Colored Multi-Agent Path Finding: Solving Approaches

Roman Bartak, Marika Ivanova, Jiii Svancara
Charles University, Faculty of Mathematics and Physics
Prague, Czech Republic
{bartak,ivanova} @ktiml.mff.cuni.cz, jiri.svancara@mff.cuni.cz

Abstract

Multi-Agent Path Finding (MAPF) deals with the prob-
lem of finding collision-free paths for a set of agents
moving in a shared environment while each agent has
specified its destination. Colored MAPF generalizes
MAPF by defining groups of agents that share a set
of destination locations. In the paper, we evaluate sev-
eral approaches to optimally solve the colored MAPF
problem, namely, a method based on network flows,
an extended version of conflict-based search, and two
models using Boolean satisfiability. We also investi-
gate methods for obtaining lower bounds on optimal
solutions based on constraint and continuous relaxation
techniques.

Introduction

Multi-Agent Path Finding (MAPF) is a rapidly developing
area dealing with finding collision-free paths for a set of
agents moving in a shared environment. In a classical for-
mulation, each agent has its destination. However, there are
applications where groups of agents need to move to specific
areas, but the exact locations of agents in these areas are not
important. Such generalization of MAPF is called a Colored
MAPF. Colored MAPF problems can be found in computer
games, where armies of bots are moving to locations spec-
ified by the player (Ma et al. 2017). Positions of individ-
ual bots are not distinguished, but the groups should reach
their destinations. There are similar situations in transporta-
tion problems, for example, in warehouses (Ma and Koenig
2016). At the end of a working shift, the groups of robots
need to move to locations with charging stations. Again, as-
signing the particular station to a particular robot is not es-
sential, provided that robots reach locations with compati-
ble charging stations. The final example of Colored MAPF
is from the area of computer art using mobile robots and
drones. Recently, it became popular to use sets of robots
to display a picture and to morph it into another picture by
moving the robots (Bartdk and Mestek 2021). Robots may
glow different colors, which naturally define sub-groups of
robots.

Opposite to classical MAPF, there was not much atten-
tion paid to solving Colored MAPF problems. There is only

Copyright © 2021by the authors. All rights reserved.

a single work (Ma and Koenig 2016) that proposed a solv-
ing technique for Colored MAPF. This technique, Conflict-
Based Min-Cost-Flow (CBM), is based on a popular MAPF
algorithm Conflict-Based Search (CBS) (Sharon et al. 2012).
In this paper, we propose extensions of SAT-based mod-
els for MAPF to solve Colored MAPF. One method is a
straightforward generalization of the SAT model for classi-
cal MAPF. The other method attempts to reduce symmetries
that appear in the problem due to the anonymity of agents
within groups. We will also formulate the problem as an in-
teger linear program for the multi-commodity network flow
problem. We empirically compare these solving approaches
to identify the specific instance properties that determine
which solving approach to select for a given problem in-
stance.

Colored MAPF

Let A = {1,...,n} be a set of n agents and G = (V, E)
be an un-directed graph. Agents are initially staying at some
vertices, which is described by initial configuration S : A —
V', where S(a) is the initial position of agent a. The final
configuration is given by a set of vertices ' C V' such that
|T| = |A|. Anonymous MAPF problem is given by a quadru-
ple (G, A,S,T) and its solution is a set of collision-free
plans. A plan 7, for an agent a is a sequence of vertices such
that 7, [1] = S(a) and for each ¢ either 7, [t] = 7, [t + 1]
(agent waits at a vertex) or (m,[t], m,[t + 1]) € E (agent
moves to a neighboring vertex). Let m,, be the length of plan
for agent a, then we define 7, [t] = 7,[m,] for each t > m,,
(agents stay in their final vertices). Let mks = max,ca mq
be a makespan of the plans. We require agents to reach the
final configuration: Vo € T Ja € A : w,[mks] = v, and
the plans to be collision free: Vai,as € A,a1 # ag,Vt :
Tay [t] # Ta, [t] (nO vertex collision) and Vas,as € A, a1 #
ag, Vb : 7o, [t] # Tay[t + 1]V 7oy [t + 1] # o, [t] (n0 swap-
ping collision).

