
Compilation-Based Approaches to Parallel Planning: An Empirical Comparison

Kristýna Pantůčková and Roman Barták
Charles University, Faculty of Mathematics and Physics

Prague, Czech Republic
{pantuckova, bartak}@ktiml.mff.cuni.cz

Abstract

Automated planning deals with finding a sequence of
actions, a plan, to reach a goal. One of the possible ap-
proaches to automated planning is a compilation of a
planning problem to a Boolean satisfiability problem or
to a constraint satisfaction problem, which takes direct
advantage of the advancements of satisfiability and con-
straint satisfaction solvers. This paper provides a com-
parison of three encodings proposed for the compilation
of planning problems: Transition constraints for paral-
lel planning (TCPP), Relaxed relaxed ∃-Step encoding
and Reinforced Encoding. We implemented the encod-
ings using the programming language Picat 2.8, we sug-
gested certain modifications, and we compared the per-
formance of the encodings on benchmarks from inter-
national planning competitions.

Introduction
Planning is an important aspect of deliberate reasoning of
autonomous artificial agents [Ghallab, Nau, and Traverso,
2004]. The aim of planning is to find a sequence of actions
(called a plan) to reach a desired state of the world. This pa-
per focuses on solving planning tasks by compiling to a con-
straint satisfaction problem (CSP) or a Boolean satisfiability
problem (SAT). The primary motivation for using compila-
tion (also called reduction) techniques to problem-solving
is leveraging SAT and CSP solvers advancements, includ-
ing new reasoning algorithms and heuristics. When solv-
ing a planning task, the number of actions needed to reach
the goal is unknown, while the SAT formula or a constraint
satisfaction problem is of a fixed size. This disproportion
is traditionally approached by solving a fixed-length plan-
ning problem [Kautz and Selman, 1999]. The SAT formula
or a CSP encodes the problem of the existence of a plan of
a given (maximum) length. If the underlying solver proves
that no solution exists, i.e., no plan of a given (maximum)
length exists, the length bound is increased, and the process
is repeated until the plan is found. To decrease the num-
ber of calls to the solver, parallel planning is used. It allows
more actions to run in parallel and hence finding plans with a
smaller makespan (though possibly with more actions). We
focus on finding parallel plans in this paper.

Copyright c© 2021by the authors. All rights reserved.

Compilation to a CSP was firstly proposed to compile
a planning graph [Do and Kambhampati, 2000], later to
encode planning problems directly [Lopez and Bacchus,
2003]. Barták [2011a] proposed the model PaP, where value
transitions are represented by domain transition graphs and
encoded by table constraints. PaP uses the ∀-step parallel
semantics, where each parallel step contains more actions
that are executable in any order. Afterward, PaP was refor-
mulated as PaP-2, which uses only action variables [Barták,
2011b]. PaP-2 inspired Ghooshchi et al. [2017], who pro-
posed the encoding Transition constraints for parallel plan-
ning (TCPP), which, in contrast, uses only state variables.

Compilation to SAT was proposed as an alternative to
deduction [Kautz and Selman, 1992]. Rintanen, Heljanko,
and Niemelä [2006] proposed the ∃-step parallel semantics,
which allows more actions in each parallel step than the ∀-
step semantics. The ∃-step semantics was further relaxed by
Wehrle and Rintanen [2007] and Balyo [2013].

Our work focuses on implementation, modification and
comparison of three encodings for parallel planning: TCPP
[Ghooshchi et al., 2017], R2∃-Step encoding [Balyo, 2013]
and Reinforced Encoding [Balyo, Barták, and Trunda,
2015]. TCPP is one of the most recent CSP encodings, and
R2∃-Step encoding [Balyo, 2013] and Reinforced Encoding
[Balyo, Barták, and Trunda, 2015] are among the most re-
cent SAT-based approaches which focus purely on the en-
coding of problems as newer approaches use other optimiza-
tion techniques such as incremental SAT solving, which is
not studied in this paper. R2∃-Step encoding uses a differ-
ent parallel semantics than TCPP, while Reinforced Encod-
ing uses a similar definition of parallel step while describ-
ing the model differently than TCPP. TCPP has been com-
pared with other SAT or CSP-based planners and with plan-
ners based on state-space search. However, to our knowl-
edge, TCPP has not been compared with the R2∃-Step
encoding or Reinforced Encoding yet. We implemented
these encodings using the programming language Picat 2.8
(www.picat-lang.org), and we compare their performance on
standard benchmarks from International Planning Competi-
tions (IPC). Additionally, we propose modifications of these
encodings to improve the efficiency of our implementation.

