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Abstract

Every year, health insurance fraud costs taxpayers bil-
lions of dollars and puts patient’s health and welfare at
risk. Existing solutions to detect fraudulent providers
(hospitals, physicians, etc.) aim to find unusual pat-
tern at claim level features but fail to harness provider-
provider and provider-patient interaction information.
We propose a novel framework, Med-Dynamic meta
learning (MeDML), that extends the capability of tra-
ditional fraud detection by learning patterns from 1)
patient-provider interaction using temporal and geo-
spatial characteristics 2) provider’s treatment using
encounter data (e.g. medical codes, mix of attended
patients) and 3) referral using underlying provider-
provider relationships based on common patient visits
within 30 days. To the best of our knowledge, MeDML
is first framework that can model fraud using multi-
aspect representation of provider. MeDML also encap-
sulates provider’s phantom billing index, which identi-
fies excessive and unnecessary services provided to pa-
tients, by segmenting frequently co-occurring diagnosis
and procedures in non-fraudulent provider’s claims. It
uses a novel framework to aggregate the learned repre-
sentations capturing their task-specific relative impor-
tance via attention mechanism. We test the dynamically
generated meta embedding using various downstream
models and show that it outperforms all baseline algo-
rithms for provider fraud prediction task.

Introduction
The National Health Care Anti-Fraud Association estimates
a loss of $68 billion annually (i.e. 3% of total health-
care spending) due to fraud [1] most of which are due to
provider’s (hospitals, physicians, etc.) malpractices. Grow-
ing use of Electronic Health Records (EHR) has helped
many organizations to build systems for detecting provider
fraud [2] [3]. Existing fraud detection methods capture a
lot of information about providers and patients available
in EHR but do not consider modeling the relations among
providers and between provider and patients. By modeling
these relations fraud detecting system can uncover more
sophisticated frauds such as collusion among fraudulent
providers, inconsistent or unnecessary treatment claimed for
a patient, etc.
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In this work, we focus on learning multi-faceted infor-
mation available in EHR data about providers, patients,
and interaction among them. From EHR data, we can
learn three faceted information – 1) provider level aggre-
gated claim attributes, 2) their treatment profile and 3)
their interaction and referral pattern. Towards this, we pro-
pose MeDML, Med-Dynamic Meta-learning, an end-to-end
framework for provider fraud prediction which learns multi-
faceted provider representations and aggregates them using
their task-specific relative importance calculated via atten-
tion mechanism to generate meta-embedding incorporating
the aforementioned information for each provider.

MeDML: MeDML can be broadly classified into three
components – provider representation learning, embedding
aggregation and classification component. The first com-
ponent in MeDML learns multi-faceted provider represen-
tation capturing treatment, interaction and referral char-
acteristics. The aggregation component generates a meta-
embedding of provider by combining the embeddings learnt
in first component dynamically and in a supervised manner,
detailed in later sections. Further, the downstream classi-
fier is trained using these meta-embeddings as inputs and
provider fraud indicator as labels.

In this section, we elaborate on the three facets of EHR
data used by MeDML:

• Derived claim attributes: Derived claim attributes are
engineered features aggregated at the provider level. The
features are broadly categorized into cost and utilization
features, derived features from medical codes, and patient
diagnosis and demographic features.

• Treatment profile: Treatment profile of a provider learns
treatment behaviour based on its encounter with patients.
It covers two aspects- “treatment pattern of provider” re-
ferred as provider’s speciality representation and “mix of
patients visiting the provider” referred as patient diversity
representation. We leverage seq2seq models [4] to gener-
ate provider and patient representation in a way that cap-
tures their treatment pattern based on medical codes.
Generated provider embeddings are directly used as
provider’s speciality embedding whereas patient diver-
sity embedding of a provider is generated by taking
mean of visiting patients embedding weighted by num-
ber of claims. The above two embeddings together cap-



ture complete treatment profile of a provider. In the pro-
cess we also learn representation of diagnosis and pro-
cedure codes which are clustered to get segment of co-
occurring diagnosis and procedure codes. This informa-
tion is later used to create phantom billing index to iden-
tify the excessive/unnecessary services provided by fraud-
ulent providers (Details explained in later sections).

