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Abstract

Statistical approaches are widely used to analyze
and model data. Among the successful statistical ap-
proaches, finite mixture models have received a lot at-
tention with their flexibility and ease of use. There
are already many finite mixture models to deal with
this task, but Exponential Multinomial Scaled Dirich-
let (EMSD) has recently show higher accuracy model
compared to other state-of-the-art generative models for
count data clustering. Thus, in this paper, we present
Bayesian learning method for a finite mixture model of
Exponential Multinomial Scaled Dirichlet (EMSD) dis-
tribution. We developed the estimation method based
on a Markov Chain Monte Carlo with Metropolis-
Hastings algorithm for learning this model parameters.
This proposed method is verified by CON-19 informa-
tion sentiment clustering and a comparison with other
approaches with different models for count data

Introduction
With the advancement of technology, more and more com-
plex data are generated, analyzing such valuable data and
extraction of the latent pattern is a topic of interest in differ-
ent areas of science and technology. One of the main atten-
tion grabbing approaches is clustering method, finite mix-
ture models have been frequently used to cluster data into
homogeneous groups and finite mixture models are flex-
ibility and ease of use, the count data is widely used in
many areas such as machine learning, computer vision and
economic (Everitt 2005). This type of data has an obvi-
ous feature that it is positively skewed with the high fre-
quency of zeros (Sturman 1999). Thus, using an effective
model to analysis of this data is essential. Considering that
count data, it always put considerable challenge for the re-
searchers as the burstiness phenomenon (Bouguila and Ziou
2004), the new model Multinomial Scaled Dirichlet (MSD)
is the composition of the scaled Dirichlet distribution and
the multinomial in the same way that Generalized Dirich-
let Distribution (MGD), Multinomial Beta-Liouville Distri-
bution (MBL) are the compositions of the Dirichlet (Za-
mzami and Bouguila 2019). Elkan has shown the expo-
nential approximation for Dirichlet Compound Multinomial
(DCM) distributions (Elkan 2006), which is adjustable in
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high-dimensional spaces and flexibility. It has shown a bet-
ter performance and faster computation. Similarly, exponen-
tial multinomial scaled Dirichlet (EMSD) has shown a supe-
rior performance in many challenging applications that in-
volve high-dimensional count data (Zamzami and Bouguila
2019). In this paper, we will use Monte Carlo simula-
tion technique of Gibbs sampling mixed with Metropolis-
Hastings step for Bayesian analysis of complex statisti-
cal models. Bayesian estimation is based on learning from
data using Bayes’ theorem (Bouguila, Ziou, and Hammoud
2009), gaining its efficiency from the fact that it combines
both the prior information and the information brought by
the data to produce the posterior distribution (Bouguila
and Ziou 2004), (Bolstad and Curran 2016). Other simi-
lar work have already gained the excellent results from the
Bayesian approaches in case of mixture models(Bouguila,
Wang, and Hamza 2010),(Bouguila, Ziou, and Hammoud
2009),(Stoneking 2014),(Amayri and Bouguila 2016). We
validate the proposed algorithm with high dimensional real
count data for coronavirus information sentiment clustering.
The remainder of this paper is organized as follows. Sec-
tion 2 introduces the Multinomial Scaled Dirichlet (MSD)
Distribution. In section 3, we will present the introduction
for Exponential Multinomial Scaled Dirichlet Distribution
(EMSD). Then, we present proposed Bayesian learning al-
gorithm using Gibbs sampling with a combination of the
Metropolis-Hastings method in section 4. Section 5 shows
the result from real count data and compares with other mod-
els and methods. Section 6 concludes this paper.

Multinomial Scaled Dirichlet Distribution
The scaled Dirichlet is a generalization of the Dirichlet dis-
tribution obtained after applying the perturbation and power-
ing operations to a Dirichlet random composition. These op-
erations define a vector-space structure in the simplex, and
play the same role as sum and product by scalars in real
space. We assume the dimension is D, the scaled Dirichlet
with a set of parameters α = (α1 · · ·αD) which is the shape
parameter, and β = (β1 · · ·βD) which is the scale param-
eter. The scale Dirichlet distribution defined by(Aitchison
1982):

SD(ρ|α, β) =
Γ(α)

∏D
d=1 β

αd

d ραd−1
d∏D

d=1 Γ(αd)(
∏D
d=1 βdρd)

a
(1)



where the a =
∑D
d=1 αw, and Γ is the Gamma function.

