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Abstract

Semantic Textual Similarity (STS) and paraphrase de-
tection are two NLP tasks that have a high focus on the
meaning of sentences, and current research in both re-
lies heavily on comparing fragments of text. Little to no
work has been done in studying inference-centric ap-
proaches to solve these tasks. We study the relation be-
tween existing work and what we call mutual implica-
tion (MI), a binary relationship between two sentences
that holds when they textually entail each other. MI thus
shifts the focus of STS and paraphrase detection to un-
derstanding the meaning of a sentence in terms of its in-
ferential properties. We study the comparison between
MI, paraphrasing, and STS work. We then argue that MI
should be considered a complementary evaluation met-
ric for advancing work in areas as diverse as machine
translation, natural language inference, etc. Finally, we
study the limitations of MI and discuss possibilities for
overcoming them.

Introduction
What does it mean when we say that two sentences mean
the same? According to the meaning-as-use view (Wittgen-
stein 1953), the meaning of a word in a language game,
or of a symbol in a representational system, comes from
how it is (or can be) used. In contemporary natural language
processing (NLP), approaches to computing word meaning
and two well-studied tasks have been overwhelmingly influ-
enced, albeit indirectly, by this view of meaning: semantic
textual similarity (STS), which attempts to assign a numer-
ical measure of similarity between two text segments; and
paraphrase detection, which attempts to identify whether
two statements are paraphrases of each other.

Much work in both STS and paraphrase detection re-
lies on approaches that rely on overlaps between words, n-
grams, or other subsets of the texts being compared. This
paradigm has been quite successful, particularly since the in-
troduction of transformer-based architectures and their con-
textual embeddings (Vaswani et al. 2017; Devlin et al. 2018;
Zhang et al. 2019). However, understanding the ways in
which sentences are or can be used requires that we con-
sider the holistic meanings of sentences, rather than just the
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separate meanings of their constituent words; e.g., the as-
pects of sentence meaning that are inference-centric. This is
the approach recommended by inferential role semantics, or
inferentialism (Boghossian 1994; Peregrin 2006), whereby
the meaning of a statement s is grounded in its inferential
properties: what one can infer from s, and from what s can
be inferred.

In this paper, we initiate an exploration into the degree
to which current work in NLP captures inferential role se-
mantics. In particular, we will study what we call mutual
implication (MI), a binary relationship between natural lan-
guage sentences that holds when each sentence textually en-
tails the other. For this paper, we use an estimate of textual
entailment: a RoBERTa model trained on a combination of
natural language inference (NLI) corpora. For convenience,
in much of this paper when we say that two sentences are
MI (or that they are “mutually implicative”), we mean that
they were determined to textually entail each other using this
RoBERTa model.

Mutual implication is worth studying for many reasons.
It focuses on inferential relationships between sentences,
which are holistic properties of the sentences and how they
relate to each other and to the background knowledge. This
is in contrast to many STS benchmark datasets, which tend
to reward reliance on surface-level feature, word, or n-gram
comparisons. One might expect that in the limit, STS scores
reach toward MI; i.e., a sentence pair with an extremely
high STS score should be extremely likely to be MI, and
vice-versa. We show in this paper that this expectation is not
straightforwardly met by current STS models.

MI is also very closely related to the concept of para-
phrase, and some authors have defined paraphrase in a way
that much resembles what we call MI (Marsi, Krahmer,
and Bosma 2007; Androutsopoulos and Malakasiotis 2010).
However, paraphrase has been defined in non-inferential
terms as well (Bhagat and Hovy 2013), so for clarity, we
will classify MI as a type of paraphrase. Compared to other
definitions of paraphrasing (e.g., those based on STS), MI
has the advantage of providing a sharp, non-arbitrary bound-
ary for detecting non-paraphrases: if textual entailment fails
to hold in either direction, then the sentences are not MI.
Because this boundary is sharp and lends itself to explain-
ability (e.g., demonstrating why a textual entailment fails to
hold can be explained with the use of counterexamples), MI



Corpus s1 → s2 s2 → s1 s1 ↔ s2
ParaNMT 75.82 60.49 50.21
PPNMT 78.44 77.27 68.15
MSRP

(paraphrases) 39.30 41.74 17.98

MSRP
(non-paraphrases) 10.73 12.09 0.68

Table 1: Percentage of sentence pairs from paraphrase
datasets that entail each other, along with the non-paraphrase
subset of MSRP for comparison

as a type of paraphrase may have downstream applications
in automatic tutoring systems, automatic grading of essays,
and plagiarism detection, to name a few.

