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Abstract
In this paper we develop and study solutions for the multi-
label ranking (MLR) problem. Briefly, the goal of multi-label
ranking is not only to assign a set of relevant labels to a data
instance but also to rank the labels according to their impor-
tance. To do so we propose a two-stage model that consist-
s of: (1) a multi-label classification model that first selects
an unordered set of labels for a data instance, and, (2) a la-
bel ordering model that orders the selected labels post-hoc
in order of their importance. The advantage of such a model
is that it can represent both the dependencies among label-
s, as well as, their importance. We evaluate the performance
of our framework on both simulated and real-world datasets
and show its improved performance compared to the existing
multiple-label ranking solutions.

1 Introduction
Situations, where we describe observed objects using an or-
dered set of labels are quite common in our everyday life.
Take, for example, a patient in the hospital. The patient’s
condition could be described by a list of diagnoses corre-
sponding to various diseases the patient suffers from, with
the most serious one being the first diagnosis listed by the
human expert to describe the patient case.

Multi-label ranking (MLR) models, where the model as-
signs an ordered set of labels to data instances can be de-
signed and learned in many different ways. A typical MLR
model projects all possible labels one may assign to an in-
stance into a real-valued space that reflects their rankings.
However, such a model assumes individual label projections
are independent, hence, it ignores the dependencies that may
exist among labels assigned to the instance. This may lead
to an inconsistent set of labels. In this work, we explore an
alternative MLR model that relies on (1) a multi-label clas-
sification model that first selects an unordered set of labels
for a data instance, and, (2) a label ranking model that orders
the selected labels post-hoc. One advantage of such a model
is that it can use a variety of existing multi-label classifica-
tion models in its first step. Another advantage, is that the
label ranking model (used in the second stage), orders only
labels chosen by the first model, hence it can properly reflect
various label dependencies incorporated into the first mod-
el. To translate the above idea into a working framework,
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we develop a new max-margin multi-label ranker to order
post-hoc the output of an existing multi-label classifier.

We experiment with our new MLR framework on both
synthetic and real-world datasets. We evaluate two aspects
of our solution: (1) its ability to find the correct set of labels
and (2) its ability to properly rank these labels. We show
the effectiveness of our MLR framework by comparing its
performance on both tasks with existing multi-label ranking
solution.

2 Related Work
In this section, we briefly review literature in two areas re-
lated to our work: multi-label classification and multi-label
ranking.

2.1 Multi-label Classification
In general, multi-label classification concentrates on learn-
ing a model that outputs a bipartite partition of all possible
labels into relevant and irrelevant labels with respect to a
data instance. Multi-label classification can be treated as an
extension of multi-class classification: each instance is asso-
ciated with a subset of labels instead of a single label. Multi-
label classification can also be treated as an aggregation of
multiple binary classification tasks with the same input fea-
tures. The key to learning a multi-label classification model
is the successful capture of the hidden dependencies among
the labels.

Multiple methods have been proposed for learning a
multi-label classification model. Perhaps the earliest and the
most simple method is binary relevance [Boutell et al., 2004;
Clare and King, 2001], which trains multiple binary clas-
sifiers independently. Clearly, the limitation of this method
is that it totally ignores the dependencies among the label-
s. Another simple method is label powerset [Tsoumakas,
Katakis, and Vlahavas, 2010], which transforms each la-
bel combination to a new class value, and learns a multi-
class classifier with all the new class values. This method
captures the dependencies among the labels by learning the
full-joint of the labels. However, the limitation is also obvi-
ous: the number of new class values is exponential to the
number of labels. Also, this method cannot learn the la-
bel combinations that are absent in the training data. There
are also methods derived from these two simple methods:



max-margin output coding (MMOC) [Zhang and Schnei-
der, 2012] applies a maximum margin formulation to en-
code the label combinations as new class values, and learn-
s a multi-class classifier with all the new class values. The
limitation of this method is the instability in performance:
the effective capture of label dependencies is determined by
the output coding algorithm. Classification with heteroge-
neous features (CHF) [Godbole and Sarawagi, 2004] first
learns multiple binary classifiers independently, then trains
multiple second-stage binary classifiers using the input fea-
tures plus the output of the independent binary classifiers
learned previously. The performance of this method is also
unstable since the performance is highly dependent on the
performance of the independent binary classifiers. More so-
phisticated multi-label classification methods based on prob-
abilistic graphical models (PGMs) to exploit the condition-
al independence relations among the labels have been de-
veloped in recent years. Conditional random field (CRF)
[Lafferty, McCallum, and Pereira, 2001; Naeini et al., 2014;
Bradley and Guestrin, 2010] and max-margin Markov net-
work (M3N) [Taskar, Guestrin, and Koller, 2003] use the
feature vectors generated from the input features and the
structure of the undirected graph (Markov network) to train
a regression-based or a max-margin classification model
respectively. Conditional tree-structured Bayesian network
(CTBN) [Batal, Hong, and Hauskrecht, 2013] uses a direct-
ed acyclic graph to model the causal dependencies among
labels and the input features; [Hong, Batal, and Hauskrecht,
2014, 2015] propose mixture frameworks to further improve
the performance of CTBN. By modeling the conditional de-
pendencies via Markov or Bayesian networks, probabilistic-
graphical-model-based (PGM-based) methods can efficient-
ly capture the hidden dependencies among labels and train
models in polynomial time. Because of that, PGM-based
methods for multi-label classification are gaining more and
more popularity in recent years.