The contributions of this paper are: (1) a comparison of
TCPP, R2∃-Step encoding and Reinforced Encoding, all im-
plemented in Picat 2.8, on standard planning benchmarks

from International Planning Competitions and (2) modifica-
tions of these encodings, which are more suitable for imple-
mentation in Picat 2.8 than the original formulations.

Background
Classical (STRIPS) planning
A classical planning problem can be defined as a 4-tuple
P = (V,A, s0, g), where V is a set of multi-valued state
variables 〈V1, . . . , Vn〉 with finite domains (Domain(Vi) is
the set of values that can be assigned to the variable Vi), A
is a set of actions, s0 is the initial state of the world, and g is
the goal.

Each state is described by values of state variables
〈v1, . . . , vn〉 where ∀i : 1 ≤ i ≤ n : vi ∈ Domain(Vi). For
example, these variables describe the locations of objects in
the world. The goal is characterized by assignments of goal
values to a subset of state variables. For example, the goal
may specify desired locations of certain objects.

An action is defined by its preconditions and effects de-
scribing values of state variables before and after execution
of the action. Sets of value assignments represent precondi-
tions and effects. While the precondition specifies the values
of certain state variables required before executing the ac-
tion, the effect specifies how certain state variables change
their values after the execution of the action. The other vari-
ables (not among the effects) keep their values from the pre-
vious state (the frame axiom).

A solution to a classical planning problem is a se-
quential plan, a totally ordered finite sequence of actions
π = 〈a1, . . . , an〉, such that the first action a1 can be exe-
cuted in the initial state s0, ai can be executed in the state
si−1, where si is the resulting state after execution of the ac-
tion ai (∀i : 2 ≤ i ≤ n), and the state sn satisfies the goal
condition g.

Parallel planning
In parallel planning, it is allowed to have more actions in
one time step. A sequential plan can then be obtained from
the parallel plan by ordering actions in each parallel step.

The ∀-step semantics of parallel plans requires that each
ordering of actions must be valid in each parallel step. As-
sume s to be the state before the parallel step and s′ be the
state after the parallel step. Then, any permutation of actions
from the parallel step will transfer the state s to state s′.

Consider a planning problem with actions a1, a2 and a3
where:

• preconditions(a1) = {v1 = 1},
• preconditions(a2) = {v1 = 1},
• preconditions(a3) = {v1 = 1, v2 = 2, v3 = 2},
• effects(a1) = {v2 = 2},
• effects(a2) = {v3 = 2},
• effects(a3) = {v1 = 2},
• s0 = {v1 = 1, v2 = 1, v3 = 1},
• g = {v1 = 2}.

Then, from the parallel plan 〈{a1, a2}, {a3}〉 with two par-
allel steps, we obtain two sequential plans of length three,
〈a1, a2, a3〉 and 〈a2, a1, a3〉.

Formally, a parallel plan for a planning problem P re-
specting the ∀-step semantics [Ghooshchi et al., 2017] is
a sequence of sets of actions Π = 〈A1, . . . , Am〉 such that
for each t : 1 ≤ t ≤ m there exists a state st such that for
each permutation A′t of the action set At, st is the state after
executing actions in the order given by the permutation A′t
in the state st−1, where s0 is the initial state and sm satis-
fies the goal condition g. We call the length m of a parallel
plan a makespan. Some planners use the ∃-step semantics,
where at least one valid action ordering must exist for each
parallel step. A parallel plan is also called a layered plan,
where each action set At is called a layer [Barták, 2011a].
While sequential planners search for a plan with the minimal
sequential plan length, parallel planners search for a plan
with the minimal makespan. As a result, parallel plans of-
ten contain redundant actions, which are not necessary for
reaching the goal [Ghooshchi et al., 2017].

