much of the process as
we can (determining the presence of characteristics, narrow-
ing down the search space of anomaly detection methods), it
is not advisable to completely remove the human element.

0 1000 2000 3000 4000 5000 6000 7000 8000

60

65

70

75

80

85

Figure 2: A time series where predicted anomalies are rep-
resented as yellow circles.

60 80 100 120 140 160 180 200

64

66

68

70

72

74

520 540 560 580 600 620 640 660

66

68

70

72

74

76

Figure 3: Left: A time series with a predicted anomaly (yel-
low circle) that the annotator disagrees with. Right: In the
same time series, we see a similar pattern latter on.

For every selected anomaly detection method, its pre-
dicted anomalies are given to the user to annotate (Is the pre-
dicted anomaly truly an anomaly?), and based on their deci-
sion, the parameters for that method can be tuned to reduce
the error. Parameter tuning is dependent on the anomaly
detection method. For example, if a method produces an
anomaly score ∈ [0, 100] with an anomaly threshold of 75,
the system could raise the threshold to reduce false positives.
Using this feedback, the system learns to minimize false
positives for the user’s data. However, there is a plethora
of anomaly detection methods, each with their own param-
eters (Chandola, Banerjee, and Kumar 2009). Determining
how to tune these parameters for every possible method is
not feasible, especially as the number of anomaly detec-
tion methods increases. Many methods already output an
anomaly score or can be easily converted to produce such
an output. Thus, we tune the anomaly scores instead of the
anomaly detection parameters for the sake of generalization.

Tuning Anomaly Scores
We tune anomaly scores based on the following concepts:

Concept One: When an anomaly detection method pre-
dicts an anomaly in a time series, these predictions tend
to occur in clusters like in Figure 2. To prevent alarm fa-
tigue, we keep the first detection in a cluster but ignore
remaining detections in the cluster. The user can specify
how many time steps are to be ignored following a de-
tection (ts affected). Given a predicted anomaly, we mul-
tiply ts affected many anomaly scores following the pre-
dicted anomaly’s time step by a sigmoid function, the error
function (erf(x) = 1√

π

∫ x
−x e

−t2dt) to briefly reduce the
anomaly scores of clustered anomalies.

Concept Two: In Figure 3, suppose the annotator dis-
agrees with the predicted anomaly (yellow circle) around
time step 100 (left). A very similar pattern occurs in the same

time series around time step 500 (right), and the anomaly
detection method predicts an anomaly in a similar location.
It is likely that the annotator will also disagree with this
predicted anomaly. We desire to prevent future predictions
that would waste the annotator’s time. Therefore, we deter-
mine “similar chunks” of the time series when given a false
positive by using Mueen’s Algorithm for Similarity Search
(MASS) (Mueen et al. 2017). MASS takes a query subse-
quence (a contiguous subset of values of a time series) and
a time series, ts. MASS then returns an array of normalized
Euclidean distances and the indices they begin on to help
users identify similar (motifs) or dissimilar (discords) sub-
sequences in ts compared to the given query.

For every detected anomaly that the annotator dis-
agrees with, a query is created by forming a subsequence
of the time series of length ts affected with the detec-
tion in the middle of the subsequence. We reduce the
anomaly scores corresponding to these motifs by multi-
plying them to a sigmoid function: y = 1

1+e−kx+b where

b = ln(1−min weightmin weight), k = ln(ε)−b
−max distance . The more sim-

ilar the query is to the corresponding motif, the greater the
reduction to anomaly scores. The minimum weight multi-
plied to the anomaly scores is set by min weight, and how
quickly the sigmoid function converges to 1 is determined
from the max discord distance from the query, max distance,
also determined by virtue of using MASS.

Results
To fully test our framework, we randomly chose 10 pre-
annotated time series from Numenta (Numenta 2018) not
used in our previous offline experimentations.