• Interaction profile: Provider’s interaction profile learns
three representations - patient-provider temporal inter-
actions representation, location representation of the at-
tended patient and provider-provider referral relationship
representation. MeDML learns the temporal representa-
tion by using a TGAT layer [5] on a provider-patient in-
teraction graph. Location representation is generated us-
ing seq2seq model on sequences of the attending pa-
tient’s location. Provider-provider relationship represen-
tation (henceforth referred to as referral embedding) is
learned using GraphSAGE on a homogeneous provider-
provider graph with an edge existing between providers
when there is a visit by common patient within 30 days.
Combining multiple embeddings belonging to different

embedding spaces is an active area of research [6] [7]. Tra-
ditionally, aggregation techniques like concatenation [8] and
weighted averaging [9] have been used but they have lim-
ited capability to capture the relative task-specific impor-
tance of individual embeddings. MeDML not only learns
treatment and interaction embeddings but also aggregates
them dynamically using their task-specific relative impor-
tance to generate a single representation of a provider re-
ferred as provider meta-embedding. Furthermore, MeDML
concatenates provider’s meta embedding with their respec-
tive phantom billing indexes to train the downstream fraud
predictive model. We show that provider’s meta embedding
capture various fraud aspects from the EHR data and that
these meta embeddings, when used to train a supervised
classifier, outperforms other baseline algorithms on metrics
such as AUC-PR and F1 score.

Related Works
In a preliminary provider fraud detection study, Chandola
et. al. [10] used Medicare claims and provider’s matricu-
late data to detect fraud. The authors employed various tech-
niques to mine information such as social network analysis
[11], text-mining [12] and temporal analysis and used ex-
tracted features in logistic regression model to classify fraud
using labelled data from the Texas office of Inspector Gen-
eral’s exclusion database only.

Johnshon et. al. [13] compared six deep learning methods
designed to address high class imbalance in healthcare fraud
labels employing certain data sampling techniques (ROS,
RUS and hybrid ROS-RUS) and a cost sensitive lost func-
tion – Focal loss using the CMS PUF data. This compar-
ative study focusses on optimizing the sampling technique
and ratio but doesn’t mention the problem of effective repre-
sentation of data for optimal learning. In [14], Zhang et. al.
attempt to improve the existing fraud model by quantifying
the disease–prescription correlation score and use it along
with a few hand-crafted features for multilabel decision tree
(ML-DT), rank SVM and NN learners. Focussing on feature

engineering for data expression, [15] provided a comprehen-
sive study leveraging supervised machine learning methods
to detect fraudulent Medicare providers. Bauder et. al. again,
generated utilization features along with provider speciality
type and performed a comparative study using SVM, LR and
C4.5 as provider fraud classifiers.

[14] and [15] partially address the problem of comprehen-
sive representation of data by generating the aforementioned
utilization variables but fail to capture multiple aspects of
fraud pattern, like temporal, geo-spatial and referral trend
of provider visits, in the EHR data. These features also do
not highlight the excessive and unnecessary use of resources
usually implying high risk of FWA.

Using structured longitudinal visit records of patients,
Choi et al. [16], and Choi et al. [17] learned the represen-
tation of medical codes by using a seq2seq model. However,
naı̈ve aggregation of learned representations doesn’t result
in optimal representation as it ignores the latent relationship
existing between them. MeDML aggregates the representa-
tions by learning their provider specific importance in a su-
pervised manner for fraud prediction task.

In the field of multi-modal learning, Kiela et al. [18] ex-
amined combining multiple embeddings of words to bet-
ter represent sentences and predict its category and using
a BiLSTM layer [19]. However, this concept isn’t transfer-
able to healthcare domain as EHR data is tabular and non-
sequential. Our framework uses dense layers [20] to retain
the semanticity of features and combine their multiple em-
beddings in a supervised fashion.

Dataset
For this experiment we use insurance claim data available on
Kaggle 1. Along with the insurance claim data we also use
patient data provided which contains their demographic and
medical information. The insurance data contains Inpatient
and Outpatient claim data along with provider level fraud
labels. The training data comprises of claims from 5, 410
providers, out of which 504 are fraud, 138, 557 patients dur-
ing a period of Nov 2008 to Dec 2009, 517, 738 outpatients
claims and 40, 475 inpatient claims.