Colored MAPF (also called Team MAPF or TAPF) with k&
groups is then given as (G, (41,51, T4), - - -, (Ak, Sk, Tk)),
where each (G, A;, S;,T;) is anonymous MAPF (Solovey
and Halperin 2014), see Figure 1. A solution of Colored
MAPF is union of solutions of individual anonymous MAPF
problems such that the plans across the groups are also
collision-free.

Anonymous MAPF can be solved makespan-optimally



Figure 1: An instance of Colored MAPF. Initial (left) and
goal (right) positions of two groups of agents.

in polynomial time (Yu and LaValle 2012), but finding a
makespan-optimal solution to Colored MAPF with at least
2 groups is NP-hard (Surynek 2010) (as Colored MAPF is
a generalization of classical MAPF, where each agent has
its destination). There exists an optimal algorithm for solv-
ing Colored MAPEF, called Conflict-Based Min-Cost-Flow
(CBM) (Ma and Koenig 2016) which is based on a search al-
gorithm Conflict-Based Search (CBS) (Sharon et al. 2012).
Briefly speaking, on the high level, CBM performs a clas-
sical CBS search over conflicts among the groups; on the
low level, each team of agents is navigated by a polynomial-
time algorithm that is compliant with the restrictions of the
CBS search. If there is a collision between two groups, new
restrictions are applied, and the search continues until a
collision-free solution is found.

Solution Methods

In addition to the existing CBM algorithm, we propose two
reduction-based techniques for determining a makespan-
optimal solution for a given problem instance utilizing avail-
able solvers. Reduction-based techniques use layered graphs
for a given plan length, where each layer describes nodes
reachable by agents at a given time step. Let R;(i,¢), i =
1,...,t,c = 1,...,k consist of vertices v € V that lie on
a path p from S(a) for some a € A. to some vertex in T,
of length at most ¢, the distance from S(a) to v along p is at
most ¢, and the distance from v to some vertex in 7, along p
is at most ¢ — 4. Vertices in Ry (4, ¢) are relevant in time step
1, that is, for each vertex v € Ry(3, c) there is a possibility
that it will be used by some agent as 7, [i] = v for some
a € A.. Vertices that are not in R (i, ¢) cannot be reached
in time step ¢, and therefore cannot be part of the solution.

Both methods have a common pre-processing phase that
involves the construction of R:(i,c), which aims to reduce
the number of variables entering a solver. Furthermore, if
T. # Ry(t,c), for some group c, the problem is infeasible,
and the deadline ¢ has to be increased. The first ¢ for which
T. = Ry(t,c) foreach ¢ € {1.... k} gives a straightfor-
ward lower bound, which allows to skip several initial exe-
cutions of a solver.

SAT Models

To solve Colored MAPF via reduction to a Boolean satis-
fiability problem (SAT), we define the following two sets
of variables: Vv € V,Va € UF_ A, Vi € {0,...,t} :
At(v, a,4) meaning that agent @ is in vertex v at time step
i and V(v,u) € E,Va € UF_ A, Vi € {0,...,t — 1} :
Pass(v, u, a, 1) meaning that agent a goes through an edge
(v, u) at time step ¢. Now, we introduce the following con-

straints:
VaeUF_ A, : At(S(a),a,0) = 1 (1a)
Vee{l,...k},Vae€ Ac: Y At(v,a,t) =1 (1b)
veT,
Voe V,Vie{0,. ...t} Y At(v,ai) <1 (lo)
acUk_ A,

V(v,u) € E,Vi€{0,...,t—1}:
Z Pass(v,u, a,1) + Pass(u,v,a,i) < 1 (1d)

acUk_ A

c=1%1c

Yoe V,VaeUr_ A, Yie{0,...,t—1}:
At(v,a,i) = Z Pass(v,u,a,t) (le)