We determined the characteristics present in each of these
new time series and recorded the time in seconds taken to
detect them in column Time Char of Table 2. If a time
series contained missing time steps, we did not interpo-
late and relied on anomaly detection methods that can in-
nately deal with missing time steps. Based on the time se-
ries characteristics detected, we applied the best perform-
ing anomaly detection methods listed in Table 1. For ex-
ample, the time series ec2 cpu utilization 24ae8d displays
concept drift as determined by run length posterior prob-
abilities, so Table 1 suggests that SARIMAX, GLiM, and
HTM are the best anomaly detection methods to apply. The
total time to detect anomalies with these three methods is
47.81 seconds. We compare it to the time it takes to apply
all anomaly detection methods in Table 1, which is 441.61
seconds. However, the method returning the best windowed
F-score or NAB score is HTM (for both scoring methodolo-
gies) which was one of the predicted top performers. Thus,
it would be a waste of time comparing all methods; using
just the predicted methods in Table 1 would save time and
effort. These best methods were in fact the highest perform-
ing for both scoring methodologies for all but one randomly
chosen time series we experimented with in Table 2. In only
one case was it not best performing: HOTSAX for iio us-
east-1 i-a2eb1cd9 NetworkIn with NAB (although the pre-
dicted GLiM is best when using windowed F-scores). This
is because NAB rewards early detection of anomalies, and,

Dataset Length Characteristics Time Char # Anom Time Opt Time All Best F Best NAB Best Method (using F/NAB)

art load balancer spikes 4032 Trend, Concept Drift 4.16 1 64.98 146.60 .5 41.08 HTM/HTM
ec2 request latency system failure 4032 Seasonality (3), Concept Drift, Miss 4.09 3 48.12 48.12 .86 41.77 Prophet/GLiM
iio us-east-1 i-a2eb1cd9 NetworkIn 1243 Trend 1.30 2 5.66 26.01 .5 40.78 GLiM/HOTSAX
rogue agent key hold 1882 Missing, Concept Drift 1.02 2 2.19 11.32 .25 40.93 SARIMAX/GLiM
ec2 cpu utilization fe7f93 4032 Seasonality (16), Trend 11.11 3 64.32 343.97 .8 41.10 HTM/HTM
ec2 cpu utilization 24ae8d 4032 Concept Drift 4.52 2 47.81 441.61 .67 41.41 HTM/HTM
art daily jumpsdown 4032 Seasonality (13), Trend 11.65 1 43.44 326.63 .67 41.15 GLiM/GLiM
ec2 network in 257a54 4032 Seasonality (42), Trend, Concept Drift, Miss 4.08 1 12.57 12.82 .67 40.72 GLiM/Prophet
exchange-4 cpc results 1643 Concept Drift, Trend, Miss .85 3 10.78 10.78 .46 41.35 Prophet/Prophet
exchange-4 cpm results 1643 Concept Drift, Miss .87 4 2.90 7.66 .47 41.64 Prophet/SARIMAX

Table 2: Optimization evaluation datasets. Time Char is the total time in seconds to detect all characteristics for the time series.
Time Opt is the total time in seconds to detect anomalies using only the predetermined best methods from Table 1 for the
characteristics present whereas Time All is the total time to detect anomalies using all methods from Table 1. These are equal
in cases where some anomaly detection methods are not applicable due to seasonality and/or missing time steps. There is no
human input yet in this table.

Figure 4: Progress plot (Madrid et al. 2019) for the time se-
ries art load balancer spikes using the anomaly detection
method GLiM. Only 24% of predictions need to be anno-
tated using MASS and cluster prediction elimination.

in this instance, HOTSAX detected anomaly scores earlier
than other anomaly detection methodologies.

Table 2 does not contain results of human input. We now
experiment with Concepts 1 and 2 which involves human
input.3 As in (Madrid et al. 2019), we create progress plots
where the x-axis is the fraction of annotations already done,
and the y-axis shows the fraction of annotations left.4 In the
worst case scenario, every annotation only reduces the num-
ber of remaining annotations by 1 (y = 1 − x). This would
mean that there are no anomaly detection clusters and no
similar instances of confirmed false positives. In Figure 4,
we show the progress plot for art load balancer spikes us-
ing the anomaly detection method GLiM. Without removing
clusters and applying MASS, 117 predictions would need to
be reviewed by annotators. Using both concepts, only 29 an-
notations are needed in total, reducing the fraction of needed
annotations by almost 80%.

As an example of Concept 2, the annotator disagrees with
the first prediction made by GLiM. MASS determines there
is a similar subsequence further along in the time series con-

3ts affected=2% of time series length, min weight=.95
4As the time series used are already annotated by Numenta, we

“annotate” by using the ground truths provided by Numenta.