Design and architecture of MeDML
This section describes the complete architecture and work-
ing of MeDML. Firstly the details of the representation
learning component (generation of treatment profile, inter-
action profile, and creating derived claim attributes) are dis-
cussed. Secondly, the aggregation component of MeDML
which aggregates all the representations to generate provider
meta embedding is elaborated. Finally, the downstream
model for identifying fraudulent providers is discussed. Fig-
ure 2 shows the complete architecture of MeDML.
Treatment Profile Generator
Treatment profile generator generates 2 types of provider
representation - Provider specialty representation and
Provider patient diversity representation shown in Figure 2.
Provider speciality representation
In our work, seq2seq models have been used to generate
provider’s representation based on their ”treatment pattern”
1 https://bit.ly/3dkaesm



shown in Figure 1. Sequences of diagnosis codes and pro-
cedure codes are created at the claim level. Since there is
no inherent order in the sequence of procedure and diagno-
sis in a claim, procedure and diagnosis codes are randomly
permuted to generate multiple sequences. Finally, provider
ID is sandwiched in between every two codes to form the fi-
nal sequences. The provider ID is sandwiched in such a way
that a seq2seq model could capture provider and the cor-
responding medical codes in the same context window and
learn through cross entity interaction. Thus the sequences
created for provider Pi will be 〈DCi

1, DC
i
2, P

i, . . . , PCi
m〉,

where DCi
j , and PCi

k are all diagnosis and procedure
codes in a claim and Pi is the provider ID of the ith claim.
These sequences are passed through the word2vec model
to get provider’s specialty representation (Si, where Si ∈
R128). Seq2Seq model also outputs diagnosis and procedure
codes representation along with provider representation in
the same embedding space.

Figure 1: Creating provider embedding using medical codes

Provider’s patient diversity representation
Provider’s patient diversity embedding represents the mix
of patients attending a provider. It uses patient embedding
generated in a way similar to provider speciality embedding
(Si). We generate patient embedding (Ji, where Ji ∈ R128)
by creating sequences of procedure and diagnosis codes with
Patient ID sandwiched in between in all the claims for a
patient. The sequences 〈Bi

1, PC
i
1, DC

i
1, B

i
1 . . . , B

i
1〉 (Bi is

the ith patient ID) are passed through word2vec that gener-
ates patients embeddings. Finally, Provider’s patient diver-
sity embedding (PDi, where PDi ∈ R128) is learned by
taking the mean of visiting patients embedding weighted by
the number of claims.
Interaction Profile Generator
Interaction profile generator learns temporal and geo-spatial
characteristics of patient-provider interaction and also learns
referral patterns of underlying provider relationships based
on common patient visits within 30 days.
Provider temporal representation
Temporal pattern of patients visiting a provider can be a key
indicator to identify fraudulent providers. A sudden increase
in claim density or an unusual time of filing claims can indi-
cate fraudulent activities. Provider’s temporal representation
(Ti, where Ti ∈ R128) is learnt using TGAT [5] on provider-
patient interaction graph where nodes are providers (Pi ∈ P)
and patients (Bi ∈ B) and an edge 〈eij〉 exist between two
nodes Pi and Bj if patient Bj has a visit with provider Pi.
The edge of the temporal graph carries the timestamp of the
provider-patient encounter. TGAT generates embeddings of
each nodes using neighboring nodes features and aggregates
them via attention mechanism.

Provider spatial representation
Provider spatial representation is learnt from historical loca-
tion data of visiting patients. A provider filing claims for
patients visiting from out of pattern location should trig-
ger a suspicion. To capture this information, we generate
sequences of attending patients’ county with Provider ID
sandwiched in between. The final sequences generated are
〈P1, C1, P1, C1, P1, C2〉, where C1 and C2 are the county
location of the patients visited at provider P1. The gener-
ated sequences are passed to a skip-gram model to generate
provider spatial embeddings (Gi, where Gi ∈ R128).