Contributions of this work The novel contributions of
this paper are as follows. We:
• measure the degree to which current paraphrase datasets

capture MI,
• measure the degree to which current SOTA STS datasets

and models capture MI,
• show that MI can serve as a supplemental measure of the

quality of machine translation systems,
• present an updated version of the ParaNMT dataset (PP-

NMT) that we will release publicly, and
• synthesize the evidence we present to argue that MI

should be a parallel goal of STS, paraphrase, and machine
translation work.

Related Work
Paraphrasing involves expressing the same information
in multiple ways (Pang, Knight, and Marcu 2003) to
achieve varying levels of fluency (Iordanskaja, Kittredge,
and Polguère 1991), clarity, and summarization (McKeown
et al. 2002). Whereas textual entailment is more closely
tied to reasoning and inference, paraphrasing tends to be
broader, encompassing not only entailment but substitutabil-
ity, preservation of information, etc. (Androutsopoulos and
Malakasiotis 2010; Bhagat and Hovy 2013; Mingers 1995).
Bhagat and Hovy (2013) refer to this form of paraphrase as
quasi-paraphrases, and we suspect that the sense of para-
phrase currently dominant in NLP research is closer to this.
For example, consider the sentences “It’s easy if you book
one of our guided tours,” and “It will be better if you book
one of our guided tours.” Although these are each considered
paraphrases of the other (according to classifiers we will dis-
cuss later), neither textually entails the other.

Many paraphrase datasets exist: two of the most promi-
nent including ParaNMT and MSRP. ParaNMT (Wieting
and Gimpel 2018) was created by machine translating the
Czech side of a human-translated Czech-English parallel
corpus (Bojar et al. 2016) using a neural machine transla-
tion (NMT) system (Sennrich et al. 2017), such that the hu-
man and machine translations are paraphrases of one an-
other. When referring to sentence pairs in ParaNMT data

set, we will say that s1 and s2 are the human- and machine-
translated sentences, respectively. Microsoft Research Para-
phrase Corpus (MSRP) (Dolan and Brockett 2005) con-
tains 5801 sentence pairs, each with a binary number show-
ing whether humans considered those two sentences para-
phrases. Unlike ParaNMT, MSRP contains explicitly non-
paraphrase sentence pairs too.

Semantic textual similarity (STS) (Agirre et al. 2012)
measures the degree of semantic similarity between two
given sentences. STS is clearly related to both paraphras-
ing and textual entailment, and is applicable to areas like
machine translation (Cer et al. 2017) and question an-
swering (Lan and Xu 2018) due to its utility in detecting
minor semantic differences. Common approaches to cal-
culating STS include word error rate (Levenshtein 1966;
Panja and Naskar 2018; Stanchev, Wang, and Ney 2019) and
n-gram matching (e.g., BLEU (Papineni et al. 2002)).

More recent approaches such as BERTScore (Zhang et al.
2019) draw on contextual word embeddings derived from
BERT (Devlin et al. 2018), thus allowing them to recog-
nize not just semantically similar words but similar phrases
and synonyms. As a result, BERTScore produces STS scores
closely matching human judgments of similarity. Ultimately,
however, BERTScore still performs token-token matching to
compute the precision and recall and thus is sensitive to sen-
tence structure. BLEURT (Sellam, Das, and Parikh 2020) is
a text generation metric which builds on BERT’s contextual
word representations. BLEURT is “warmed-up” using mil-
lions of synthetic sentence pairs twice (on Language Model-
ing (Devlin et al. 2018) and then on Natural Language Gen-
eration evaluation) before it is fine-tuned on human ratings,
thus getting a better performance than other STS metrics
with a high correlation with human ratings.