Dataset Before Best F After Best F

art load balancer spikes .5 .5
ec2 request latency system failure .86 1
iio us-east-1 i-a2eb1cd9 NetworkIn .5 .67
rogue agent key hold .25 .31
ec2 cpu utilization fe7f93 .8 .8
ec2 cpu utilization 24ae8d .67 .8
art daily jumpsdown .67 1
ec2 network in 257a54 .67 1
exchange-4 cpc results .46 .55
exchange-4 cpm results .47 .62

Table 3: Before Best F shows windowed F-scores for the
best performing anomaly detection method on the corre-
sponding time series (no human feedback). After Best F
shows F-scores for the same method applying MASS and
prediction cluster elimination after each annotation.

taining a prediction not yet tagged and lowers the anomaly
scores corresponding to this subsequence. Thus, instead of
117 annotations being reduced to 116 after a single anno-
tation, we have 115 remaining. In all but the worst case, as
the reviewer makes annotations, the number of annotations
remaining goes down in steps greater than 1.

Out of the 67 time series and anomaly detection method
combinations, only 9 had worst case scenario progress plots.
In total, the number of predictions that would need to be an-
notated across all 67 combinations without prediction cluster
elimination and MASS is 1, 701. Using MASS and prediction
cluster elimination, the number of annotations required is
483, a 71.6% reduction in annotations. Average MASS run-
ning time after an annotation was .17 seconds across all 67
time series-method combinations. In addition, using the two
concepts often increases evaluation scores due to the reduc-
tion in false positives. For our test time series, we did not see
false negatives upon application of the two concepts. Either
there was no change (because there are no clusters or there
are no similar subsequences containing a disagreed upon
anomaly) or an increase in precision due to the reduction
of false positives. Table 3 displays the windowed F-scores
of the best performing anomaly detection method without

using MASS and prediction cluster elimination from Table 2
versus using MASS and prediction cluster elimination on the
same method. On average, windowed F-scores increased by
.14 by using MASS and prediction cluster elimination. In 8
out of 10 time series, NAB scores either stayed the same
or increased in value. We suspect this is because NAB ex-
plicitly rewards early detection of anomalies, and predic-
tions made slightly before ground truths may have been
removed using the two concepts, reducing the scores (Nu-
menta 2018).

Conclusion
Anomaly detection is a challenging problem for many rea-
sons, one of them being method selection in an ever expand-
ing library, especially for non-experts. Our method tack-
les this problem in a novel way by first determining the
characteristics present in the given data and narrowing the
choice down to a smaller set of promising anomaly detection
methods. We determine these methods using over 20 pre-
annotated time series and validate our system’s ability on
choosing better methods by experimenting with another 10
time series. We incorporate user feedback on predicted out-
liers from the methods in this smaller set, utilizing MASS and
removing predicted anomaly clusters to tune these methods
to the user’s data, reducing the need for annotation by 70%
on predicted anomalies while increasing evaluation scores.

References
Adams, R. P., and MacKay, D. J. 2007. Bayesian online change-
point detection. arXiv preprint arXiv:0710.3742.
Blázquez-Garcı́a, A.; Conde, A.; Mori, U.; and Lozano, J. A. 2020.
A review on outlier/anomaly detection in time series data. arXiv
preprint arXiv:2002.04236.
Chandola, V.; Banerjee, A.; and Kumar, V. 2009. Anomaly detec-
tion: A survey. ACM computing surveys (CSUR) 41(3):15.
Cheung, Y.-W., and Lai, K. S. 1995. Lag order and critical values of
the augmented dickey–fuller test. Journal of Business & Economic
Statistics 13(3):277–280.
Choudhary, S.; Hiranandani, G.; and Saini, S. K. 2018. Sparse de-
composition for time series forecasting and anomaly detection. In
Proceedings of the 2018 SIAM International Conference on Data
Mining, 522–530. SIAM.
Cleveland, R. B.; Cleveland, W. S.; McRae, J. E.; and Terpenning,
I. 1990. Stl: A seasonal-trend decomposition. Journal of Official
Statistics 6(1):3–73.
Etsy. 2015. Skyline. https://github.com/etsy/
skyline.
Hawkins, J.; Ahmad, S.; and Dubinsky, D. 2010. Hierarchical tem-
poral memory including htm cortical learning algorithms. Techni-
cal report, Numenta, Inc, Palto Alto.
Herath, J. D.; Bai, C.; Yan, G.; Yang, P.; and Lu, S. 2019. Ramp:
Real-time anomaly detection in scientific workflows.
Hodge, V., and Austin, J. 2004. A survey of outlier detection
methodologies. Artificial intelligence review 22(2):85–126.
Hutter, F.; Kotthoff, L.; and Vanschoren, J. 2019. Automated ma-
chine learning-methods, systems, challenges.
Hyndman, R. J.; Khandakar, Y.; et al. 2007. Automatic time series
for forecasting: the forecast package for R. Number 6/07. Monash
University, Department of Econometrics and Business Statistics .

