
A Neutral Rewrite Mutation Operator for Genetic Programming applied to
Boolean Domain Problems

Dmytro Vitel and Alessio Gaspar
University of South Florida

4202 E Fowler Ave, Tampa, FL 33620

Paul Wiegand
Winthrop University

701 Oakland Ave, Rock Hill, SC 29730

Abstract

The effect of semantically neutral tree rewrites is an-
alyzed in the context of genetic programming applied
to Boolean domain problems. Different setups of the
proposed Neutral Rewrite Operator are studied from the
perspective of improving performance.

Introduction
The question of the impact of neutral mutations on evo-
lutionary algorithms is a somewhat controversial topic in
the evolutionary computation community. These mutations
are changes to the encoding of a candidate solution that
do not impact its quality (“fitness”). While some consider
neutrality useless, (Smith, Husbands, and O’Shea 2001;
Collins 2006) others argue that it could facilitate the self-
adaptation of populations (Igel and Toussaint 2003). We pro-
pose to investigate the benefits of a neutral mutation opera-
tor, in terms of convergence speed, when used with Koza-
style Genetic Programming (GP) (Koza 1994) and applied
to Boolean domain problems. Unlike previous approaches,
we leverage sets of syntactic rewriting rules (“transforms”)
to implement the proposed operator.

We use transforms to define the specific genotype changes
that will represent possible neutral mutations. By doing so,
we also enable the introduction of domain-specific knowl-
edge into the transforms. In the specific problems considered
in this paper, we use Boolean algebra laws to define neutral
transforms. Interestingly, this also means that our transforms
are not problem-specific but applicable to all problems in
the Boolean domain. It is not the goal of this paper to make
claims about the optimality of any given set of transforms
for the Boolean domain, as a whole, or any specific prob-
lem. Instead, we use a minimalist set of transforms, selected
while avoiding biases, and focus on establishing the poten-
tial of the very idea of using such transforms.

In order to establish the potential benefits of neutral mu-
tations, we consider a set of problems from the Boolean
domain that are commonly used as benchmarks in the GP
literature (Mcdermott et al. 2012). Our results indicate that
introducing neutrality, based on the proposed transforms, is
beneficial for most of the selected problems.

Copyright © 2021by the authors. All rights reserved.

Related Works
In biological evolutionary process, Kimura (1968) showed
that neutral mutations occur with high frequency. For the
average length of one generation (mammalian evolution, 4
years) their rate is roughly two per gamete and four per zy-
gote. The importance of this neutral random genetic drift
(contrasted to Darwinian selectivity) has also been consid-
ered by the evolutionary computation community.

Igel and Toussaint (2003) approach neutrality from the
perspective of genotype and phenotype selection distribution
(exploration distribution) functions on each generation. The
idea the authors convey is that not only genotypes evolve
in the process but also the distributions used in the selec-
tion processes. Generalized self-adaptation of a population
is its ability to adjust the selection distribution with the
help of neutrality. If within the space of genotypes a subset
maps to the same phenotype, “movement” inside this sub-
set could result in totally different exploration distribution
by the search method, which might speedup convergence.
The authors consider several ways to navigate neutral sets
(e.g., embedding some strategic parameters into genotypes,
natural redundancy...). Instead, We leverage tree rewrites.

Oesch and Maringer (2015) develop a neutral mutation
operator for grammatical evolution (GE) (O’Neill and Ryan
2001). In GE, genotypes are fixed-length integer vectors.
Each integer value is used to select among alternative rules at
each step of the derivation. Since the number of alternatives
is smaller than the range of allowed integer values, a mod-
ulo operator is applied. The proposed neutral mutation oper-
ator modifies integer values so as to preserve the same result
when the corresponding modulo is applied. This aproach is
validated on symbolic regression of polynomials.