Encoding of a planning problem
To translate a planning task to SAT or CSP, we encode
the problem with a fixed plan length since the problem must
be described by a fixed number of variables and constraints.
There will be one copy of each variable and each constraint
for each step of the plan. If the solver proves that a plan
of this length does not exist, we encode the problem again
with an increased plan length until the solver finds a solu-
tion [Kautz and Selman, 1999].

Transition Constraints for Parallel Planning
The encoding Transition constraints for parallel planning
(TCPP) was proposed by Ghooshchi et al. [2017] as a con-
straint satisfaction problem. TCPP models domains of state
variables by domain transition graphs (DTG) of variables.
Vertices of DTG represent values in its domain and edges
represent value transitions. For each action a where {v =
i} ∈ preconditions(a) and {v = j} ∈ effects(a), there is
an edge i → j in DTG of the variable v. For each action a
where {v = j} ∈ effects(a) but the value of v is not de-
fined in preconditions(v), there is an edge ∗ → j in DTG
of v, where ∗ denotes the don’t care vertex. Actions that do
not change a value of v, i.e., actions that have v only in pre-
conditions and actions that have v neither in preconditions
nor in effects, are called no-op actions. No-op actions can
be represented by loops on vertices of DTG. Figure 1 shows
an example of DTG.

A parallel plan corresponds to synchronized transitions in
DTGs of all variables. Any set of non-interfering actions can
be used in one parallel step. Two actions are non-interfering
if they can be executed in any order with the same result,
i.e., effects of one action do not destroy preconditions and
effects of the other action. Note that preconditions must be
preserved during the execution of an action. Transitions in
DTG are encoded by table constraints. Table constraints,
which enumerate possible values of a tuple of variables, are
provided by Picat [www.picat-lang.org, 2019] as well as by

 * 1 2
a1 a2

x1

Figure 1: An example domain transition graph (DTG).
Consider a variable x1, whose values can be changed by
two actions, a1 and a2, where preconditions(a1) = {},
effects(a1) = {x1 = 1}, preconditions(a2) = {x1 = 1}
and effects(a2) = {x1 = 2}. Then this picture represents
DTG of x1. The vertex labelled by ∗ is the don’t care vertex.
No-op actions are omitted in the picture.

other CSP solvers. The model contains two types of vari-
ables for each time point, state variables and parallelism
variables. For each state variable, there is one parallelism
variable. Values of parallelism variables prevent a solver
from selecting interfering actions in the same layer. For in-
stance, when two actions a1 and a2, which change a value
of v, are interfering, we can set the values of the parallelism
variable pv of the variable v such that the value of pv , when
a1 is selected, is different from the value of pv , when a2 is
selected.

Table 1: Example transition table of the model TCPP
Vi[T] Vi[T + 1] Vj[T] Vj[T + 1] Pi[T] Pj[T]

1 2 3 4 1 3
* 2 * 4 0 3
1 1 * * 0 *
2 2 * * 0 *

Let us assume a variable Vi whose transition table for
the transition between the time points T and T + 1 is shown
in table 1. The first two rows correspond to two actions that
can modify the value of Vi. The other rows represent no-
op actions. The symbol ∗ denotes undefined values (don’t
care values). The value of the parallelism variable Pi must
be different in the first two rows. Otherwise, these two ac-
tions could be executed in one layer as values of the other
variables are compatible.

Relaxing the Relaxed Exist-Step Parallel
Planning Semantics

The R2∃-Step encoding proposed by Balyo [2013] as a SAT
model implements the relaxed relaxed ∃-step parallel se-
mantics, where actions from one layer must be executable in
at least one order. The order of execution of actions is fixed
and decided in advance. The authors propose to find the ac-
tion ordering by sorting vertices in an enabling graph by
modified topological sort, which ignores cycles in the graph.
Vertices of an enabling graph represent actions. For each
precondition Vi = x of an action Aj , there is a directed
edge Uk → Uj for each action Ak having Vi = x in effects.
The encoding uses Boolean action variables, state variables,
and auxiliary variables, which are used in constraints en-
forcing the R2∃-Step parallel semantics. We implemented
the encoding using multi-valued state variables.