(v,u)€EE

Yoe V,VaeUl_ A, Vie{1,... t}:
At(v,a,i) = Z Pass(u,v,a,1— 1) (1f)

(u,v)€EE

The constraints (1a) and (1b) ensure that the starting and goal
positions of all agents are valid. Since all of the agents from a group
c may arrive at any goal vertex v € 1., we require each agent
a € A, to reach exactly one of those vertices. The constraint (1c)
ensures that each vertex is occupied by at most one agent to prevent
vertex collision, while constraint (1d) does the same for all pairs
of opposite edges, thus forbidding swapping collision. The correct
movement in the graph is ensured by constraints (1e) and (1f). They
ensure that an agent is in a node, if and only if it leaves by one of
the outgoing edges (1e). Similarly, an agent is in a node, if and only
if it entered by one of the incoming edges in the previous time step
(1f). We assume that edges (v, v) exist for each vertex v, allowing
agents to wait at a vertex.

To find the optimal makespan, we iteratively increase the upper
bound on makespan ¢ until a satisfiable formula is generated. The
pre-processing mentioned at the beginning of the section is appli-
cable. We construct the variables only for the vertices that are in
Ry (i,c). That is, if a vertex v can not be reached in timestep ¢, we
do not create variable At(v, a, ). Similarly, if an agent can not be
present at a vertex at a given time, it can not traverse the incident
edges at that time.

This model is a direct alteration of the SAT-based model used to
solve classical MAPF problem (Surynek 2014; Stern et al. 2019).
The only difference is in the constraint that specifies the agents’
goal locations. Therefore, we shall refer to this model as SAT-basic.

Another approach to modeling the Colored MAPF problem is to
realize that all of the agents in a group are interchangeable. When
two agents from a single group swap their positions, it is equivalent
to both of them waiting in their current locations. Therefore, we do
not need to define the variables At(v, a,t) and Pass(v, u, a, t)
for each agent a but rather for each group ¢ (At(v,c,t) and
Pass(v,u, c,t)). The constraints dealing with starting and goal
positions then change as follows:

Vee{l,...k},Voe{S(a):a€ A} : At(v,c,0) =1 (2a)
Vee{l,...k},Yve Tc: At(v,c,t) = 1 (2b)

The other constraints remain the same, except that instead of
iterating over all agents, we iterate over all groups. This approach



saves many variables entering the SAT solver and, therefore, may
prove to be more efficient. We shall refer to this model as SAT-
grouped.

It is possible to model the allowed movement of the agents over
the defined variables in many ways. We tried several other encod-
ings; for example, constraints (1e) and (1f) can be replaced by con-
ditions stating that if an agent is in a vertex, it must leave by pre-
cisely one outgoing edge, if an agent is traversing an edge, it must
enter the appropriate vertex in the next time step and that each agent
occupies exactly one vertex at a time (| A.| vertices in case of SAT-
grouped). It was determined in preliminary experiments that the
models SAT-basic and SAT-grouped are the most promising and
will be used in the final experiments.

All of our SAT-based models are modeled in Picat programming
language (Zhou and Kjellerstrand 2016), which provides an auto-
matic translation of arithmetic constraints (such as constraints (1b)
— (1f)) into a CNF formula that is solvable by an off-the-shelf SAT
solver. We present the constraints in the arithmetic form as we be-
lieve it is more comprehensible.

ILP Model

Colored MAPF has been shown to be equivalent to the multi-
commodity network flow problem (MCF) in (Ma and Koenig
2016), where the authors use a directed layered graph constructed
in a way that allows formulating the problem using standard MCF
constraints. We utilize a more straightforward layered graph that re-
quires several additional constraints because this model’s solution
time is advantageous according to our preliminary experiments.

Like in the SAT-based models, the makespan optimal solution is
obtained by an iterative execution of an ILP solver over the model
with an increasing deadline until the problem becomes feasible.
The agent groups in Colored MAPF represent different commodi-
ties flowing through the extended spatial-temporal layered graph
with unit edge capacities.