In contrast, Galván-López and Rodrı́guez-Vázquez
(2006) use “introns” to obtain different genotypes encod-
ing the same programs. In Biology, introns are genetic ma-
terial that does not directly impact the fitness of an individ-
ual (Wineberg and Oppacher 1996). The authors introduce a
special GP node (p-node) that, when traversing the GP tree
to evaluate the individual, redirects the traversal to a random
location in the same tree. As such, p-nodes’ children are in-
trons: they are not expressed during evaluation and thus do
not contribute to the fitness. P-nodes isolate islands of GP-
tree which are still used by GP operators. This approach is
validated on the 6-bit multiplexer problem (MUX-6).

Yu and Miller (2001) show the usefulness of neutrality in
Cartesian GP, using the 3-bit Boolean Parity problem (PAR-
3). The authors use additional genes that control the state
(active/inactive) of inner circuits (Boolean functions). Their
experimental results show that more neutrality is better, re-
gardless of the mutation rates. Later, Yu and Miller (2002)
also argue that neutrality can play a critical role in “needle-
in-the-haystack” problems. However, Collins (2006) dis-
proved this by showing that the asymmetry in the intron
mappings does in fact cause damage to the ability of the al-
gorithm to sample the space effectively.

Proponents of the semantic GP approach Pawlak and
Krawiec (2018) adopted the diametrically opposed perspec-
tive on neutral mutations. Their “competent” operators for
population initialization, selection, mutation, and crossover
are designed on the premise to guarantee non-semantically
neutral “effective” changes to the programs being evolved.
Furthermore, they are also “geometric”, in the sense that
they guarantee movement along a specific direction in the
semantic space. In their work, neutrality is considered waste-
ful. Instead, population diversity is maintained by diversi-
fying individuals in the semantic space. We should note,
however, that such semantic diversity, as well as the need
to enforce other constraints, also requires additional com-
putational power. In practice, semantic operators are only
approximately competent due to this fact.

Implementing Neutral Mutations
Let us clarify how tree rewriting will serve as the foundation
to our proposed neutral mutation operator.

GP evolves trees made of nodes. These represent func-
tions from a set F that are defined for a specific problem
domain. Two trees are equivalent if their evaluate into the
same fitness value. Let us denote as SF the set of all possi-
ble GP trees, built from F . A rewrite (set R) is a function
SF → SF ∈ R. We use transforms (set T) and strategies
(set X) in order to design a rewrite.

A transform specifies the rewrite to be applied. It is a
tuple (p, r) ∈ T composed of a matching pattern p and a re-
placement r. It is applied by matching a subset of sub-trees
in a given tree s with p, and replacing these matches accord-
ing to r. Both p and r are built from F with the addition of
meta-nodes from a set M : p, r ∈ SF∪M .

A strategy specifies how a transform is applied to a given
tree. The simplest strategy is to perform unification of pat-
tern p to some given target site s (s ∈ SF). Since pat-
terns heavily rely on metavariables (set Mv ⊂ M), the
unification process will not only match nodes but also bind
metavariables (bindings set b). Therefore, each metavariable
is uniquely bound, as defined by the following predicate:

Matched := (p = s)∨
((∀m ∈Mv ∧m ≤ p ∃!v ≤ s ∧ (m, v) ∈ b)∧

p[m← v | (m, v) ∈ b] = s)

The relation = is the syntactic comparison of two trees
(node-by-node equality) while ≤ is the subtree relation.

The replacement part r of a transform also contains
metanodes. After finding a match, and thus a binding set b,

we use the later to substitute the metavariables in r. The re-
sulting tree t replaces the target site s.

t = r[m← v | (m, v) ∈ b]

The above process corresponds to a basic strategy: match-
ing with unification, starting from the root of the tree, and
without traversing s. Other strategies may be applied.

A strategy (set X) defines a way to apply one-site unifi-
cation. It may be combined with other strategies and trans-
forms, and is defined recursively as 2T × 2X → R ∈ X .
A strategy is a function that takes a subset of transforms, a
subset of other strategies, and returns a rewrite. Applying a
strategy to a tree s results in a rewritten tree t. If there are no
matches, then t = s. In our experiments we considered the
following strategies one-site, any-match, first-match, any,
all, fixpoint, n-times-max and on.