Formulation in Picat
The original formulation containing a large number of vari-
ables and constraints turned out to be very inefficient for the
Picat SAT solver. Therefore, we decided to shorten the de-
scription of a model by describing the evolution of a value
of each variable during each parallel step by a constraint
simulating a regular automaton, which is provided by Picat
[www.picat-lang.org, 2019].

In the automaton for the variable Vi for the time step
T , there is an initial state q0, one accepting state qf
and |Domain(Vi)| additional states q1, . . . , q|Domain(Vi)|,
where each state corresponds to one value from the domain
of Vi. Edges can be labelled by actions. However, the size
of the input alphabet can be reduced if we consider value
transitions instead of actions. The input sequence of an au-
tomaton for time T starts with a letter representing Vi[T],
then there follows the sequence of symbols, which repre-
sent action variables A1[T], . . . , Ak[T]. The last symbol in
the input sequence represents Vi[T + 1].

If an action variable Ai[T] is equal to 0, which means
that the action ai it not executed during the parallel step T ,
the automaton reads the universal no-op symbol and stays
in its current state. Otherwise, the automaton transits from
the state representing the precondition value of the action to
the state representing the effect value. If the value of the vari-
able is defined only in preconditions, the automaton will stay
in the state representing the precondition value. If the current
state of the automaton is not compatible with preconditions,
the automaton transits to the error state.

The input alphabet contains one symbol for each possi-
ble value transition of the variable (including no-op transi-
tions and transitions from a don’t care value) and a symbol
representing the universal no-op transition. Figure 2 shows
an example of such automaton.

The transition function is defined as follows:

• δ(q0, input valuej) = qj for each value j from the do-
main of Vi (input valuej is the symbol identifying
an input value and there is an edge from the initial
state to each internal vertex to transfer the automaton
to the state corresponding to the initial value of Vi)

• δ(qj , t) = qk for each transition identifier t such that
valuek is the goal value of the transition and either
valuej is the initial value or the initial value is the don’t
care value

• δ(qj , t) = qj for each transition identifier t, which rep-
resents the no-op transition on the value valuej ; these
transitions correspond to actions where Vi is in precon-
ditions but not in effects

• δ(qj , noop) = qj , where noop is the identifier used for
all transitions (actions) which are not executed (the uni-
versal no-op action)

• δ(qj , output valuej) = qf for each value j from
the domain of Vi (output valuej is the symbol iden-
tifying an output value and the automaton accepts only
if the last input is equal to the last state, i.e., the com-
putation must end in the final value of Vi)

1
Tj 2

Tk, no-op

Vi

no-op

init accept

in
p
u
t 1

inp
ut 2

output
1

output2

Figure 2: An example automaton describing evolution of
values of the variable Vi during the time step T . States 1
and 2 represent values in the domain of Vi. The letter no-
op represents the universal no-op action. Some actions, rep-
resented by the transition Tk, require Vi = 1 in precondi-
tions. Other actions, represented by Tj , change the value of
Vi from 1 to 2. The other edges correspond to input and out-
put values of the variable.

• δ(q, x) = error state for each transition not defined
above

Ranking
The efficiency of a model is affected by the ranking of ac-
tions. A better ordering of actions allows solving a planning
problem in fewer parallel steps. We modified the ranking
by adding disabling edges to describe relations between ac-
tions that are not yet connected in the enabling graph. For
a pair of actions ai, aj where vk = v is an effect of ai
and vk = w is a precondition of aj and v 6= w (ai destroys
a precondition of aj), disabling edge is an edge directed
from the vertex representing aj to the vertex representing ai.
By adding disabling edges to an enabling graph, we create
an enabling-disabling graph. Additionally, when searching
for the topological sorting in an enabling-disabling graph us-
ing the depth-first search, we always start in the vertex with
the lowest indegree (number of incoming edges). Accord-
ing to our experiments, adding disabling edges improved
the performance of the encoding.

Reinforced Encoding
Reinforced Encoding was proposed by Balyo, Barták, and
Trunda [2015] for compilation to SAT. This model combines
action and state variables with transition variables, repre-
senting how the value of a state variable changes between
two layers. Constraints describe relations between the exe-
cution of actions, value transitions, and values of state vari-
ables. Our implementation uses multi-valued state variables.