Hyndman, R. J. 2018. Anomalous. https://github.com/
robjhyndman/anomalous.
Laptev, N.; Amizadeh, S.; and Flint, I. 2015. Generic and scalable
framework for automated time-series anomaly detection. In Pro-
ceedings of the 21st ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 1939–1947. ACM.
Lavin, A., and Ahmad, S. 2015. The numenta anomaly benchmark
(white paper). https://github.com/NAB/wiki.
Linden, M. 2000. Testing growth convergence with time series
data: a non-parametric approach. International Review of Applied
Economics 14(3):361–370.
LinkedIn. 2018. Luminol. https://github.com/
linkedin/luminol.
Liu, D.; Zhao, Y.; Xu, H.; Sun, Y.; Pei, D.; Luo, J.; Jing, X.; and
Feng, M. 2015. Opprentice: Towards practical and automatic
anomaly detection through machine learning. In Proceedings of
the 2015 Internet Measurement Conference, 211–224. ACM.
Liu, S.; Wright, A.; and Hauskrecht, M. 2017. Online condi-
tional outlier detection in nonstationary time series. In Proceed-
ings of the... International Florida AI Research Society Conference.
Florida AI Research Symposium, volume 2017, 86. NIH Public
Access.
Ltd., M. I. 2018. datastream.io. https://github.com/
MentatInnovations/datastream.io.
Lytics. 2015. Anomalyzer. https://github.com/lytics/
anomalyzer.
Madrid, F.; Singh, S.; Chesnais, Q.; Mauck, K.; and Keogh, E.
2019. Efficient and effective labeling of massive entomological
datasets.
Mueen, A.; Zhu, Y.; Yeh, M.; Kamgar, K.; Viswanathan,
K.; Gupta, C.; and Keogh, E. 2017. The fastest sim-
ilarity search algorithm for time series subsequences under
euclidean distance. http://www.cs.unm.edu/˜mueen/
FastestSimilaritySearch.html.
Numenta. 2017. Anomaly labeling instructions.
https://drive.google.com/file/d/0B1_
XUjaAXeV3YlgwRXdsb3Voa1k/view.
Numenta. 2018. The numenta anomaly benchmark. https:
//github.com/numenta/NAB.
Saurav, S.; Malhotra, P.; TV, V.; Gugulothu, N.; Vig, L.; Agarwal,
P.; and Shroff, G. 2018. Online anomaly detection with concept
drift adaptation using recurrent neural networks. In Proceedings
of the ACM India Joint International Conference on Data Science
and Management of Data, 78–87. ACM.
Twitter. 2015. Anomalydetection. https://github.com/
twitter/AnomalyDetection.
Vallis, O.; Hochenbaum, J.; and Kejariwal, A. 2014. A novel tech-
nique for long-term anomaly detection in the cloud. In 6th USENIX
Workshop on Hot Topics in Cloud Computing (HotCloud 14).
Xu, H.; Chen, W.; Zhao, N.; Li, Z.; Bu, J.; Li, Z.; Liu, Y.; Zhao, Y.;
Pei, D.; Feng, Y.; et al. 2018a. Unsupervised anomaly detection
via variational auto-encoder for seasonal kpis in web applications.
In Proceedings of the 2018 World Wide Web Conference on World
Wide Web, 187–196. International World Wide Web Conferences
Steering Committee.
Xu, H.; Chen, W.; Zhao, N.; Li, Z.; Bu, J.; Li, Z.; Liu, Y.; Zhao, Y.;
Pei, D.; Feng, Y.; et al. 2018b. Unsupervised anomaly detection
via variational auto-encoder for seasonal kpis in web applications.
In Proceedings of the 2018 World Wide Web Conference, 187–196.