Given a deadline t, we consider k£ directed layered graphs
Gf = (U VEULLED), ¢ = 1,...,k with V& =
{vi:v € VN Ri,c),i=0,...,t}, and Ef connecting nodes
in consecutive layers ¢ — 1 and 4. The set Ej consists of arcs
(wi—1,u;) corresponding to waiting at w € V in time step ¢, and
arcs (u;—1, v; ), representing a transition from node « to an adjacent
node v in the original graph G. The ILP formulation of Colored

MAPF is built upon variables fi¢ € {0, 1}Zce(t...xy [Vi=a 7]
indicating whether or not a flow of commodity c passes through
(u,v) € E5. The ILP formulation of Colored MAPF is in the form

k
max» > fi st (3a)

c=1 (u,v)€E;

Vee{l,...,kb,Vue Vi > fu=1  (3b)

(u,w)EEY

Vee{l,...,kh,Vie{l,....,t —1}Vve V :

Yoofw= Y. fut G0

(u,U)EEf (v,w)eE,erI
Vee{l,...,khbYwe Ve Y fii=1 (3d)
(u,v)eEt“

Vie{l,...,t—1},VoeU_, ve:

k
> i<t Ge

c=1 (u,v)EES

Ve, d € {1,...,k},c#d,Vie{l,..., t}
V(uifzvi) € Eic7 (viflui) € Eid : 'uivc,l'v, +fvi,d,1ul <1 (3D

VYee{l,....,khL,Vie{l,...,t},Y(u,v) € Ui_; B :
w€{0,1} (g
Equations (3b)-(3d) model the flow conservation constraints ap-
plied on the extended graph implying that each agent a € A,
moves from S(a) gradually through layers of G until it reaches
exactly one node in 7¢. By (3e) we impose unit node capacities that
ensure that agents do not collide at nodes and imply edge capaci-
ties. Finally, (3f) prevents two agents from different groups from
exchanging their positions. Note that two agents from the same
group may swap, as they are anonymous within the group. The ob-
jective function (3a) maximizes the number of agents that reach a
relevant target node. The objective function is superfluous because
the agent groups’ sizes give the flow sizes of individual commodi-
ties. The objective function value is thus known beforehand. The
iterative nature of the algorithm accomplishes the optimality. How-
ever, empirical comparison of the model’s performances with and
without the objective function indicates that the presence of (3a) in
the model is beneficial.

The ILP model is implemented in AMPL (Fourer, Gay, and
Kernighan 2002) utilizing the CPLEX solver with default settings
except for the option lowercutoff set to | uk_, T.| which tells
to the solver to skip any branch whose continuous relaxation’s op-
timal value is less than lowercutoff.

Lower bounds

The importance of lower bounding methods for Colored MAPF is
twofold. Firstly, knowing a lower bound for makespan allows skip-
ping several initial executions of a solver. Secondly, when studying
heuristic methods, the optimal solution is typically unknown, and
sufficiently tight lower bounds help assess a heuristic algorithm’s
quality. In the following, we describe four strategies for determin-
ing lower bounds pursued in this paper. The function (s, t) returns
the length of a shortest path between s and ¢ in G.

1) Simple strategy. A straightforward lower bound for classic
MAPEF is obtained by disregarding interactions between the agents,
that is, allowing both edge and vertex collisions. The lower bound
is then given by the maximum of the shortest paths between the
agents’ initial and target positions. In Colored MAPF, this approach
is generalized by taking the maximum of the shortest possible path
lengths between nodes in .S, and 7T, for each team c. For an instance
I" of Colored MAPF, we have ,

im([') = i . 4
Xsim (T) ce?ll?fk}gé%ﬁg%e(s’t) “)

2) Degree strategy. A drawback of the simple strategy is that
(4) does not take into account that the agents have to be distributed
in all of the targets, and so the lower bound can be based on two
agents aiming for the same target. The lower bound can therefore
be strengthened by imposing that each agent is sent to a different
target. For each team c, let us consider a complete weighted bipar-
tite graph B, with partitions corresponding to S. and T, in which
edge costs are defined by ¢. We then iteratively remove edges or-
dered decreasingly by the cost as long as none of the nodes in B. is
isolated. This condition ensures that each vertex is reachable since
they have to be used in the solution. The cost of the last removed
edge is the desired lower bound Age,. Alg. 1 formalizes this greedy
process. The condition conditionHolds (line 8) is satisfied if there
exists an isolated node in B.