Although both Reinforced Encoding and TCPP use the ∀-
step parallel semantics, in Reinforced Encoding, two actions
cannot be executed during the same time step if they are not
independent. Two actions are independent if neither pre-
conditions nor effects of the first action contain any variable
occurring in preconditions or effects of the second action.
By this definition, two actions cannot be executed together,

for instance, if they have the same precondition. However,
suppose this precondition variable does not occur in effects
of any of these actions. In that case, these actions could be
selected in one parallel step because they can be executed in
any order.

We modified the encoding to use the same definition of
parallel step as TCPP, i.e., to allow selection of actions that
are not interfering. During each time step, at most one action
that causes any transition value1 → value2 of the variable
vi where value1 6= value2 can be executed. We used the Pi-
cat predicate sum/1, where the sum of the involved action
variables must not exceed 1 to ensure that at most one of
the actions is executed.

Let us assume a variable Vi, which is in both
preconditions and effects of actions aj , ak and al.
We can describe the conflict of these actions during
the time step T with the predicate sum as follows:
sum(〈Aj [T], Ak[T], Al[T]〉) ≤ 1.

Experimental evaluation
To translate planning instances from International Planning
Competitions from PDDL [Ghallab et al., 1998] to the SAS+
formalism [Bäckström and Nebel, 1995], which uses multi-
valued state variables, we used the translation component
of the Fast Downward planning system [Helmert, 2006].
We also extended all encodings by mutex constraints pro-
duced by the translator component of Fast Downward, as
suggested by Ghooshchi et al. [2017]. These constraints enu-
merate mutually exclusive values of pairs of state variables.
We encoded mutex constraints by negative table constraints
provided by Picat.

We performed experiments to compare our modifications
with the original versions and to compare different encod-
ings. All experiments were run on a computer with the In-
tel Core i7-8550U CPU @ 1.80GHz processor and 16 GB
of RAM. For solving planning problems, we used the SAT
solver provided by Picat as it outperformed other solvers
available in Picat. In most experiments, we measure, for
each domain, the total number of instances solved within
the time limit of 60 minutes per instance. Besides the solv-
ing time, the total time also includes the translation time and
the time used for all processing steps. We measure the total
time from translation from PDDL to finding a plan. For eval-
uation of encoding modifications, we used planning prob-
lems from the domains airport, grid, miconic, pegsol, stor-
age, and zenotravel. For comparison of different models, we
used in addition the domains tpp, parcprinter, and wood-
working.

We have chosen the domain miconic since it contains
a wide range of problems from simple problems that were
solved with all encodings, including the most literal im-
plementations, to difficult problems that were not solved
with any of the implemented models. The domain grid con-
tains difficult problems where the number of solved prob-
lems was low with all encodings and with some encod-
ings, we could not solve any problem. The other domains
were selected from the domains used for experimental eval-
uation in the three original papers. The domains storage
and zenotravel were used by Ghooshchi et al. [2017] and

Balyo [2013]. The domains pegsol, parcprinter and wood-
working were used by Balyo [2013] and Balyo, Barták, and
Trunda [2015]. The domains tpp and airport were used by
Ghooshchi et al. [2017].

R2∃-Step encoding
Table 2 shows the number of problems solved with R2∃-Step
encoding within one hour. The table demonstrates the neces-
sity of modification of the encoding as we could solve only
the simplest problems with the original encoding in Picat
(the column labeled as orig). With regular automata, the to-
tal number of solved problems is higher with disabling edges
(disab) than with the original enabling graph (enab) even
though the results slightly worsened in some domains. Ad-
dition of mutexes produced by the Fast Downward translator
slightly improved the performance (mut). In the rows where
the translator did not produce any mutexes, the numbers are
in parentheses.

Table 2: The number of solved problems for modifications
of R2∃-Step encoding

domain total orig enab disab mut
airport 50 0 15 14 15

grid 5 0 1 0 0
miconic 150 15 48 58 (58)
pegsol 20 0 19 18 (18)
storage 30 1 16 17 17

zenotravel 20 0 15 15 (15)
total 275 16 114 122 123

Reinforced Encoding
Table 3 compares results of modifications of Reinforced En-
coding. The results improved significantly after changing
the definition of parallel step to work with non-interfering
actions (non-interfering) instead of independent actions
(orig). Mutexes of the Fast Downward translator (mut)
slightly improved the performance.