Natural language inference (NLI) (Bowman et al. 2015;
Williams, Nangia, and Bowman 2018), sometimes referred
to as recognizing textual entailment (RTE), is the task of de-
termining whether a hypothesis h can be inferred given a
premise p. E.g., given s1 = “Two black cars start racing in
front of an audience.” and some s2, the possible relation-
ships are:

1. Entailment: s1 → s2. Based on any or all information in
s1, s2 can be said to be true. s2 = “Two cars are racing.”

2. Contradiction: Based on any or all information in s1, s2
can be said to be false. s2 = “A man is driving down a
lonely road.”

3. Neutral: Based on all information in s1, s2 can be either
true or false (insufficient information). s2 = “Two men
are racing in black cars.”

In contrast to STS, the focus of NLI is primarily inferential.
NLI Datasets, like SNLI (Bowman et al. 2015), MultiNLI
(Williams, Nangia, and Bowman 2018), ANLI (Nie et al.
2020), etc., meant to capture NLI and train language mod-
els have received much attention recently. SNLI consists of
570k sentence pairs, all of which were written as well as an-
notated by humans via Amazon mTurk. MultiNLI consists
of 433k sentence pairs modeled on SNLI but with a focus on
having sentences from multiple genres of spoken and writ-
ten text. It has the same format as SNLI and the creators of



(a) BLEU score vs. ParaNMT MI (b) BERTScore(F1) vs. ParaNMT MI (c) BLEURT score vs. ParaNMT MI

(d) BLEU score vs. PPNMT MI (e) BERTScore(F1) vs. PPNMT MI (f) BLEURT score vs. PPNMT MI

(g) BLEU score vs. MSRP MI (h) BERTScore(F1) vs. MSRP MI (i) BLEURT score vs. MSRP MI

Figure 1: Number of mutual implications (bidirectional entailment), single-direction entailment, and non-entailment of the
ParaNMT, PPNMT, and MSRP datasets based on BLEU score, BERTScore (F1 pictured only, as precision and recall produced
similar graphs), and BLEURT score. All figures divide the range of observed scores into 100 bins.

MultiNLI suggest using both the corpora together as a single
large corpus. ANLI (Adversarial NLI) is a dataset compris-
ing of around 169k (19k + 47k + 103k) sentence pairs from
three rounds of adversarial, iterative, ”human-and-model-in-
the-loop” procedure. The humans’ role in this training pro-
cess is to devise examples which fool the model, which are
then added to the training set to train a stronger model. This
makes ANLI one of the hardest NLI datasets at present. We
use a pre-trained RoBERTa-large (Liu et al. 2019) model
launched by (Nie et al. 2020) trained on SNLI, MultiNLI,
FEVER-NLI (Nie, Chen, and Bansal 2019), and ANLI (all 3
rounds). Given two sentences (s1, s2), we use this RoBERTa
model to predict entailment in both directions. If entailment
is predicted in only one direction, we say that the sentence

pair has unidirectional entailment; if predicted in both, we
say that the sentence pair is MI.

Experiments
Are paraphrases mutually implicative?
As stated earlier, MI can be considered a type of para-
phrase relationship, but the concept of paraphrase in gen-
eral is somewhat inconsistently defined. We therefore ex-
pect that contemporary paraphrase datasets may be a mix
of MI and non-MI sentence pairs, and disentangling these
two subsets from each other may help us understand more
about the differences between the concepts of MI and para-
phrase in general. We do this by first analyzing the ParaNMT
dataset (ParaNMT-5M-processed, specifically) and the



BLEURT Sentence 1 Sentence 2
-0.801 But Odette is the first to form over the Caribbean Sea in

December, the Center said.
It is the first named storm to develop in the Caribbean in
December.

-0.767 Sens. John Kerry and Bob Graham declined invitations to
speak.