• one-site strategy (T → R) applies given transform unifi-
cation to a given tree once, at root point.

• any-match T → R searches for all matches in the target
site and selects one match in uniform manner. Selected
match is then used in replacement.

• first-match T → R searches for first match of given
transform in the target site s in top-down fashion (first
we try to unify parent nodes and then children).

• any X+ → R selects one of the given strategies in uni-
form manner and applies it to target site s. If application
did not produce new tree (t = s), selection repeats. As
result, t = s if all given strategies did not change s.

• all X+ → R applies all given strategies to target site.

• fixpoint X+ → R applies given strategies till moment of
no change. Note that some combination of fixpoint with
other strategies could result in infinite rewrite.

• n-times-max X → R applies given strategy n times
where n ∈ [1,max], max is a parameter (generally, n-
times-max is N+ → X → R).

• on strategy is complex one. It facilitates analysis of given
target site before application of given strategies. Its form
is (C × X)+ → R where C is set of cases. One case
represents a situation about given target site. Patterns p for
transforms could play role cases {p | (p, r) ∈ T} ⊂ C.
But C also includes conditions on more general analysis
of target site s. In our experiment we consider number of
present in s nodes by type as one of such analysis.

We characterize transforms based on their impact on the
size of the tree on which they are applied; reduction, expan-
sion, or size-neutral (relocation of nodes in the tree).

Reduction transforms (set Tr ⊂ T) reduce the size of
the GP tree to which they are applied. This could, poten-
tially, be detrimental to the evolutionary search process. Let
us consider a scenario in the Boolean domain, as well as a
specific transform: (not not x, x). If applied with the any-
match strategy, this transform removes the not-not chain
only at one location in the target site. However, if applied
with the fixpoint strategy, it results in the elimination of all
occurring not-not. When using Koza-style GP, which does

not feature mutations, this may complicate the reintroduc-
tion of a not node in that individual at a later generation.

On the other hand, reductions may also help the evolution-
ary search process as they may prevent bloat, a well-known
problem in GP (Whigham and Dick 2010). Bloat may be
controlled by prohibiting the application of an evolutionary
operator if the resulting tree’s depth would exceed a preset
limit. We implemented a similar bloat control technique in-
side the any-match and first-match strategies. Matches that
would grow the trees beyond the preset limit are simply dis-
carded. When the depth limit is reached, reduction is acti-
vated in conjunction with the above-mentioned technique to
shrink individuals.

A domain-specific instance of reduction, the full reduce
strategy (Tr → R), is particularly interesting and will be
detailed in the next section. Its general form is:

reduce = fixpoint({first-match(a) | a ∈ Tr})
In the above, we use first-match instead of any-match to opti-
mize the rewrite process. This illustrates that different strat-
egy compositions may have significantly different computa-
tional costs: e.g., any-match collects all matches then selects
one, while fixpoint does not require to collect them all.

Expansion strategies increase the size of GP trees. They
may use transforms that capture a site s in a metavariable,
and insert it in the replacement r. Alternatively, metagener-
ators may insert the synthesised tree into the matched site.
These are present only in the replacement r and produce a
unique random subtree per their metavariable name. Lastly,
special analysis (case) in on strategy could be applied.

Metagenerators do not analyze target sites during synthe-
sis. On other hand, cases of on strategy analyze target site
s before creating new bindings. We implemented one such
generative analysis: missingERC . It collects statistics on
ephemeral random constants (ERCs) (Koza 1994) in s and
asks the ERC implementation to provide new random value
outside the range used in target site. The resulting tree is
then bound to metaname (parameter of missingERC analy-
sis) and combined with r to form the rewritten tree t.

In contrast to reduction strategies, expansions are useful
at the start of the evolutionary process when individuals are
small. Their application, though, is based on the assumption
that the optimal solution requires some specific genetic ma-
terial. Full expansion introduces all nodes from a problem
domain function set F into the target site. But, it is always
better to incorporate some problem knowledge in expansion
strategies in order not to bloat the trees at start.