Note that the scaled Dirichlet includes the Dirichlet as a
special case when all elements of the vector β are equal
to a common costant. Compared to the Dirichlet, the scaled
Dirichlet has D extra parameters, which enhances the model
flexibility (Hankin and others 2010). The good parame-
terization of scaled Dirichlet gives it the ability to better
model variance and covariance. Moreover, unlike Dirich-
let, the scaled Dirichlet takes into account relative positions
between categories or multinomial cells. These properties
make the scaled Dirichlet a more flexible choice as a prior
to Multinomial.
The MSD model is composition of the Multinomial and
scaled Dirichlet distribution, in this case, has two parame-
ters, which are shape parameter α and scale parameter β,
and we assume the Xi = [x1 · · ·xD]. The scaled parame-
ter controls how the density plot is spread out, The shape
parameter is the form or shape of the scaled Dirichlet distri-
bution (Zamzami and Bouguila 2019).

MSD(Xi|α, β) =

∫
ρ
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where D is the vocabulary size, Γ is the Gamma functionand
n =

∑D
d=1 xd

Exponential Multinomial Scaled Dirichlet
Distribution

The exponential family of distribution have obvious bene-
fits such as simplicity, effective optimization, it retains the
essential information in dataset and reduces the computa-
tion time in high-dimension data. Thus, the MSD ditribution
has been approximated as a member of the exponential fam-
ily EMSD distribution (Zamzami and Bouguila 2019), using
the following approximation for small α values .

Γ(αd + xd)

Γ(αd)
' Γ(xd)αd (3)

Using the fact that if x is an integer, the x! = x(x− 1)!, the
authors have obtained the EMSD distribution:

EMSD(Xi|λ, ν) =
n!Γ(s)∏D

d=1,xd≥1 xdΓ(s+ n)

D∏
d=1,xd≥1

λd
νxd

d

(4)
where s =

∑D
d=1 λd.

Metropolis-Within-Gibbs sampling Estimation
Algorithm

A challenging problem when deploying a finite mixture
model is learning the model’s parameters. The approaches
used for parameters estimation could be deterministic or
Bayesian (Najar, Zamzami, and Bouguila 2019). Bayesian
learning technique shows its superiority over the likelihood-
based method in this work. For learning the model’s pa-
rameters, we apply K-means to obtain the K clusters

and initialize our parameters by applying method of mo-
ments (MOM) (Manouchehri and Bouguila 2018). Then,
the new parameters are estimated by using Gibbs sampling
within Metropolis-Hastings algorithm(Bouguila, Ziou, and
Hammoud 2009). The entire set of documents is X =
{X1 · · ·XN}, where each document is described by a D-
dimensional Xi, the likehood corresponding to a mixture of
M distribution is :

P (X|λ, ν) =

N∏
i=1

P (Xi|λ, ν) =

N∏
i=1

(

M∑
j=1

πjP (Xi|λj , νj))

(5)
We proposed a M-dimentional membership indecator ~Zi =
(Zi1 · · ·ZiM ) to each observation, where the Zij = 1 if Xi

belongs to the the component j and zero, otherwise. Thus, for
X we have Z = {Z1 · · ·ZN}, and the posterior distribution
of all parameters over the data set X is defined by:

P (λ, ν|X , Z) ∝ P (λ, ν, π)
∏
Zij

P (Xi|λj , νj , πj) (6)

where P (λ, ν, π) is the prior distribution of parameters, and∏
Zij

P (Xi|λj , νj , πj) is the likehood of the data given the
model’s parameters expressed also as:

P (X|Z, λ, ν) =

N∏
i=1

M∏
j=1

(πjP (Xi|λj , νj))Zij (7)

the mixing weight is ~Π = (π1 · · ·πM ), it should sums to one
and all its values should be postive, thus, our natural choice
is the Dirichlet distribution which is defined as:

P (~Π|η) =
Γ(
∑M
j=1 ηj)∏M

j=1 Γ(ηj)

M∏
j=1

πηj−1 (8)

where η = (η1 · · · ηM ) is the Dirichlet distribution’s param-
eter vector. We also have:

P (Z|~Π) =

N∏
i=1

P (Zij |~Π) =

N∏
i=1

M∏
j=1

π
Zij

j =
∏
j=1

π
δj
j (9)

where δj =
∑N
i=1 Zij .

Thus, we can gain the posterior of mixing weight:

P (~Π|Z) ∝ P (~Π|η)P (Z|~Π)

=
Γ(
∑M
j=1 ηj)∏M

j=1 Γ(ηj)

M∏
j=1

πηj+δj−1 ∝M(η1 + δ1 · · · ηM + δM )

(10)

We assume
~
Z

(t)
i generate from Multinomial distribution

M(1, P (1| ~Xi
(t−1)

) · · ·P (M | ~Xi
(t−1)

)),where P (j| ~Xi) is
the posterior distribution defined by:

P (j| ~Xi) =
πjP ( ~Xi|λj , νj)∑M
j=1 πjP ( ~Xi|λj , νj)

(11)



The EMSD is a member of the expontial family of distribu-
tations, if s-parameters density belongs to the exponential
family, it can be written:

P (~x|~θ) = H(~x)exp(

s∑
l=1

Gl(~θ)Tl(~x) + Φ(~θ)) (12)

where Tl(~x) is a vector of suffcient statistic, Gl(~θ) is the
vector for natural parameters, H(~x) is the underlying mea-
sure and Φ(~θ) is called log normalizer which ensures that
the distribution in tegrates to one. Then, by letting:

H(~x) = n!(
∏
xd≥1

x−1
d )

Gl(~θ) = [log(λjd)− log(νjd)]

Tl(~x) =

[∑D
d=1 I(xd ≥ 1)∑D

d=1 xd

]

log(Γ(s+ ni)) = log(Γ(s)) +

n−1∑
t=1

log(s+ t)

Φl(~θ) = log(
Γ(s)

Γ(s+ ni)
) = −

n−1∑
t=1

log(s+ t)

(13)

Thus, the EMSD can be rewritten as:

EMSD(Xi|λj , νj) = (
∏
xd≥1

xd
−1)n!

Γ(s)

Γ(s+ n)

=

{
exp(

D∑
d=1

I(xd ≥ 1)(log(λjd)− xw log(νjd))

} (14)

where the ~θ = (λjd, νjd).
In this case, a conjugate prior for ~θ is given by:

P (θj) ∝ exp(

D∑
d=1

ρlGl(θj) + kΦ(θj))

∝ exp

[ D∑
d=1

(ρ1 log(λjd)−

ρ2 log(νjd))− k
n−1∑
t=1

log(s+ t)

]
(15)

where (ρ1, ρ2, k) are the prior’s hyperparameters. Thus, we
can determine the posterior distribution as follows:

P (θj |X ,Z) ∝ P (θj)P (Xi|θj)

∝ exp
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Considering (Kleiter 1992), once the sample X is konwn, it
can be used to get the prior hyperparameters (Bensmail et
al. 1997). The hyperparameters fixed at: k = 1, ρ1 = 1,
ρ2 =

∑
zi=1 xid. the accepted ratio is whether the sample at

iteration t should be accepted or refused for the next iteration
t+1, the ratio defined as follows:

r =
P(θ̃j |X ,Z)q(θ

(t−1)
j |Θ̃j)

P(θj |X ,Z)q(θ̃j |, θ(t−1)
j )

where the q is proposal distribution. Because the parameter
λ ∈ (0, 1), we consider Gamma distribution for the λ with
σ0 = 0.03 as scale parameter and Inverse Gamma distri-
bution for the ν with ϕ0 = 1 as scale parameter, thus, the
Metropolis-Hastings algorithm as fllows:
1) Generate λ̃j ∼ G(λ

