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Abstract

Since labeled data availability differs greatly across do-
mains, Domain Adaptation focuses on learning in new
and unfamiliar domains by reducing distribution di-
vergence. Recent research suggests that the adversarial
learning approach could be a promising way to achieve
the domain adaptation objective. Adversarial learning is
a strategy for learning domain-transferable features in
robust deep networks. This paper introduces the TSAL
paradigm, a two-step adversarial learning framework.
It addresses the real-world problem of text classifica-
tion, where source domain(s) has labeled data but tar-
get domain (s) has only unlabeled data. TSAL utilizes
joint adversarial learning with class information and do-
main alignment deep network architecture to learn both
domain-invariant and domain-specific features extrac-
tors. It consists of two training steps that are similar
to the paradigm, in which pre-trained model weights
are used as initialization for training with new data.
TSAL’s two training phases, however, are based on
the same data, not different data, as is the case with
fine-tuning. Furthermore, TSAL only uses the learned
domain-invariant feature extractor from the first training
as an initialization for its peer in subsequent training. By
doubling the training, TSAL can emphasis the leverage
of the small unlabeled target domain and learn effec-
tively what to share between various domains. A de-
tailed analysis of many benchmark datasets reveals that
our model consistently outperforms the prior art across
a wide range of dataset distributions.

Introduction

Domain Adaptation (DA) is an area that deals with the prob-
lem of training a model with data from one or more source
domains, then transferring the information to a new target
domain with different data distribution. The new target do-
main may contain entirely unlabeled samples (unsupervised
domain adaptation), fully labeled samples (supervised do-
main adaptation), or a small number of labeled samples
(semi-supervised domain adaptation ). DA intends to min-
imize the distance between the source and target domains as
much as possible, making it easier to transfer between them.
It has been used for sentiment classification (Zhang, Xu,
and Hu 2015; Zhou et al. 2016a), Part—of—Speech (POS)
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tagging (Schnabel and Schutze 2013), information retrieval
(Zhou et al. 2016b; 2018), and machine translation (Gu et
al. 2019), as well as several other NLP tasks. For instance,
in the context of sentiment analysis in written reviews, one
may have labeled data for one type of product (e.g., movies)
while needing to identify reviews for other products (e.g.,
dvd). DA approaches have recently been used to narrow
the gap between the source and target feature distributions
(Yosinski et al. 2014; Chen et al. 2012; Vincent et al. 2008;
Tzeng et al. 2017; Liu, Qiu, and Huang 2017; Ganin et al. ;
Zhao et al. 2017). Adversarial learning is a state-of-the-
art framework for deep architectures-based DA (Tzeng et
al. 2017; Zhao et al. 2017). In particular, the Multinomial
Adversarial Networks (MANSs) that proposed by Chen and
Cardie (Chen and Cardie 2018). It adopts the shared-private
model (Bousmalis et al. 2016) to learn domain-invariant and
domain-specific features, using a shared and domain feature
extractor.

As compared to other DA methods, the MAN model
achieves state-of-the-art performance when it comes to the
unsupervised domain adaptation, (Chen and Cardie 2018).
In this paper, we suggest TSAL, two steps domain adversar-
ial learning, which adopts the MAN model through a couple
of learning steps. The fine-tuning model is at the heart of the
TSAL premise. The TSAL model’s first step is identical to
that of the MAN model, which starts with random weights
and eventually trains to a good domain-invariant represen-
tation. However, due to the scarcity of target samples, the
amount of information that can be learned about the target
is limited, particularly when the distance between the source
and target distribution is significant. As a consequence, we
suggest that using the first step’s learned features as ini-
tialization in the second step training will assist in reveal-
ing more insightful target features. On various benchmark
datasets, we validate the efficacy of TSAL. It strengthens
the MAN and other state-of-the-art methods thus achieving
a substantial increase in average accuracy.

Related work

Depending on the availability of labeled data and the cost
of collecting it, DA methods can be categorized into super-
vised DA, semi-supervised DA (Mathapati et al. 2019), and
unsupervised DA (Wilson and Cook 2019).

Daume (Daumé III 2007) defines supervised DA as the



case where both the source and target domains have an abun-
dance of labeled data. Conversely, semi-supervised DA is
when there is sufficiently labeled data from the source do-
main but only minimal labeled data from the target domain
(Xiao and Guo 2015; Blitzer, McDonald, and Pereira 2006).
Finally, unsupervised DA (UDA) is used when there is a
lot of labeled data from the source domain but only unla-
beled data from the target domain(Kouw and Loog 2019;
Das and Lee 2018; Gong et al. 2012), which is the scope
of this paper. The key strategy of UDA is to keep the gap
between the source and target as small as possible.