Movement strategies move nodes of concrete type up or
down the tree. This movement is not free, it requires the ap-
plication of axioms of the problem domain. For the Boolean
domain, movements of not nodes usually result in transfor-
mations of other nodes on the way. As with expand strate-
gies, these tend to increase breadth and depth of the tree.

Neutral rewrites preserve the semantic. This limits the
transforms that can be used to a set Tn ⊂ T , based on prob-
lem domain’s axioms. Importantly, including/excluding any
t ∈ Tn could bias moves through neutral sets. While it is
safer to keep all movements equiprobable inside the neutral
sets, this is not practically possible.

Neutral Mutation in the Boolean domain
From the perspective of the GP algorithm configuration, we
opted to use the same Boolean functions set for all problems:
F = {and, or, not}. Adding other functions to F , such as
the ternary if , would require also expanding the set of trans-
forms.

We use next Boolean domain axioms as transforms in our
Neutral Rewrite Operator (NRO): distributivity (ruleset Ad),
commutativity (set Ac), associativity (set As), absorption
(set Aab), complementation (set Acmp), identity (set Ai), De-
Morgan laws (set ADM). We also consider set Abasis that
has rules for expressing and through {not, or} basis and
vise-versa.

Similarly to semantic equivalence of argument permu-
tations, the fact that axiom applicability is two-way states
(p, r) ∈ Ta ↔ (r, p) ∈ Ta. We accommodate this by in-
troducing additional transforms in strategies which could be
trivially obtained from the above-mentioned axioms.

In our experiments, we used the following strategies;
Trb = Aab ∪Acmp ∪Ai ∪ {(not not x, x)}
G = {A∗

d, Ac, A
∗
a, Aab, Acmp, Ai, A

∗
DM}

group = any({any-match(a) | a ∈ g, g ∈ G})
reduceb = fixpoint({first-match(a) | a ∈ Trb})

axiomsb = n-times-max(5, any({group(g) | g ∈ G}))
A∗ denotes the fact that the transform set A also contains

reverse transforms (replacement r plays role of the pattern).
Strategy axiomsb performs from 1 to 5 applications of an
inner strategy that rewrites only one match of target site s.
Inner strategies are built in such way to uniformly select ax-
iom group and then transform from it.

This framework of strategies and transforms facilitates the
construction of potentially complex rewrites. Let us illus-
trate this with the following manually crafted strategy str.
It uses on strategy to control what rewrite to apply, depend-
ing on the analysis done on the target site s. The argument
is a set of tuples: the first element is the case predicate, the
second is a child strategy to be applied when the predicate
succeeds. The on strategy can be seen as a form of advanced
switch-statement. In str we have 3 cases.

E = {(x, (n or not n) and x), (x, (n and not n) or x)}
D = A∗

basis ∪A∗
DM ∪A∗

a ∪Ad

depth(n) = (d(s) >∗ n, reduceb)

missingERC = (missingBusBit(n), expandb))

expandb = any({any-match(e) | e ∈ E})
default = (, any({any-match(t) | t ∈ D}))

str(n) = on({depth(n),missingERC, default})
Case depth(n) applies reduceb when depth of target site

s is greater than n (we assume that, for this depth, all nec-
essary genetic material is already present and will survive
compression). We marked >∗ with star to signify that, after
reduction, we go to next case so at one step other neutral
rewrite could be performed on top of reduceb.

Case missingERC checks what inputs are absent in the
target site s. For selected problems it makes sense that
the solution depends on of them. So, in case of the ab-

sence, we apply the expansion strategy. Applied analysis
missingBusBit(n) creates a metavariable with name n
bound to a missing input and transforms from set E use it.

Eventually, we have the default case with a catch-all
predicate. The default strategy contains transforms that per-
form movement of nodes and two transforms from Abasis.

To conclude, str compose rewrites to compress individ-
ual, to add missing genetic material, and to transform exist-
ing material neutrally. We use it in our proposed NRO.