Algorithm 1: Finding a lower bound

Data: An instance (G, (A1, S1,T1), - .. (Ak, Sk, T%))
1 maxLB<+ 0;
2 forc=1,...,kdo
3 (Se, T., E., ) < complete bipartite graph with
partitions S, and B,, edges F. and edge costs
defined by £(s,t) foreach s € S, and t € T,;

4 L + sort E, by decreasing cost ;
5 for (s,t) € Ldo

6 b 4(s,1);

7 E.«+ E.\ (s,t);

8 If conditionHolds() break;

9 if Ib>maxLB then

10 L maxLB« Ib;

11 return maxLB;

3) Matching strategy. The lower bound obtained by Degree
strategy can be improved by strengthening the condition condition-
Holds in Alg. 1 by checking whether E. still contains a complete
matching in B. as a subset. This condition can be violated earlier
than the degree test, and the last removed edge can therefore have
a higher cost and yield a tighter lower bound Amacn. The reason-
ing behind the correctness is similar to the Degree strategy — all of
the agents have to reach some goal; therefore, each start has to be
matched to some goal. Removal of the longest edges (which means
ignoring the longest path) provides a lower bound for makespan as
opposed to finding a matching with the smallest cost, which would
provide a lower bound for the sum of costs (another cost function
often used in classical MAPF (Stern et al. 2019)).

4) LP strategy. A typical approach for determining lower
bounds for an ILP model is to compute its continuous relaxation.
By replacing f£¢ € {0, 1} with f& € [0, 1] in the integrality con-
straints (3g) we obtain a linear program that can be solved by, e.g.,
the simplex method in polynomial time. Another valuable property
is that an integral optimal solution to the continuous relaxation is
an optimal solution to the original ILP.

Observation 1. Let I" be an instance of Colored MAPF. Then,
Asim(r) Sl Adeg(r) SQ )\mutch(r) SS )\LP(F)

Proof. <i: Let £(s,t) be the value returned by Simple strategy.
If the Degree strategy removes all edges with length £(s,t) (and
greater) from the bipartite graph, there has to be a vertex with 0
degree, since £(s, t) is the minimal value of all outgoing edges for
one of the vertices.

<2: Once an edge is removed such that there is a vertex with
degree 0, there is no matching in the bipartite graph.

<3: LP relaxation finds flows from starts to destinations. From
these paths we can reconstruct the matching in B..

O

An example where Degree and Matching strategies outperform
Simple strategy can be seen in Figure 2.

Experimental Evaluation

Initially, we investigate the tightness of the lower bounding strate-
gies. Consequently, we study the proposed models’ performance
utilizing the best lower bounds and compare them with the state-
of-the-art CBM algorithm introduced in (Ma and Koenig 2016).

O
e > >

Figure 2: Two agents from the same group with two goals.
Simple strategy computes lower bound of 3, as both agents
are navigated to the closer goal. Both Degree and Matching
strategies provide lower bound of 4, as they correctly com-
pute that one of the agents has to go to the farther goal.

——Simple-basic
250 -~ ——Simple-grouped
——Simple-ILP
------- Degree-basic
o Degree-grouped
----- Degree-ILP
100 Matching-basic
Matching-grouped

Matching-ILP

Figure 3: The impact of different lower bounding methods
on runtime for each proposed model. The graph shows num-
ber of instances (x-axis) solved in a given time limit (y-axis).