The no-shows were Sens. John Kerry of Massachusetts and
Bob Graham of Florida.

-0.617 The judge ordered the unsealing yesterday at the request of
several news agencies, including The Seattle Times, The
Associated Press and the Seattle Post-Intelligencer.

The depositions were made public yesterday at the request
of the P-I, The Seattle Times and The Associated Press.

Table 2: Selected MSRP sentence pairs identified as MI but with low BLEURT scores

BLEURT Sentence 1 Sentence 2
0.738 NBC probably will end the season as the second most pop-

ular network behind CBS, although it’s first among the key
18-to- 49-year-old demographic.

NBC will probably end the season as the second most-
popular network behind CBS, which is first among the key
18-to-49-year-old demographic.

0.591 The 30-year bond US30YT=RR dipped 14/32 for a yield
of 4.26 percent from 4.23 percent.

The 30-year bond US30YT=RR lost 16/32, taking its yield
to 4.20 percent from 4.18 percent.

0.562 Advancing issues outnumbered decliners nearly 2 to 1 on
the New York Stock Exchange.

Declining issues outnumbered advancers slightly more
than 3 to 1 on the New York Stock Exchange.

Table 3: Selected MSRP sentence pairs identified as not MI but with high BLEURT scores

Microsoft Research Paraphrase Corpus (MSRP). Using the
previously described RoBERTa model for recognizing en-
tailment, and given sentence pairs (s1, s2), we determine for
what percentage of the sentence pairs (1) s1 entails s2, (2)
s2 entails s1, and (3) both. Table 1 lists the results.

A few results from Table 1 are interesting to note.
ParaNMT, which purports to consist entirely of paraphrase
pairs, only passes the MI test 50.21% of the time, perform-
ing as good as chance. The subset of MSRP consisting only
of those sentence pairs which were labeled as paraphrases
does much worse: only 17.98% were identified as MI. These
results are consistent with our view that MI is one sense of
paraphrase which datasets like ParaNMT and MSRP do not
capture effectively. No doubt, some of these results are due
to the limitations of our MI classifier and the data it was
trained on, but the results presented here can be considered a
baseline—both for NLI models and paraphrase generators—
against which future work can compare.

MI as an NMT Evaluation Metric
An interesting asymmetry can be observed in Table 1: the
ratio of paraphrase pairs for which s1 entails s2 is consider-
ably higher than it is for s2 entailing s1. We suspect this is
because of how ParaNMT was constructed—s1 is the trans-
lation from Czech to English written by humans and s2 is the
translation from Czech performed by NMT (Neural Machine
Translation). The fact that the textual entailments are asym-
metric suggests that there is some sort of information loss in
the NMT process; and therefore, the degree to which NMT
minimizes this asymmetry, and maximizes MI, may consti-
tute a new way of assessing machine translations.

Given the rapid progress in the field in the past few years,
ParaNMT’s reliance on translation algorithms that are a few
years old may be to blame for the asymmetry in Table 1.
We hypothesize that a dataset of sentence pairs using up-
dated machine translation models will have a smaller entail-
ment asymmetry and higher MI ratio than that observed with

ParaNMT. To test this idea, we use the google-translate li-
brary 1 to translate the Czech side of the CzEng 2.0 (Kocmi,
Popel, and Bojar 2020) corpus which has filtered CzEng 1.6
and six additional resources. Due to resource limitations, we
translate only the test corpus of CzEng 2.0 (roughly 300K
pairs), and call this data set Para-ParaNMT (PPNMT for
short, the prefix para- reflecting its similarity to, and con-
ceptual derivation from, ParaNMT).

The results are listed in the second row of Table 1. As
expected, the asymmetry gap for PPNMT is greatly reduced
(1.17% as compared to 15.33% with ParaNMT), and the per-
centage of sentence pairs that are MI is increased to 68.15%
from 50.21%, allowing us to conclude that the asymmetry
detected by calculating MI does indeed seem to reflect the
improvement in machine translation, supporting the idea that
it can be used as a measure of translation quality.