Goals of experiments
The goal of our experiments1 is to check if the proposed
NRO improves performance. We evaluate this using the av-
erage best fitness per generation and the mean of best-of-
run fitness. The fitness is defined as the number of misses in
output value (1-bit) for a whole truth table (training set) of
a concrete Boolean domain problem. Less misses is better,
and the correct circuit of a given problem has a fitness of
zero.

Our null-hypothesis is: NRO does not improve evolution
compared to traditional Koza-style GP. The motivation of
our experiments is to find the setup and problem pairs where
an NRO is useful. The alternative hypothesis is that NRO
improves the mean of best-of-run fitness.

Methods and parameters
In order to determine the potential of our proposed approach,
we apply it to four Boolean domain problems: Multiplexer
(MUL), Parity (PAR), Majority (MAJ), Comparator (CMP).
These were selected as they are commonly used in the GP
literature to compare variants and operators. Each problem
considers n-bit inputs and one 1-bit output. We use instances
of the above problems with specific values for n: MUL-11,
PAR-11, MAJ-11, CMP-12, MUL-20. Since there are 22

n

Boolean problems with 1-bit output and n bits inputs, our
problems selection is not representative of the Boolean do-
main as a whole. However, as we will discuss later, the four
selected problems are diversified enough to gain insights
about where NRO could be useful.

We apply a Friedman’s non-parametric test, which checks
for difference in distributions of any pairs of given measure-
ments, regardless of distribution. Additionally, for post-hoc
analysis, we use Nemenyi’s test, which gives p-values for
each pair of measurements for which Friedman’s test con-
firms differences. Our criteria is as follows: we conclude that
setup A has better performance (>) than B if the mean of
best-of-run fitness of A is statistically smaller than B. Here,
Friedman’s test and Nemenyi’s tests show statistical signif-
icance when p-value < 0.05, and 0.1 for >∗. The relations
>, >∗ can be seen as domination relations (A dominates B).

Table 1 shows the settings used for all experiments. We
used the following evolutionary algorithms:

1. RTsTx – ramped half-and-half population initialization,
tournament selection (7), crossover-reproduction 90%-
10%. This traditional Koza setup serves as control group.

1Code for experiments is hosted at (Gaspar 2021)

Evolution setup RTsTx, RTsNaTx
RTsNTx, RTsTmx

Generations 100
Runs per experiment 30
Population size 1024
Crossover max depth 17
Function set {and, or, not}
Problems MUL-11/20, PAR-11,

MAJ-11, CMP-12
Max match rewrite depth 12
RTsTmx mutation prob 10%
RTsNaTx strategy axiomsb
RTsNTx strategy str(10)

Table 1: Settings

Figure 1: Best fitness and 95% confidence interval, MUL-11

2. RTsNaTx – similar to RTsTx, but with NRO added before
crossover. NRO rewrites with axiomsb strategy. Repro-
duction does not apply NRO before it.

3. RTsNTx – similar to RTsNaTx, but NRO rewrites with
str(10). The depth of 10 was chosen arbitrarily without
attempts at finding an optimal value for this parameter.

4. RTsTmx – similar to RTsNaTx, but NRO replaced by mu-
tation via random tree replacement at 10% probability.

Results and discussion
Figure 1 demonstrates mean of best of generation fitness
value and 95% confidence interval for MUL-11 problem.
Table 2 summarizes mean and standard deviation of best-
of-run fitness of configurations. Friedman’s test shows that
at least one setup differs in distribution of best-of-run fit-
ness mean. Nemenyi’s test shows that RTsNTx setup has the
best performance on MUL-11 compared to classic RTsTx,
RTsNTmx (p-value < 0.05) and potentially better than RT-
sNaTx (p-value < 0.1). For MUL-20, we cannot state that
RTsNTx and RTsTmx are statistically significantly different.
RTsNTx dominates classic RTsTx and NRO with axioms.