Our experimental scenarios are inspired by existing benchmarks
for MAPF (Stern et al. 2019). The experiments are performed on 4-
connected grid maps empty (no obstacles are present in the graph)
and random (20% of vertices chosen at random are marked as an
impassable obstacle) of sizes 8 x 8, 16 x 16 and 32 x 32, with
the number of groups k¥ = 5 and £ = 10. In every instance, the

groups’ size is consistent |A1| = - - - = | Ag|, and the total number
of agents increases from & to 100 (40 for map sizes 8 x 8) with the
increment of k — |A| = k, 2k, ...,100. A time limit of 5 minutes

is imposed on the runtime of each instance.

Lower bounding methods

For each tested instance, we determine the lower bounds yielded
by the four strategies. Simple, Degree, and Matching strategy can
be computed in virtually no time on the pursued instances. The LP
strategy, however seemingly strong, takes more time, particularly
in large instances. There are also cases when even the linear relax-
ation cannot be calculated to optimality, and only a weaker lower
bound is obtained.

The experimental results summarized in Table 1 provide a closer
insight into individual strategies’ strength. The Matching strategy
always reaches the optimal makespan in 3 out of 6 instance classes.
It tends to be more successful in less crowded instances, which is
following the intuition. The LP lower bound is as strong as the
Matching lower bound in instances in which the LP relaxation is
solved to optimality within the given time limit. Particularly in
some of the large instances (map size 32 x 32), solving the LP
relaxation is interrupted before the optimum is found. Thus, the
bounds are weaker than those obtained by Matching. Therefore, the
Matching strategy is the most practical approach and a clear winner
of this comparison, despite, theoretically, the LP strategy provides
no worse lower bounds, but with the trade-off of larger computa-
tional complexity. Figure 3 shows the effect of better lower bounds



)\sim )\deg )\malch )\LP
8x8 9233 96.70 99.77  99.77

Empty 16x16 | 85.64 93.72 100.00 100.00
32x32 | 91.00 95.11 100.00 99.06
8x8 77.83 86.15 89.25 95.41

Random 16x16 | 8591 93.54 99.84  99.96
32x32 | 91.77 94.14 100.00 98.74

Table 1: Average proportion to optimal makespan for dif-
ferent instance types obtained by individual lower bounding
strategies. Instances with unknown optimum are excluded.

on the efficiency of studied methods. There is clear evidence that
the Matching strategy brings the most significant efficiency im-
provement. The Matching strategy’s lower bounds are used as a
starting point in the experimental evaluation of individual models
in the next section.

Exact algorithms

The growth of runtime of each algorithm in all tested instances
is depicted in Fig. 4a-4c. Both ILP and SAT models fall behind
CBM on the largest maps in virtually all instances (Fig 4c). In the
medium-sized maps (Fig 4b), the difference is much less notice-
able, particularly in the map random 16 x 16. On the other hand,
in the smallest maps, CBM is outperformed by all other methods
as indicated in Fig 4a).

Next, Fig. 4d-4f ordered by increasing map size show the growth
of runtime of individual algorithms with increasing number of
agents. We observe that some of the curves are not very smooth,
suggesting that there are factors other than the number of agents
that influence the runtime in a given map. We can observe that
adding more agents to the instance makes it easier to solve in
some cases. This observation is counterintuitive since, in classi-
cal MAPF, adding more agents makes the problem harder. In Col-
ored MAPEF, additional agents are assigned to some group, and with
them, new goal locations are added to that group. These goal lo-
cations may be used by other agents as well, which may yield a
shorter and easier to compute plan.

The ILP model performs well on instances with a small num-
ber of agents regardless of map size, which is the reason why this
method often has a high number of fastest computations (Tab 2).
However, with the increasing number of agents, this margin is
quickly eliminated and surpassed.

The SAT-based models perform well on smaller instances with
the highest success ratio on the 8 x 8 and 16 x 16 maps. As for
the largest maps, the success ratio and performance fall behind for
both of the SAT-based models. We can see that on the largest maps,
SAT-basic outperforms SAT-grouped. This observation is surpris-
ing, considering that SAT-grouped uses on average only half as
many variables as SAT-basic across all sizes of maps. Comparing
the two models based on the number of teams shows that SAT-
grouped performs better when the agents are divided into fewer
teams; therefore, each team’s size is larger.