Does STS capture entailment?
To further visualize the relation between STS scores and MI,
we calculate the BLEU, BERTScore, and BLEURT scores
for sentence pairs in the ParaNMT, PPNMT, and MSRP
datasets. Dividing the range of observed scores into 100
bins, we then calculate the number of sentence pairs in each
bin which are MI, have unidirectional entailment, and have
no entailment. Figure 1 contains the resulting stacked bar
charts. Two differences immediately stand out: (1) The ratio
of MI to non-MI pairs is much higher for PPNMT than with
the other datasets. This is expected with MSRP, as it is the
only one of the three datasets to intentionally contain non-
paraphrase pairs. (2) The degree to which each STS score
predicts MI can be seen by the skew of the inner blue curve
towards the right. E.g., this skew is more pronounced in Fig-
ure 1c than in 1b. The spikes to the right of the PPNMT
figures correspond to sentence pairs which were almost ex-
actly identical; the lack of these in ParaNMT further demon-
strates how much NMT methods have improved in the past

1www.pypi.org/project/googletrans/



few years.
Although a vast majority of sentence pairs in all three

datasets are entailments in at least one direction, STS met-
rics seem to fail at capturing this information: the expec-
tation would be that non-entailment, unidirectional entail-
ment, and MI sentence pairs should dominate the lower,
middle, and higher score ranges, respectively—an expecta-
tion that most prominently fails to manifest in Figures 1g–1i.
We interpret this as further evidence of the subtle distinction
between inference-centric properties of sentence pairs and
the featural comparisons measured by STS measures.

Conclusion and Future Directions
The statements “x and y are mutually implicative” and “x
and y are paraphrases” are themselves neither mutually im-
plicative nor paraphrases. Although the former statement
does imply the latter, the reverse is not true, and it is impor-
tant to understand the difference. MI, we have argued, is a
type of paraphrase relationship which should be studied and
modeled in its own right, as it is inference-centric, lends it-
self to explainability (through counterexamples to disprove
entailment), and has other advantages as well—such as its
possible use as a way of assessing the quality of machine
translation, which we have demonstrated here.

Although we used RoBERTa, a state-of-the-art language
model which we have fine-tuned on the latest NLI corpora
(Nie et al. 2020), it is important to remember that it is an im-
perfect approximator of textual entailment. Limitations of
this model can be seen in Tables 2 and 3, which list selected
sentence pairs which had BLEURT scores in the lower and
upper 5th-percentiles (respectively), but were identified as
MI or non-MI (respectively). Manual inspection of most
sentence pairs which had high BLEURT scores but were not
considered MI (and low BLEURT / considered MI) appear
to have been incorrectly classified by our RoBERTa model,
and is thus a limitation of the work we present here. We ex-
pect that this limitation can be alleviated as research in NLI
continues (Raffel et al. 2019; Lan et al. 2019; Yang et al.
2019; Liu et al. 2020; Nie et al. 2020; Wang et al. 2020;
Brown et al. 2020), but we argue that this further validates
the novel explorations and methods proposed in this paper:
This work can be re-visited, and our results used as base-
lines, to further understand the strengths and limitations of
SOTA STS, paraphrase, machine translation, and NLI ap-
proaches. Furthermore, our results highlight the need to not
only use MI as a method for assessing sentence similarity,
but the utility of MI as a way of improving NLI systems as
well, e.g. by ensuring that sentence pairs identified as se-
mantically equivalent pass the MI test.

Use of the MI test can be applied to evaluating text gener-
ation techniques, the most prominent applications of which
are machine translation, speech synthesis, image captioning,
etc. However, our argument is not that MI should be used
instead of STS metrics, but rather that the two approaches
are complementary in understanding what makes sentences
semantically equivalent. Failures such as those described in
Tables 2 and 3 might be reduced if we were to use MI and
STS to complement, rather than substitute, each other. An-
other noteworthy takeaway is that MI is not a model, but a

concept which we have shown the practical applications of
using a model. Hence we expect further research in NLI to
improve MI as well.
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