Same setups for PAR-11 problem (figure 2 and table 3)
show that RTsNaTx is better than classic RTxTs, RTxTms
(p-value < 0.05) while comparison RTsNaTx and RTsNTx
did not give statistically significant conclusion. This means
that optimal setup of NRO could be problem specific.

Parameter MUL-11 MUL-20
RTsTx mean ± std 117.7 ± 116.7 255856 ± 24755
RTsTmx mean ± std 108.3 ± 74.2 232104 ± 28457
RTsNaTx mean ± std 106.8 ± 90.4 243680 ± 29362
RTsNTx mean ± std 41.3 ± 45.3 217039 ± 29487
Friedman’s p-value 0.0029 5e-7
Nemenyi’s p-values
RTsTmx vs RTsTx 0.9 0.001 (>)
RTsNaTx vs RTsTx 0.9 0.351
RTsNTx vs RTsTx 0.026 (>) 0.001 (>)
RTsNaTx vs RTsTmx 0.9 0.170
RTsNTx vs RTsTmx 0.010 (>) 0.409
RTsNTx vs RTsNaTx 0.059∗ (>) 0.001 (>)
Conclusion on setup domination by performance
MUL-11 RTsNTx > RTsTx, RTsTmx

RTsNTx >∗ RTsNaTx
MUL-20 RTsNTx > RTsTx, RTsNaTx

RTsTmx > RTsTx
> - setup domination for p-value threshold of 0.05
>∗ - setup domination for p-value threshold of 0.10

Table 2: Statistical significance of difference between setups
on MUL-11/20

Figure 2: Best fitness and 95% confidence interval, PAR-11

MAJ-11 problem results (figure 3 and table 3) demon-
strate a situation when strategy str(10) degrades the perfor-
mance. With p-value < 0.1 of Nemenyi’s test, we say that
RTsTx and RTsNaTx have potentially better performance
than RTsNTx, though performances of RTsTx and RTsNaTx
are not comparable (via domination relation). On this prob-
lem NRO (with strategies we tried) shows itself useless.

CMP-11 results can be seen in figure 4 and table 3. On this
problem RTsNTx dominates RTsTx and RTsNaTx though it
is not statistically comparable to the RTsTmx setup.

Conclusion
The proposed NRO (with axiomsb and str strategies) im-
proved performance on 4 out of 5 Boolean domain prob-
lems (tables 2, 3). We still anticipate, as MAJ-11 revealed,
that some problems may not benefit from using NRO. This
is consistent with the no free lunch theorem: no algo-
rithm could have the best performance on all optimization
problems (Wolpert and Macready 1997). More research is

Parameter PAR-11 MAJ-11 CMP-11
RTsTx mean ± std 989 ± 15 164 ± 14 223 ± 65
RTsTmx mean ± std 987 ± 13 165 ± 13 163 ± 52
RTsNaTx mean ± std 976 ± 14 162 ± 15 204 ± 60
RTsNTx mean ± std 981 ± 13 174 ± 14 140 ± 51
Friedman’s p-value 0.0024 0.051∗ 2e-5
Nemenyi’s p-values
RTsTmx vs RTsTx 0.9 0.89 0.087∗ (>)
RTsNaTx vs RTsTx 0.008 (>) 0.9 0.864
RTsNTx vs RTsTx 0.170 0.098∗ (<) 0.001 (>)
RTsNaTx vs RTsTmx 0.012 (>) 0.779 0.379
RTsNTx vs RTsTmx 0.228 0.379 0.137
RTsNTx vs RTsNaTx 0.639 0.059∗ (<) 0.001 (>)
Conclusion on setup domination by performance
PAR-11 RTsNaTx > RTsTx, RTsTmx
MAJ-11 RTsTx, RTsNaTx >∗ RTsNTx
CMP-11 RTsNTx > RTsNaTx, RTsTx

RTsTmx >∗ RTsTx
> - setup domination for p-value threshold of 0.05
>∗ - setup domination for p-value threshold of 0.10

Table 3: Statistical significance of difference between setups
on PAR-11, MAJ-11, CMP-11

Figure 3: Best fitness and 95% confidence interval, MAJ-11

Figure 4: Best fitness and 95% confidence interval, CMP-11

needed to characterize problems that benefit from a NRO.
In this work, we designed NRO with combinations of

transforms and strategies. We restricted ourselves to neutral
rewrites based on Boolean domain axioms. Future work will
also include the study of NRO in the context of other do-
mains, as well as with respect to semantic GP.