Provider referral representation
Graph techniques can capture information such as nexus be-
tween providers referring to each other. Often these nexus
are responsible for committing institutional large scale
fraud. [11]. In provider referral representation, we aim to
capture the provider-provider relationship in a homogeneous
provider referral graph with nodes as Pi ∈ P and edge 〈eij〉
between two providers Pi and Pj exist if the same patient
visits the two within 30 days interval. These edges act as
a proxy for provider-provider referral due to unavailability
of referral information. Derived claim attributes are used as
node feature and graphSAGE [21], an inductive representa-
tion learning method, is applied on this network to learn the
provider referral embeddings (CVi, where CVi ∈ R128).

Derived claim attributes
The last part of representation learning component is gen-
erating claim attributes which are aggregated at provider
level. Features generated are categorized into three cate-
gories - cost and utilisation features, derived features from
medical codes, and patient’s diagnosis and demographic fea-
tures. Cost and utilization features are claim count per pa-
tient, billed amount per claim, service unit per claim, aver-
age length of stay, readmission rate, % of planned visits, etc.
Derived features from medical codes are created by classify-
ing medical codes into broader category using the ICD-9 cat-
egorization and co-morbidity indices such as Elixhauser and
Charlson co-morbidity index. Aggregated provider features
are generated as the distribution of patients in each class
e.g. % of patient attended with Cardiovascular disease, etc.
Patients with chronic conditions are aggregated at provider
level to get distribution of patients for each chronic condi-
tion. Patient demographic details such as patient age, gender,
and location are used to finally get a set of base features.
Phantom billing Index
Phantom billing index points to excessive/unnecessary ser-
vices provided by fraudulent providers. In the process of
generating speciality embedding using word2vec model, we
also generate embeddings for the diagnosis codes (DCi

whereDCi ∈R128) and procedures codes (PCi, where PCi

∈ R128). These medical codes are clustered using K- means
to get segments of co-occurring diagnosis and procedures.
Phantom billing index is computed at the claim level and ag-
gregated at the provider level as the average number of clus-
ters of diagnosis and procedures in a claim. High variability
in diagnosis and procedure segment at claim level may indi-
cate out-of-norm diagnosis/procedure filed by provider.



Figure 2: An overview of the complete approach of training a predictive model for provider fraud classification

Dynamic Meta Learner
Dynamic Meta learner is the aggregation component of
MeDML where treatment representation, interaction repre-
sentation, and derived claim attributes generated are aggre-
gated together to generate a single meta embedding for each
provider. The aggregation layer uses concatenated embed-
dings of Si, PDi, Ti, Gi, CVi and derived claim attributes
and combines them dynamically i.e weights of these repre-
sentations are learned for each provider by propagating the
gradient of a proxy classification task backward to the aggre-
gation task to generate a R128 representation. Dynamic meta
learner learns task relative importance of individual repre-
sentations using attention mechanism [22] tied to a proxy
classification model to finally generate provider’s meta em-
bedding (Pi, where Pi ∈ R128).

Pmeta
j =

n∑
i=1

αi,jw
′
i,j where, αi,j = g(w′

i,j) are scalar

attention weights, w = S||PD||T ||G||CV

αi,j = φ(a.w′
i,j + b) where, φ is the softmax function

αi,j := αi,j −
d[L(ŷ, y)]m

dθ
where, [L(ŷ, y)]m is the

error at the mth layer of the dynamic meta learner, θ are
the learnable params

Downstream classification model
The final part of MeDML is the downstream classification
task of identifying a fraudulent provider. Provider meta em-
beddings (Pi, where Pi ∈ R128) generated after aggrega-
tion task is used as feature vector as input to a downstream
provider fraud prediction task. The meta embedding is con-
catenated with the phantom billing index and passed through
a classifier with provider fraud labels are ground truth.

Experiments and Results
In this section, we evaluate our method on a publicly avail-
able claim level data. We demonstrate MeDML’s evaluation

by testing the efficacy of generated embeddings. We fur-
ther provide architecture details and compare MeDML per-
formance with standard baselines. We also compare perfor-
mance of different aggregation techniques with our aggrega-
tions method and finally show an ablation study of MeDML
to show importance of each representation.