Although probabilistic-graphical-model-based (PGM-
based) methods proved to be effective and efficient on
multi-label classification tasks, it is infeasible to apply
these methods to multi-label ranking tasks directly: the
key and perhaps hardest challenge is the re-design of the
loss functions. To avoid this, we propose a new general
multi-label ranking framework that can be attached to most
existing multi-label classifiers. It relies on a max-margin
multi-label ranker that ranks only the relevant labels from
the output of the existing multi-label classifier.

2.2 Multi-label Ranking (MLR)
Multi-label ranking (MLR) is a complex learning problem
where the goal is to not only identify relevant labels from a
set of predefined labels, but also to rank them according to
their relevance to a data instance. Consequently, MLR can be
considered as a generalization of multi-label classification
and label ranking. The key to learning a successful MLR
model is the capture of the dependencies among the labels.

Only a limited number of solutions have been developed
for MLR problem. [Fürnkranz et al., 2008] proposed to add a
threshold label and apply a common label ranking model us-
ing pairwise constraints: labels ranked beyond the threshold

Figure 1: A two-stage MLR model f consisting of a multi-
label classifier g and an auxiliary multi-label ranker h. The
number of labels in permutation subset S equals the number
of positive labels in label vector y.

labels are positive (and are included among instance labels),
otherwise they are negative (and not included among labels).
Similarly, [Li, Song, and Luo, 2017] proposed a multi-label
ranker using a smoothed hinge loss function to enforce the
pairwise orderings between each pair of labels unless both
labels are irrelevant. [Jung and Tewari, 2018] proposed an
online boosting algorithm to rank the labels by combining
the predictions of multiple weak regression-based models.
Both of these methods come with the following drawback-
s: (1) they do not explicitly learn the dependencies among
labels, hence they fail to capture many label dependencies,
such as situations in which two labels are mutually exclu-
sive; (2) they take marginalized predictions to determine the
label rankings and the relevance of the labels. Such an ap-
proach is is unable to properly model the dependencies a-
mong the labels and their rankings.

To solve the drawbacks of the existing MLR methods, we
propose a general MLR framework that can be combined
with many existing multi-label classifiers to both (1) cap-
ture the dependencies among the labels (2) rank the relevant
labels from the output of the existing multi-label classifier.

3 Methodology
In this section, we start by first defining the problem of learn-
ing a multi-label ranking (MLR) model and propose a simple
two-stage model for the problem. The model consists of a
multi-label classifier and a new label ranker model and their
composition. Since there are many different multi-label clas-
sification we focus on and present a new multi-label ranker
model responsible for ordering the labels selected by the ex-
isting multi-label classifier.

3.1 Problem
Our objective is to learn an MLR model f : X → S, where
X ∈ Rd is the input space and S represents the space of
the permutation subsets (PS). The PS S(i) reflects the rank-



Dataset Instance Number Feature Number Label Number Set Number Cardinality
Emotions 593 72 6 27 1.9

Yeast 2417 103 14 198 4.2
Scene 2407 294 6 15 1.1
MS1 35409 90 13 156 1.3
MS2 89073 90 15 210 1.3
Faces 584 256 4 23 1.4

Table 1: Properties of all datasets in experiments.

ings of the relevant labels in terms of their importance to the
instance among all the K labels. The PS S(i) is formed by
a non-empty subset of K labels indicating the descending
ordering of the relevant labels. The labels not in the PS are
considered irrelevant to the instance by the annotator. For
example, in a 4-label setting, a PS 〈3, 2〉 indicates the 3rd
label is the most relevant to the instance, the 2nd label is the
second most relevant, and the other two labels are irrelevant.

3.2 The Model
The model of f that assigns a set of ordered labels to in-
stances can be built in many different ways. In this work we
adopt a two-step process covered with two different models
to define it: f = 〈g,h〉. The first model is a multi-label clas-
sifier g : X → Y where Y = {0, 1}K is the space of the
label vector. Such a classifier determines whether a specific
label y(i)

j in the label vector y(i) is relevant to the instance

x(i) or not (y(i)
j = 1 indicates relevant). The second model

is an multi-label ranker h : X × Y → S that determines the
ordering of the relevant labels in y(i) and outputs it as S(i).
A brief illustration of this MLR model f is in Figure 1.