References
Collins, M. 2006. Finding needles in haystacks is harder
with neutrality. Genetic Programming and Evolvable Machines
7(2):131–144.
Galván-López, E., and Rodrı́guez-Vázquez, K. 2006. The im-
portance of neutral mutations in gp. In Runarsson, T. P.; Beyer,
H.-G.; Burke, E.; Merelo-Guervós, J. J.; Whitley, L. D.; and
Yao, X., eds., Parallel Problem Solving from Nature - PPSN IX,
870–879. Berlin, Heidelberg: Springer Berlin Heidelberg.
Gaspar, A. 2021. Neutral rewrite operator implementation
project. https://github.com/cereal-lab/Papers/tree/master/2021-
FLAIRS-vitel-NeutralMutationOperatorForBooleanDomain.
Igel, C., and Toussaint, M. 2003. Neutrality and self-adaptation.
Natural Computing 2(2):117–132.
Kimura, M. 1968. Evolutionary rate at the molecular level.
Nature 217(5129):624–626.
Koza, J. R. 1994. Genetic programming as a means for pro-
gramming computers by natural selection. Statistics and Com-
puting 4(2):87–112.
Mcdermott, J.; White, D.; Luke, S.; Manzoni, L.; Castelli,
M.; Vanneschi, L.; Jaśkowski, W.; Krawiec, K.; Harper, R.;
De Jong, K.; and O’Reilly, U.-M. 2012. Genetic programming
needs better benchmarks. In Proceedings of the fourteenth in-
ternational conference on Genetic and evolutionary computa-
tion conference, 791–798.
Oesch, C., and Maringer, D. 2015. A neutral mutation op-
erator in grammatical evolution. In Angelov, P.; Atanassov, K.;
Doukovska, L.; Hadjiski, M.; Jotsov, V.; Kacprzyk, J.; Kasabov,
N.; Sotirov, S.; Szmidt, E.; and Zadrożny, S., eds., Intelligent
Systems’2014, 439–449. Cham: Springer International Publish-
ing.
O’Neill, M., and Ryan, C. 2001. Grammatical evolution. IEEE
Transactions on Evolutionary Computation 5(4):349–358.
Pawlak, T. P., and Krawiec, K. 2018. Competent geo-
metric semantic genetic programming for symbolic regression
and boolean function synthesis. Evolutionary Computation
26(2):177–212.
Smith, T.; Husbands, P.; and O’Shea, M. 2001. Neutral net-
works and evolvability with complex genotype-phenotype map-
ping. In European Conference on Artificial Life: ECAL2001,
272–281.
Whigham, P., and Dick, G. 2010. Implicitly controlling bloat in
genetic programming. Evolutionary Computation, IEEE Trans-
actions on 14:173 – 190.
Wineberg, M., and Oppacher, F. 1996. The benefits of comput-
ing with introns. In Proceedings of the 1st Annual Conference
on Genetic Programming, 410–415. Cambridge, MA, USA:
MIT Press.
Wolpert, D. H., and Macready, W. G. 1997. No free lunch
theorems for optimization. IEEE Transactions on Evolutionary
Computation 1(1):67–82.

Yu, T., and Miller, J. 2001. Neutrality and the evolvability of
boolean function landscape. In Fourth European Conference on
GP, volume 2038, 204–217.
Yu, T., and Miller, J. 2002. Finding needles in haystacks is
not hard with neutrality. In Foster, J. A.; Lutton, E.; Miller,
J.; Ryan, C.; and Tettamanzi, A., eds., Genetic Programming,
13–25. Berlin, Heidelberg: Springer Berlin Heidelberg.