The literature has mostly focused on a linear hypothe-
sis over the years (Blitzer, McDonald, and Pereira 2006;
Baktashmotlagh et al. 2013a; 2013b). Joaqui et.al., for ex-
ample, (Quifionero-Candela et al. 2008) used the Maximum
Mean Discrepancy (MMD) loss to minimize domains dis-
crepency. Tzeng et.al., (Tzeng et al. 2014) used MMD with
a regular classification loss on the source to learn a repre-
sentation that is both discriminative and domain invariant.
MMD and reproducing kernel Hilbert space were also used
by Long et.al., (Long et al. 2015) also Long et.al., (Long et
al. 2015) to align higher order statistics of the two distribu-
tions effectively.

More recently, UDA approaches are largely built on mod-
ern deep architectures to minimize the difference between
the source and target feature distributions (Yosinski et al.
2014; Chen et al. 2012; Vincent et al. 2008). One of the
earliest studies using deep learning for domain adaptation
was Stacked Denoising Autoencoders (SDA), proposed by
Vincent et.al., (Chen et al. 2012). It’s an auto-encoder-based
method that trains the model to minimize the loss between
the original inputs and their reconstructions.

Another line of research is domain-adversarial training,
which is the current state of the art (Wang et al. 2018;
Ganin et al. 2016; ; Chen and Cardie 2018; Li et al. 2017).
To minimize domain shift, these approaches used an ad-
versarial loss, learning a representation that is both dis-
criminative of source labels and unable to differentiate be-
tween domains. An external domain classifier is augmented
with a classification network. Adversarial training aims
to learn domain-invariant features, by playing a minimax
game (Goodfellow et al. 2014), (Liu, Qiu, and Huang 2017;
Tzeng et al. 2017).

Chen and Cardie (Chen and Cardie 2018) propose a multi-
nomial adversarial network (MAN) that learns invariant fea-
tures across multiple domains. It adopts the Shared-Private
paradigm of Bousmalis et al. (Bousmalis et al. 2016) to learn
domain-invariant features. MAN is the motivation for our
proposed TSAL. TSAL can be considered as a two-step of
MAN. It has the potential to be more reliable than MAN and
related techniques.

Model
Architecture

In this paper, we aim to tackle the DA in the context of a text
classification problem. For source domains, we have a mix
of labeled and unlabeled data, while for the target domain,
we only have unlabeled data. Using an adversarial learn-
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Figure 1: TSAL architecture

ing approach, the TSAL is proposed to ease the knowledge
transfer from a seen domain (source) to an unseen domain
(target). As shown in Figure 1, TSAL architecture consists
of two identical subsequence steps. Each step follows the
same MAN architecture (Chen and Cardie 2018), that uses
the Shared-Private paradigm.

Step 1 consists of four components: a shared feature ex-
tractor F , a domain feature extractor Fg, for each source
domain, a text classifier C, and a domain discriminator D.
The intuitive is that domain-invariant features that are ben-
eficial to the main classification task in all domains (i.e. the
shared features, extracted by Fj), as well as the domain-
specific features that mainly contribute to the classification
in its domain (the domain features, extracted by Fy), are ex-
plicitly modeled.

The adversarial domain discriminator D is a domain clas-
sifier that predicts which domain an input sample belongs to
based on the extracted shared features. Both F and D play
the mini-max game, in which F attempts to confuse D by
minimizing its loss, so that D is unable to predict the do-
main of a sample given its shared features. The hypothesis
is that if D can’t recognize the input’s domain, the shared
features don’t contain domain knowledge and are therefore
domain-invariant. It worth noting that D is only trained with
unlabeled samples, therefore it’s trained on both the source
and target domains. By forcing domain-invariant features to
be learned by Fj, the set of domain feature extractors Fy
will each learn domain-specific features beneficial within its
domain when trained jointly through back-propagation. The
text classifier C module is responsible for making predic-
tions for the end task. For each input, it first concatenates
the shared and private features into a single feature vector.
The input’s sample class label is then predicted. Each com-
ponent’s architecture can be chosen in a variety of ways. De-
pending on the input data, feature extractors may be Convo-
lutional Neural Nets (CNN), Recurrent Neural Nets (RNN),



MDAN MDAN

MLP mSDA DANN MAN DACL TSAL
(H-MAX) (S-MAX)
Books 7655 7698  77.89 78.45 7863 7778 8022 802
DVD 7588 7861  78.86 77.97 80.65 8274 8296 82.7
Elec. 8460 81.98 8491 84.83 8534 8375 849 853
Kit 8545 8426 86.39 85.80 86.26 8642 8675 87.0
AVG. 80.46 8046  82.01 81.76 82.72 8230 83.71 838

Table 1: Unsupervised domain adaptation results on the Amazon review dataset. Highest domain performance is shown in

bold.Except for our model, the rest is taken from (Chen and Cardie 2018).

books Elec. dvd Kitch. apparel camera health music

toys video baby magaz. softw. sports IMDb MR | AVG.