We note that a large body of research work in recent years
has focused on the multi-label classification problem, and
many different multi-label classification models have been
proposed and developed. Our goal in this work is not to in-
vent a new multi-label classification model, but to utilize the
existing models in our two-step MLR model.

3.3 An Auxiliary Max-margin Multi-label Ranker
Suppose we have access to a multi-label classifier g that out-
puts a label vector y(i) which determines whether a label is
relevant to the instance (in the PS) or not. Then we can train
an auxiliary max-margin multi-label ranker h on the label
vectors such that, for each instance, the projection of a la-
bel in the PS should be higher than all other labels that rank
lower in the PS. More formally, suppose that we have al-
ready obtained a label vector y(i) where y(i)

j = 1 indicates
label j is included in the PS. Now, we aim to obtain K d-
ifferent projection mappings h1, h2, . . . , hK , one for each
label, that reflect their order in the PS S(i). We can en-
code this aim by trying to enforce the following constraints:
hj(x(i), y(i)) > hl(x(i), y(i))⇔ r(S(i), j) < r(S(i), l), that
is, the projection hj of label j should be higher than the pro-
jection hl of any label l such that the ranking r(S(i), j) of
label j in S(i) is beyond the ranking r(S(i), l) of label l. Par-
ticularly, if j /∈ S(i), r(S(i), j) = |S(i)|+ 1. Therefore, our

auxiliary max-margin multi-label ranker can be formulated
as the following optimization problem:

min
W,Ξ

K∑
j=1

R(wj) + C

N∑
i=1

K−1∑
j=1

K∑
l=j+1

ξ
(i)
jl

z
(i)
jl (wj − wl)

>φ(x(i), y(i)) ≥ 1− ξ(i)
jl (ξ

(i)
jl ≥ 0)

where wj ⊂ W is the model parameter of hj ; R(wj)

is the regularization term of hj ; x(i) and y(i) are the fea-
ture and label vector of instance i obtained from the giv-
en multi-label classifier g, respectively; φ(·) is the projec-
tion of kernel space; z(i)

j,l is the ternary value indicating
the comparison of the rankings between label j and l: 1 if
r(S(i), j) < r(S(i), l), and -1 if r(S(i), j) > r(S(i), l), and
0 otherwise; ξ(i)

j,l ∈ Ξ is the slack variable penalizing when
the comparison between hj(x(i), y(i)) and hl(x(i), y(i)) vio-
lates their rankings in S(i); N is the number of labeled in-
stances. Clearly, the total number of constraints of our aux-
iliary max-margin multi-label ranker is O(Nv2), where v is
the average size of the PS of each instance.

4 Experiments and Results
We test our model and learning solutions on multiple syn-
thetic and real-world datasets. The three synthetic datasets
are built from UCI multi-label classification datasets where
the permutation subsets are simulated; the three real-world
datasets contain permutation subsets provided by human an-
notators.

4.1 Datasets
The synthetic datasets are generated from UCI multi-label
classification datasets. We generate them by taking 1

3 of da-
ta instances randomly to train an identical multi-label rank-
ing model with 0/1 label vectors only. This is possible since
we can still enforce that the projections of relevant labels
should be higher than the projections of irrelevant labels. Af-
ter training, we apply the trained multi-label ranking model
to every instance in the remaining 2

3 of the dataset and cal-
culate the rankings of all its labels. By combining the label
vector and the predicted rankings, we generate permutation
subsets for every instance in the remaining 2

3 of the dataset.
In the experiments, we use only the data instances randomly
sampled from 2

3 of data that consists of the original feature
vectors and the generated permutation subsets.



Figure 2: Classification Performance (Top – Micro-F1, Bottom – Instance-F1) on all datasets.

The real-world datasets consists of two Million Song
datasets (MS1 and MS2) [Bertin-Mahieux et al., 2011] and
one Face Sentiment dataset [Mozafari et al., 2012]. Each
Million Song dataset consists of a collection of songs. In
each dataset, the feature vector of an instance (song) con-
tains the timbre information of the song, and the permutation
subset of each instance contains one or two labels indicating
the priorities of the genres. In Face Sentiment data, the fea-
ture of each instance is a 128×120 gray-scale image of a fa-

cial expression, where we extract 256 features using a multi-
layer convolutional neural network. The output of each in-
stance indicates one sentiment of facial expression out of
four provided by nine human annotators. Therefore, we may
sort the output sentiment according to their vote numbers in
the descending order, and take such an ordered set as the
permutation assigned to each instance. The properties of six
datasets are summarized in Table 1.