Table 3: The number of solved problems for modifications
of Reinforced Encoding

domain total orig non-interfering mut
airport 50 11 20 20

grid 5 0 0 1
miconic 150 40 53 (53)
pegsol 20 14 14 (14)
storage 30 12 16 16

zenotravel 20 7 16 (16)
total 275 84 119 120

Comparison of encodings
Table 4 contains the number of problems from nine domains
solved within the limit of one hour for TCPP, R2∃-Step
encoding and Reinforced Encoding (RE). Figure 3 shows

0

50

100

150

200

250

0

2
4

0

4
8

0

7
2

0

9
6

0

1
2

0
0

1
4

4
0

1
6

8
0

1
9

2
0

2
1

6
0

2
4

0
0

2
6

4
0

2
8

8
0

3
1

2
0

3
3

6
0

3
6

0
0

so
lv

ed
 p

ro
b

le
m

s

time in seconds

TCPP Relaxed relaxed exists-step RE

Figure 3: This graph shows the number of problems solved
with TCPP, R2∃-Step encoding and Reinforced Encoding in
time given in seconds.

how the number of solved problems increases with increas-
ing time limit. Based on the aggregate results, TCPP solved
the highest total number of problems, the R2∃-Step encod-
ing was in the second place and the Reinforced Encoding
was in the last place.

Table 4: Comparison of the number of solved problems for
TCPP, R2∃-Step encoding and Reinforced Encoding

domain total TCPP R2∃-Step RE
airport 50 23 15 20

grid 5 1 0 1
miconic 150 58 58 53

parcprinter 20 20 20 20
pegsol 20 15 18 14
storage 30 16 17 16

tpp 30 28 24 20
woodworking 20 18 20 10

zenotravel 20 16 15 16
total 345 195 187 170

Each encoding attempts to achieve a better performance in
a different way. The advantage of TCPP is that this encoding
requires the smallest number of variables and constraints.
For instance, for problems in the domain zenotravel, TCPP
adds on average about 33 variables for each layer, while our
final versions of both the R2∃-Step encoding and Reinforced
Encoding add on average more than 7000 variables. How-
ever, as we used a SAT solver, Picat internally translated
the models to SAT; as a result, variables and constraints do
not correspond to those used by the solver. Nevertheless,
the results suggest that even in that case, the formulation
of models affects the performance significantly. Picat can
translate some constraints more efficiently than the others,
and a high number of variables and constraints in the initial
model seems to decrease the performance of the final SAT
model.

On the other hand, the R2∃-Step encoding requires
the lowest number of SAT solver calls due to the short-
est makespan of parallel plans. For instance, in the domain
pegsol, where this encoding outperformed both TCPP and
Reinforced Encoding, the parallel plans produced by these
two encodings were more than twice as long as the plans
of the R2∃-Step encoding (the average makespan was 9 for
R2∃-Step encoding and 24 for TCPP or Reinforced Encod-
ing).

TCPP and the final version of Reinforced Encoding de-
scribe the same model. While Reinforced Encoding defines
a model using a high number of constraints that describe re-
lations between state, action, and transition variables, TCPP
requires only state and parallelism variables, whose rela-
tions can be concisely described by table constraints. Judg-
ing by the results, decreasing the number of variables and
constraints can significantly improve the performance. Since
TCPP also solved the highest total number of problems
while having a similar number of constraints as our final
version of the R2∃-Step encoding, we conclude that reduc-
ing the number of variables and using suitable types of con-
straints may be more beneficial than reducing the number of
solver calls. Our implementation of TCPP also solved more
problems from most of the common benchmarks (airport,
miconic, storage, tpp, and zenotravel) in the time limit of 60
minutes than the original version of Ghooshchi et al. [2017].
However, Ghooshchi et al. [2017] limited memory to 4 GB
during their experiments.