Model Evaluation
MeDML generates multi-faceted provider embeddings and
aggregates them to create provider meta-embedding to be
used as an input in fraud classification task. The quality of
embeddings fed to the aggregation layer plays a huge role in
determining our classification score. In this section, we start
with discussing the efficacy of generated embeddings.
Efficacy of generated embeddings

Procedure and diagnosis code: Figure 3, shows 2D t-
SNE representations of procedure and diagnosis codes. It
is observed that the embeddings of closely related diagno-
sis and procedures are in close proximity in the embedding
space. For example, in Figure 3 diagnosis codes related to
the nervous system are clustered at the top of the t-SNE plot.

Patient embeddings: Mikolov et al. [4] showed that
word vectors generated using skip-grams obey semanti-
cally meaningful linear operations like ‘King’ – ‘Man’ +
‘Woman’ being very close to ‘Queen’ word vector. Similar
semantic relation holds for patient embedding as well. For
example, Patient BENE80509 has diagnosis codes ‘V7791’
and ‘37636’ whereas patient BENE8330 has only ‘V7791’
diagnosis code in their treatment profile. We observed a
similarity score of 0.99 between BENE8830 + ‘37636’ and
BENE80509 embeddings as shown in Figure 3.

Provider speciality embeddings: To compare the effi-
cacy of provider speciality embeddings, we state that two
providers having similar distribution of diagnosis and proce-
dure code categories will be in closer proximity in embed-
ding space. Radar plot in Figure 3 shows distribution of med-
ical code categories of two providers namely, PRV53770
and PRV52642. The plot has 12 categories of medical codes
with claim % for that category denoted by radial distance .
We observe, the intersection area for these two providers is



Figure 3: 1. t-SNE representation of the diagnosis code embedding categorized by their classes. 2. 2D t-SNE representation of
the procedure code embedding categorized by their classes. 3. Vector representation of patient embedding showing semantically
meaningful linear operations. 4. Radar plot showing 2 providers having high co-sine similarity in the embedding space have
high intersection area on categories of diagnosis codes prescribed. 5. t-SNE plot of county embedding obtained from word2vec.

very high, which indicates that they have similar treatment
pattern and should be very close in the embedding space.
We observe their cosine similarity to be 0.96 which indi-
cates that the speciality embedding is effectively capturing
the provider treatment behaviour.

Spatial embedding: While generating provider spatial
embedding, we also generate county representation. To
check the efficacy of provider’s spatial embeddings, we
check how close the counties are in the embedding space.
Figure 3 is a t-SNE representation showing that counties
from the same state are closer to each other in the embed-
ding space. For example, in the embedding space, counties
closer to county#953 in state#45 belong to the same state.

Implementation details
Here, we mention the parameters used while learning mul-
tiple representations and training the aggregation and clas-
sification model. Seq2Seq models trained for generating
provider’s speciality, patient diversity and geo-location rep-
resentation use a window size of 3, negative sampling rate
of 10 and a learning rate of 0.03. TGAT layer, which learns
the temporal aspect of provider-patient interaction, takes a
learning rate of .0003, batch size of 30 and no. of sam-
pled neighbours as 15. It uses 2 hidden layers and a dropout
layer with 0.1 probability. To generate referral embedding
of providers, graphSAGE uses a learning rate of 0.001 and
batch size of 50 trained for 50 epochs using Adam optimizer.
To generate the phantom billing index, MeDML clusters the
diagnosis and procedure representations into 27 clusters as
calculated using the SSE v/s number of clusters plot. Aggre-
gation layer has two components - concatenation and atten-
tion. Concatenation component uses non-trainable embed-
dings layers which are further projected to 100 dimensions
using a dense layer. The attention layer uses two cascading
dense layers (32-1) to learn the weights. For fraud predic-
tion, the provider level data is split in train, validation and

test set in 0.7 : 0.1 : 0.2 ratio. The proxy classification layer
attached to the aggregation layer of MeDML consists of
cascading dense blocks with dropouts, Dense(32)-Dense(8)-
Dropout(.25)-Dense(2) and is trained only on the training
dataset in a supervised fashion. The attention weights are
updated dynamically using the derivative of loss function
percolated back from the proxy classification layer. The
meta embedding is further used to train various downstream
provider fraud predictive learners like logistic regression,
SVM and xgboost with default parameters, performance
compared in Table 1. We evaluate our models on Precision,
Recall, F1 score and AUC-PR.