(t−1)
j , σ0), ν̃j ∼ invG(ν

(t−1)
j , ϕ0)

and U ∼ U [0, 1]
2) Computation the acceptance ratio:

r =
P(θ̃j |X ,Z)G(λ

(t−1)
j |λ̃j , σ0)invG(ν

(t−1)
j |ν̃j , ϕ0)

P(θj |X ,Z)G(λ̃j |, λ(t−1)
j σ0)invG(ν̃j |ν(t−1)

j , ϕ0)

3) If r < U then λtj = λ̃j , ν
t = ν̃j else λtj = λ

(t−1)
j , νtj =

ν
(t−1)
j Therefore, the Gibbs sampling algorithm as follows:



Algorithm 1 Gibss sampling within Metropolis-Hastings
Initialization
a. Apply K-means to obtain K clusters
b. Apply method of moments on each component j to get
inintial ~λ
c. set initial ~ν as 1
repeat

Generate
~
Z

(t)
i ∼M(1, P (1| ~Xi

(t−1)
)

· · ·P (M | ~Xi
(t−1)

))

Generate
∏(t)
j from P (

∏
|Z)

Generate
~
θ
(t)
j from Eq.14 using Gibbs sampling algo-

rithm
until Convergence of parameters

CON-19 Information Sentiment Clustering
In 2020, a new virus swept the world, it brings many disas-
ters to the world. In addition to the epidemic, it also has be-
come important to keep abreast of people’s attitudes towards
the virus from the comments related to the CON-19 on the
internet. We use 3798 information from Twitter1, the data in
these sources have been classified into five labels including:
Neutral, Positive, Negative, Extremely Negative, Extremely
Positive.
We use bag-of-words and the preprocess for this data in
our experiments is removing all the stops words and rare
words (words less than 15 occurrences), then we trans-
form each text into a vector of counts containing the num-
ber of occurrences for each given word in a text docu-
ment. Given the estimated EMSD parameters, the cluster-
ing is performed by applying the Bayes’s rule. We evalu-
ate our proposed Bayesian inference methods with different
multinomial-based methods based on accuracy, precision,
recall, and F-measure. The compared models are: mixture
of multinomial model (MM), the Dirichlet compound multi-
nomial mixture model (DCM),Multinomial Scaled Dirich-
let mixture model (MSD), the mixture of EDCM models
and EMSD with expectation maximization (EM) algorithm.
The obtained results are shown in table 1. According to the

Table 1: RESULT
Models Accuracy(%) Precision Recall(%) F-measure(%)

MM 21.3 20.3 20.0 21.3
DCM 47.3 48.42 48.23 48.32
MSD 48.66 43.70 64.61 52.14

EDCM-EM 71.88 72.80 73.09 72.95
EMSD-EM 76.72 77.56 77.64 77.60

EMSD-Bayesian 83.21 82.43 83.11 83.32

evaluation metrics, mixture of multinomial model (MM) has
the worst results due to the “naı̈ve Bayes assumption”, the
DCM and MSD have better results compared to MM. Not-
ing EMSD and EDCM models outperform their correspond-
ing models (DCM and MSD). Our proposal model achieves
clearly superior results.

1https://www.kaggle.com/datatattle/covid-19-nlp-text-
classification

Conclusion
In this paper, we introduced a new Bayesian method for
learning the parameters of a mixture model based on the ex-
ponential family approximation to MSD. We presented an
Markov Chain Monte Carlo method to evaluate the poste-
rior distribution and bayes estimator by Gibbs sampling. We
demonstrated the result in real test data of CON-19 senti-
ment clustering and compare with other models and meth-
ods. The promising results are explained by taking advan-
tage of the posterior information which is not considered in
the other methods. We can conclude the EMSD model with
the proposed inference method offers a promising clustering
approach and can be used in other real life applications with
sparse high-dimensional data.
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