Conclusions
We implemented three compilation-based planning ap-
proaches, TCPP, R2∃-Step encoding and Reinforced En-
coding, in Picat 2.8. The source codes are available
for download at https://bitbucket.org/krpant/compilation-
based-approaches-to-parallel-planning. Firstly, we showed
how these encodings could be implemented more efficiently.
In particular, we suggested a more concise implementation
of the R2∃-Step encoding, and we showed how the rank-
ing of actions influences the performance. Next, we com-
pared two different definitions of a parallel step in Rein-
forced Encoding. Secondly, we compared the encodings on
benchmarks from International Planning Competitions. As
TCPP outperformed the R2∃-Step encoding, we suppose that
the formulation of the planning problem, including types
of constraints and number of variables, may affect the ef-
ficiency more than the number of SAT solver calls.

Since all these encodings are makespan-optimal, they pro-
duce plans with redundant actions. Future work could focus
on decreasing plan lengths by eliminating redundant actions.
In the future, we could also deal with incremental solving as
it is employed in the most recent papers related to SAT-based
planning [Gocht and Balyo, 2017].

Acknowledgments
Research is supported by Czech Science Foundation under
the project 18-07252S, by SVV project number 260 575 and
by the Charles University, project GA UK number 156121.

References
Bäckström, C., and Nebel, B. 1995. Complexity results for
SAS+ planning. Computational Intelligence 11(4):625–655.
Balyo, T.; Barták, R.; and Trunda, O. 2015. Reinforced
encoding for planning as SAT. Acta Polytechnica CTU Pro-
ceedings 2(2):1–7.
Balyo, T. 2013. Relaxing the relaxed exist-step parallel
planning semantics. In Proceedings of the 25th IEEE In-
ternational Conference on Tools with Artificial Intelligence,
865–871.
Barták, R. 2011a. A novel constraint model for parallel
planning. In Proceedings of the 24th International Florida
Artificial Intelligence Research Society Conference, 9–14.
Barták, R. 2011b. On constraint models for parallel plan-
ning: The novel transition scheme. In Proceedings of the
11th Scandinavian Conference on Artificial Intelligence,
volume 227, 50–59.
Do, M. B., and Kambhampati, S. 2000. Solving planning-
graph by compiling it into CSP. In Proceedings of the 5th
International Conference on Artificial Intelligence Planning
and Scheduling, 82–91.
Ghallab, M.; Knoblock, C.; Wilkins, D.; Barrett, A.; Chris-
tianson, D.; Friedman, M.; Kwok, C.; Golden, K.; Pen-
berthy, S.; Smith, D.; Sun, Y.; and Weld, D. 1998. PDDL –
the planning domain definition language. AIPS-98 Planning
Competition Committee.
Ghallab, M.; Nau, D.; and Traverso, P. 2004. Automated
Planning: Theory and Practice. Elsevier.
Ghooshchi, N. G.; Namazi, M.; Newton, M. H.; and Sattar,
A. 2017. Encoding domain transitions for constraint-based
planning. J. of Artificial Intelligence Research 58:905–966.
Gocht, S., and Balyo, T. 2017. Accelerating SAT based
planning with incremental SAT solving. In Proceedings of
the 27th International Conference on Automated Planning
and Scheduling, 135–139.
Helmert, M. 2006. The Fast Downward planning system. J.
of Artificial Intelligence Research 26:191–246.
Kautz, H. A., and Selman, B. 1992. Planning as satisfia-
bility. In Proceedings of the 10th European Conference on
Artificial Intelligence, 359–363.
Kautz, H., and Selman, B. 1999. Unifying SAT-based and
graph-based planning. In Proceedings of the 16th Interna-
tional Joint Conference on Artificial Intelligence, 318–325.
Lopez, A., and Bacchus, F. 2003. Generalizing Graph-
Plan by formulating planning as a CSP. In Proceedings of
the 18th International Joint Conference on Artificial Intelli-
gence, volume 3, 954–960.
Rintanen, J.; Heljanko, K.; and Niemelä, I. 2006. Plan-
ning as satisfiability: parallel plans and algorithms for plan
search. Artificial Intelligence 170(12-13):1031–1080.
Wehrle, M., and Rintanen, J. 2007. Planning as satisfiability
with relaxed ∃-step plans. In Proceedings of the 20th Aus-
tralasian Joint Conference on Artificial Intelligence, 244–
253. Springer.
www.picat-lang.org. 2019. Picat 2.8. Computer software.