Feature Model Prec.1 Recall F1 PR3

Base LR 0.24 0.49 0.36 0.20
Base XGB 0.45 0.64 0.61 0.58
Base SVM 0.50 0.43 0.52 0.50
Base MLP 0.58 0.47 0.55 0.50
Autoencoder LR 0.30 0.79 0.52 0.40
Autoencoder XGB 0.45 0.70 0.55 0.53
Autoencoder SVM 0.71 0.26 0.55 0.53
Autoencoder MLP 0.49 0.45 0.52 0.50
MeDML LR 0.39 0.93 0.66 0.55
MeDML XGB 0.62 0.79 0.71 0.74
MeDML SVM 0.60 0.80 0.72 0.71
MeDML MLP 0.57 0.64 0.64 0.55

Table 1: MeDML performance compared with baseline
Baseline results: We benchmark the performance of
MeDML against existing provider fraud detection solutions
which use aggregated claim level features (base model)
[13][14][15] or their representation generated using auto-
encoder [23]. We performed experiments using Logistic Re-
gression (LR), XGBoost (XGB), Support Vector Machine
(SVM) and MLP (Multi layer Perceptron). Table 1 details
the performance results for learners across all the perfor-
mance metrics. We can see that the learners using MeDML



as input out-performs those using Base feature and autoen-
coder embedding.

MeDML aggregation vs standard baselines: Table 2
presents the comparison of various standard aggregation
techniques - Concatenation, averaging, F1-weighing and
stacking with MeDML’s dynamic aggregation method us-
ing vanilla logistic regression classifier as the downstream
model. Results show that MeDML outperforms all the other
aggregation strategies on different classification metrics.

Model Prec.1 Recall F1 AUC2 PR3

Concatenate 0.09 0.29 0.53 0.037 0.52
Average 0.16 0.51 0.54 0.48 0.52
F1-weighted 0.23 0.55 0.56 0.5 0.53
Stacking 0.35 0.63 0.58 0.57 0.55
MeDML 0.39 0.93 0.66 0.76 0.55

Table 2: MeDML aggregation vs standard baselines

Model Prec.1 Recall F1 AUC2 PR3

BaseNet 0.23 0.50 0.30 0.66 0.18
BSNet 0.10 0.71 0.48 0.56 0.44
BSGNet 0.09 0.73 0.51 0.49 0.5
BSGCNet 0.09 0.73 0.52 0.52 0.5
MeDML 0.39 0.93 0.66 0.76 0.55

Table 3: Ablation study of MeDML

Ablation study of MeDML
In this section we show the importance of each component of
MeDML, with Table 3 showing the incremental results in the
performance. We show the impact of each type of represen-
tation upon addition to the model. It is clearly evident from
the Table 3 that each component is critical and improves the
model performance.

BaseNet: BaseNet is the model with all the derived base
features (fi) of a provider. This gives an F1 score of 0.30
and AUCPR of 0.18.

BSNet: BSNet is the model with base features (fi) com-
bined with speciality embeddings (Si). This improves F1
and AUCPR to 0.48 and 0.44 respectively.

BSGNet: Upon adding the spatial embedding to the
BSNet, a further jump in F1 score and AUCPR is observed
to 0.51 and 0.49 respectively.

BSGCNet: BSGCNet is obtained by adding referral em-
bedding to the BSGNet. This gives further boost in F1 score
and AUCPR to 0.53 and 0.52.

Conclusion
In this study, the primary objective was to design and train
a provider fraud prediction model by looking at data be-
yond claim level and capture such intrinsic relationships.
In this work we present a new deep learning architec-
ture, MeDML-Med Dynamic Meta Learning, an end to end
framework to capture fraud providers. We focus on cap-
turing provider’s interactional and treatment profile derived
from provider’s encounter with other providers, patients and
diagnosis/procedures. We propose an aggregation frame-
work to combine multiple representation that captures the

1 Precision 2 AUC-ROC 3 AUC-PR

interrelationship between each other via attention mecha-
nism. Finally, these embeddings are used for down-stream
task of provider fraud prediction. We show baseline results
and present ablation study of the architecture to show the
criticality of individual components of MeDML. In future,
this work can be extended by using advanced semantic ap-
proaches in NLP like BERT, GPT, etc.
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