The CBM algorithm performs the best on the 32 X 32 maps with
both the highest success ratio and the best performance. On the
other hand, the algorithm performs poorly on the smallest maps,
especially on the map random 8 x 8, where it was able to solve
only half of the instances (it was more successful on empty 8 x 8,
which increases the ratio in Table 2).

These results comply with the observation made for the classical
MAPF problem that the CBS-based algorithm performs well on

solved solved fastest fastest

k=5 k=10 k=5 k=10

Sat-b | 100.00 97.50 12.50 17.50

8 x 8 Sat-g | 100.00 97.50 31.25 47.50
ILP 95.00 82.50 50.00 25.00

CBM | 77.50  70.00 6.25 7.50

Sat-b | 100.00 100.00 9.50  39.00

16 % 16 Sat-g | 100.00 100.00 28.50 11.00
ILP 100.00 88.00 58.50 31.00

CBM | 98.00 99.00 3.50 19.00

Sat-b 85.50 82.00 6.00 18.00

39 % 32 Sat-g 94.00  57.00 5.50 1.00
ILP 95.50 59.00 39.00 9.00

CBM | 99.00 97.00 49.00 69.00

Table 2: Proportion of instances solved to optimality within
a given time limit and instances solved in the shortest run-
time by individual methods.

sparse instances with fewer interactions between agents (or, in this
case, a group of agents), and reduction-based algorithms perform
well on smaller, more dense instances (Svancara and Bartak 2019).

Summary and Future Research

We present several reduction models that solve Colored MAPF.
First, we study an ILP model based on the multi-commodity net-
work flow problem. Another approach is a reduction to Boolean
satisfiability (SAT). We pursue two models — a basic model, which
is a direct alteration of the SAT-based model for classical MAPF,
and a grouped model that exploits the fact that agents in a single
group are interchangeable. The number of variables entering the
SAT solver in the grouped model is significantly lower than for the
basic model.

We compared these models with the known algorithm CBM on
4-connected grid maps with various sizes and numbers of obstacles.
We can observe some trends in the effectiveness of the solvers. The
ILP approach performs well on instances with a small number of
agents on maps of any size, while the CBM algorithm performs
well on the largest sparse maps where the groups of agents do not
interact much. On the other hand, small maps with many agents are
solved most successfully by the SAT-based models.

Unlike classic MAPF, where extending an instance by a new
agent—target pair in an existing team either increases or does not
change the minimum makespan, Colored MAPF has the property
that such an extension may decrease the minimum makespan of
the instance. We observe this behavior on multiple occasions in the
experiments. The explanation lies in the fact that a newly added
target may be placed in a favorable position, closer to an agent that
previously had to pass via a path of length equal to the minimum
makespan. If this agent aims for the new target, the new instance’s
minimum makespan may be shorter than in the original one. A fur-
ther investigation of circumstances in which adding a new target
leads to a decrease of the minimum makespan is a relevant area of
future research and is also essential in better understanding Colored
MAPF.

It might be interesting to investigate more types of maps to gain
a closer insight into which aspects besides the graph size and agent
count influence individual methods’ runtime.



300

—ILP
——SAT-basic
SAT-grouped

250 -
200 -
150 +-
100

50 -

20

5 10

15 25 30

L e e
15 25 35 45 55 65 75 85 95

(@)

(e)

)

Figure 4: Figures 4a — 4c show number of instances (x-axis) solved in a given time limit (y-axis) by each of the studied solvers.
In order they show the results for maps of size 8 x 8, 16 x 16 and 32 x 32. Figures 4d — 4f show the average runtime for
instances with a given number of agents. In order they show the results for maps of size 8 x 8, 16 x 16 and 32 x 32.

Our methods for finding lower bounds often yield a value equal
to the actual makespan in many tested instances. Some types of
real-life instances often involve much larger maps with thousands
of agents. It is, therefore, worthwhile to develop algorithms without
the optimality guarantee. Experimental results in this work suggest
that these lower bounding techniques help assess the quality of in-
exact methods.