MAN 86.62 8825 86.25 89.25 85.25 86.25 83.75 86.25
TSAL 87.25 89.25 87.25 89.5 86.0 87.0 86.25 86.5

86.0 833 7975 8525 80.5 80.5 80.75 715 | 83.71
88.75 855 8475 86.5 83.5 8575 86.75 745 | 85.94

Table 2: Unsupervised domain adaptation results on the FDU-MTL review dataset. Multi-source domains V.S. one target do-

main.

or a Multi-Layer Perceptron (MLP). A fixed-length vector
representing the (shared/domain) hidden features of a given
input sample is the output of a (shared/domain) feature ex-
tractor. On the other hand, the outputs of C and D are class

Algorithm 1 MAN Training

Require: labeled corpus X; unlabeled corpus U; Hyperpa-
mameter A > 0,k € N

and domain label probabilities, respectively. é: rege;t iterations

Step 2 is the key distinction between our proposed model 3 for diter — 1 0 k do
and MAN (Chen and Cardie 2018). It contains the same 1 ! T 07
components as step 1, however in this step, the learned ) b= .
shared extractor (F) from step 1 is used as the initializa- 2: forSall dle A do batch ‘UD Forall N domains
tion for learning its peer. ample a mini-batch & ~ Uda .

The TSAL model hypothesis is based on the fine-tuning 7 fs = Fs(x) > Shared feature vector
paradigm. As fine-tuning deep learning involves using the 8 lp += Jp(D(f.); d) > Accumulate D loss
weights of a previous deep learning algorithm as initializa- 9: Update D parameters using Vip
tion for training a new deep learning algorithm. TSAL uses 10: > Main iteration
weights from a previous deep learning algorithm, F; of step 11:  loss =0
1, for initialization of another related deep learning algo- 12: foralld € Az do & For all labeled domains
rithm, Es of step 2. step 2 is guided to start learning from 13: Sample a mini-batch (z,y) ~ X4
the previously learned shared representation. We expect that 14 fo = Fu(z)

e or pcp s I o1 o= i)

esis. When compared to MAN and other related approaches, 16: loss += Je(C(fs fa);y) > Compute C ]?SS

TSAL has a positive impact on performance. 17: foralld c A do > Forall V domains
18: Sample a mini-batch & ~ Uy

Training 19: fo = Fuo(x) .

The MAN training procedure (Chen and Cardie 2018) is de- 20: loss += A+ Jx (D(fs);d) >Domain loss of F

scribed in Algorithm 1. The training flows of different com-
ponents are depicted by the arrows. The domain discrimina-
tor D is trained with a separate optimizer due to its adver-
sarial nature, while the rest of the networks are updated with
the main optimizer.

Only annotated data from source domains are used to train
the text classifier C, which takes the concatenation of shared
and domain feature vectors as input. The domain features for
C’s input is set to a 0 vector at test time for data from unla-
beled domains with no F);. For both labeled and unlabeled
domains, D, on the other hand, only takes the shared fea-
tures as input. For the loss functions of C (L¢) and D( Lp)
the canonical negative log-likelihood loss is used.

21:  Update Fs, Fg, C parameters using V0oss
22: until convergence

Algorithm 2 TSAL Training
1. Step 1
Require: labeled corpus X (source domain(s)); unla-
beled corpus U(target domain)
2: MAN training
3: Step 2
Require: labeled corpus X (source domain(s)); unla-
beled corpus U(target domain); Fs from stepl
4: MAN training




Elec. dvd Kitch. apparel camera health music

video baby magaz. softw. sports IMDb MR \AVG.

MAN 699 8035 71.0 75.3 72.1 74.8 81.3
TSAL 7135 8125 735 76.2 73.0 76.65 82.15

79.85 7285 740 76.35 733 81.25 71.0 | 7551
80.65 73.0 76.0 77.0 75.2 82.2 71.5 | 76.64

Table 3: Unsupervised domain adaptation results on the FDU-MTL review dataset. One source (books domain) V.S. one target

domain.

The proposed TSAL training can be seen in Algorithm 2.
In Step 1, the MAN’s training is completed first. The learned
shared extractor F is then used as an initialization for its
peer in step 2, allowing it to learn more deeply.

Experiments

The efficiency of the proposed TSAL system is empirically
evaluated in this section.

Datasets and Implementation Details

The first dataset on which we report our experiments is
the Amazon reviews dataset (Blitzer, Dredze, and Pereira
), which has been widely used for cross-domain sentiment
classification. It contains pre-processed features that lose or-
der detail, making it impossible to use powerful feature ex-
tractors (e.g. RNN or CNN). For a fair comparison, we use
an MLP as our feature extractor and select the top 5000 fea-
tures to represent each review as a 5000d feature vector, with
feature values representing raw counts of the features. The
Amazon dataset includes 2000 samples with binary labels
for each of the four domains: books, DVDs, appliances, and
kitchen products (positive, negative). we provide the mean
accuracy as well as the standard errors over five runs, to il-
lustrate the performance variance and conduct significance
tests.