Acknowledgement

This research is supported by the the Czech-Israeli Cooperative
Scientific Research Project LTAIZ19014 and by the project 19-
02183S of the Czech Science Foundation.

References

Bartdk, R., and Mestek, J. 2021. Ozomorph: Demonstrating col-
ored multi-agent path finding on real robots. In Proceedings of
the Thirty-Fifth AAAI Conference on Artificial Intelligence. AAAI
Press.

Fourer, R.; Gay, D.; and Kernighan, B. 2002. Ampl: A modeling
language for mathematical programming. Management Science -
MANAGE SCI 36.

Ma, H., and Koenig, S. 2016. Optimal target assignment and path
finding for teams of agents. In Proceedings of the 2016 Interna-
tional Conference on Autonomous Agents & Multiagent Systems,
Singapore, May 9-13, 2016, 1144-1152.

Ma, H.; Yang, J.; Cohen, L.; Kumar, T. K. S.; and Koenig, S. 2017.
Feasibility study: Moving non-homogeneous teams in congested
video game environments. In Magerko, B., and Rowe, J. P, eds.,
Proceedings of the Thirteenth AAAI Conference on Artificial Intel-
ligence and Interactive Digital Entertainment (AIIDE-17), October
5-9, 2017, Snowbird, Little Cottonwood Canyon, Utah, USA, 270—
272. AAAI Press.

Sharon, G.; Stern, R.; Felner, A.; and Sturtevant, N. R. 2012.
Conflict-based search for optimal multi-agent path finding. In

Hoffmann, J., and Selman, B., eds., Proceedings of the Twenty-
Sixth AAAI Conference on Artificial Intelligence, July 22-26, 2012,
Toronto, Ontario, Canada. AAAI Press.

Solovey, K., and Halperin, D. 2014. k-color multi-robot motion
planning. I. J. Robotics Res. 33(1):82-97.

Stern, R.; Sturtevant, N. R.; Felner, A.; Koenig, S.; Ma, H.; Walker,
T. T.; Li, J.; Atzmon, D.; Cohen, L.; Kumar, T. K. S.; Bartiak, R.;
and Boyarski, E. 2019. Multi-agent pathfinding: Definitions, vari-
ants, and benchmarks. In Surynek, P., and Yeoh, W., eds., Pro-
ceedings of the Twelfth International Symposium on Combinatorial
Search, SOCS 2019, Napa, California, 16-17 July 2019, 151-159.
AAAI Press.

Surynek, P. 2010. An optimization variant of multi-robot path
planning is intractable. In Proceedings of the Twenty-Fourth AAAI
Conference on Artificial Intelligence, AAAI 2010, Atlanta, Georgia,
USA, July 11-15, 2010.

Surynek, P. 2014. Compact representations of cooperative path-
finding as SAT based on matchings in bipartite graphs. In Pro-
ceedings of the 26th IEEFE International Conference on Tools with
Artificial Intelligence (ICTAI), 875-882. IEEE Computer Society.

Svancara, J., and Bartdk, R. 2019. Combining strengths of optimal
multi-agent path finding algorithms. In Rocha, A. P.; Steels, L.; and
van den Herik, H. J., eds., Proceedings of the 11th International
Conference on Agents and Artificial Intelligence, ICAART 2019,
Volume 1, Prague, Czech Republic, February 19-21, 2019, 226—
231. SciTePress.

Yu, J., and LaValle, S. M. 2012. Multi-agent path planning and net-
work flow. In Algorithmic Foundations of Robotics X - Proceedings
of the Tenth Workshop on the Algorithmic Foundations of Robotics,
WAFR 2012, 2012, 157-173.

Zhou, N., and Kjellerstrand, H. 2016. The picat-sat compiler. In
Practical Aspects of Declarative Languages - 18th International
Symposium, PADL 2016, St. Petersburg, FL, USA, January 18-19,
2016. Proceedings, 48—62.