Also, the FDU-MTL dataset (Liu, Qiu, and Huang 2017)
is used. Since Amazon reviews have already been tokenized
and converted into a bag of features, the order data is lack-
ing. As a result, we use the FDU-ML dataset, which con-
tains raw description text and enables us to deploy effective
feature extractor architectures (e.g. LSTM, CNN). In this
dataset, there were 16 distinct domains. Books, appliances,
DVDs, kitchen, clothes, cameras, fitness, music, toys, video,
baby, magazine, games, and sports are among the 14 Ama-
zon domains included, as are two movie review domains
from the IMDb and MR datasets. The number of training
and unlabeled data varies between 1400 and 2000 across
domains. Besides, as a validation and test collection, each
domain has 200 and 400 samples, respectively. In all of the
experiments, the performance of our framework is measured
by classification accuracy.

Experiments on the Amazon Dataset

To validate TSAL’s effectiveness, we compare it to state-of-
the-art multi-source domain adaptation methods. All base-
line methods in the comparison include:

e msDA (Chen et al. 2012): it employs marginalized
stacked denoising auto-encoders to learn new represen-
tations for domain adaptation.

¢ DANN (Ganin et al. 2016): it introduces the adversarial
training as a representation learning approach for domain
adaptation.

e MDAN(H-MAX) and MDAN(S-MAX) (Zhao et al.
2017): they are two adversarial neural models.

e MAN (Chen and Cardie 2018): it is a multinomial ad-
versarial networks for multi-domain text classification.

e DACL (Wu and Guo 2020): dual adversarial co-learning
approach for text classification.

One of the four domains in the Amazon dataset is used as
the target domain in four separate experiments, while the
other three are used as source domains. On the left side
of Table 1, the target domain is shown, and the test accu-
racy for TSAL and other multi-source domain adaptation is
mentioned. for all four experiments, TSAL outperforms sev-
eral baseline systems, such as an MLP trained on the source
domains, as well as single-source domain adaptation meth-
ods such as mSDA (Chen et al. 2012), DANN (Ganin et
al. 2016), MDAN (Zhao et al. 2017), and MAN (Chen and
Cardie 2018). In all three experiments, TSAL outperforms
DACL (Wu and Guo 2020), except for the one where the
dvd is the target, in which Dacl outperforms TSAL by 0.2%
(Table 1, second row ). It’s worth noting that TSAL outper-
forms other approaches on average. Furthermore, TSAL out-
performs the MAN by 1.5 %, indicating that our proposed
architecture’s hypothesis is sound.

Experiments on the FDU-MTL

To gain more insights into the effectiveness of TSAL, we run
a second set of experiments on the FDU-MTL dataset (Liu,
Qiu, and Huang 2017). In the case of multiple sources and
one target, Table 2 reports the test set accuracy for Man and
TSAL. The target domain is shown on top, while the remain-
ing 15 domains are the source domains. we attain TSAL
success on every domain with an average overall accuracy
of 85.94%, significantly outperforming the MAN by 2.65%.
This finding confirms the validity of the TSAL hypothesis
once more.

Moreover, Table 3 shows how well the proposed model
performs with a single source and single target. By us-
ing books domain as a source domain, we show the aver-
age overall accuracy. As a source domain, we can use any
domain other than books. As seen in Table 3, TSAL out-
performs MAN for different domains. For example, when
the target domain is the health domain, TSAL outperforms
MAN by 2%. There is also a 2% rise when sports is used as
a target domain. According to our results, TSAL improves
the average overall accuracy by 1.5 % in single-source and
single-target settings. For example, when the target domain



is the health domain, TSAL outperforms MAN by 2%. There
is also a 2% rise when sports is used as a target domain. Ac-
cording to our results, TSAL improves the average overall
accuracy by 1.5 % in single-source and single-target prob-
lem.

Conclusion

In this paper, we introduce a two-step adversarial learn-
ing model for text classification in an unsupervised domain
adaptation framework. TSAL includes two steps, analogous
to fine-tuning, to boost domain-invariant feature representa-
tion learning. This is based on the premise that more deep
features will be revealed,further assisting the target domain.
The TSAL’s performance is evaluated using two benchmark
datasets: Amazon and FDU-MTL. Furthermore, our experi-
ments include two settings: single source - single target do-
main and multi-source single target domain. The promising
performance of TSAL is demonstrated by the experimental
results. The frameworks proposed could be easily adapted
to other text classification tasks or applied to several target
domains.
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