Figure 3: Ranking Performance (Normalized Discounted Cumulative Gain) on all datasets.

4.2 Settings
To demonstrate the benefits of our model we evaluate and
compare the performance of the following five models:

CTBN, a combination of the conditional tree-structured
Bayesian network (CTBN) [Batal, Hong, and Hauskrecht, 2013]
classifier and our multi-label ranker. CTBN models the conditional
dependencies among labels via a Bayesian network;

CRF, a combination of the conditional random field (CRF) [Laf-
ferty, McCallum, and Pereira, 2001; Bradley and Guestrin, 2010]
classifier and our multi-label ranker. CRF models the conditional
dependencies among labels via a Markov network;

Pair, a multi-label ranker proposed by [Li, Song, and Luo, 2017]
that uses a smoothed hinge loss function to combine the constraints
from pairwise ordering extracted from the label rankings in the per-
mutation subset of each instance. This method does not explicitly
model the dependencies among labels;

CLR, the calibrated labeled ranker proposed by [Fürnkranz et
al., 2008] that adds a threshold label of each instance and apply a
common label ranker using pairwise constraints. This method does
not explicitly models the dependencies among labels;

OBR, the online boosting multi-label ranking model proposed
by [Jung and Tewari, 2018] that aggregates the predictions of mul-
tiple weak multi-label rankers via majority votes. This method does
not explicitly models the dependencies among labels.

Briefly, CTBN and CRF are two versions of our MLR
framework that take advantage of two existing multi-label
classification models. Pair, CLR and OBR are three existing
multi-label ranking solutions.

All data sets are split into the training and test set (using 2
3

and 1
3 of all instances respectively). We evaluate the perfor-

mance of all methods on the test data using both multi-label
classification and ranking performance measures. Micro-F1
and Instance-F1 are two multi-label classification evaluation
metrics that only consider the labels picked up by the model-

s, not their order. Micro-F1 is the F-measure averaging over
the prediction matrix and is defined as:

Micro-F1(Y, Ŷ ) =
2
∑N

i=1

∑m
j=1 y

(i)
j ŷ

(i)
j∑N

i=1

∑m
j=1 y

(i)
j +

∑N
i=1

∑m
j=1 ŷ

(i)
j

where y(i)
j ∈ Y is the ground truth of the jth binary label

for the ith instance; ŷ(i)
j ∈ Ŷ is the prediction of the jth bi-

nary label for the ith instance; N is the instance number; m
is the label number. Instance-F1 is the F-measure averaging
over all instances and is defined as:

Instance-F1(Y, Ŷ ) =
1

N

N∑
i=1

2
∑m

j=1 y
(i)
j ŷ

(i)
j∑m

j=1 y
(i)
j +

∑m
j=1 ŷ

(i)
j

Normalized Discounted Cumulative Gain (NDCG)
[Järvelin and Kekäläinen, 2002; Li, Burges, and Wu, 2007]
is used to evaluate the ranking performance. This evaluation
metric considers the rankings of the relevant (positive) labels
and is defined as:

NDCG(S, Ŝ) =
1

N

N∑
i=1

1

Z(i)

m∑
j=1

I(S(i), j)DW (Ŝ(i), j)

where S(i) ⊂ S is the ground truth of the PS for the
ith instance indicating the rankings of the relevant (pos-
itive) labels; Ŝ(i) ⊂ Ŝ is the predicted PS for the ith
instance; I(S(i), j) returns the importance of the jth la-
bel in the ground-truth PS S(i). If the j ∈ S(i), indicat-
ing y

(i)
j = 1, then I(S(i), j) = |S(i)| + 1 − r(Ŝ(i), j)



where r(Ŝ(i), j) return the ranking of the jth label in S(i);
if the j /∈ S(i), indicating y

(i)
j = 0, then I(S(i), j) =

0. DW (Ŝ(i), j) returns the discounted weight of the jth
label in the predicted PS Ŝ(i). If the j ∈ Ŝ(i), then
DW (Ŝ(i), j) = 1

log2(1+r(Ŝ(i),j))
, otherwise DW (Ŝ(i), j) =

0.Z(i) =
∑m

j=1 I(S(i), j)DW (S(i), j) is the partition func-
tion, indicating the ideal discounted cumulative gain when
S(i) = Ŝ(i).

All three evaluation metrics are measured on the test data
regarding different numbers of labeled instances. The learn-
ing considers the training data only, and the three metric-
s are always calculated on the test set. We also repeat the
train/test splitting and learning steps 30 times. The average
classification performance (Y -axis) of different models for
increasing sizes (X-axis) of the training sets is reported in
Figure 2. The average ranking performance (Y -axis) of d-
ifferent models for increasing sizes (X-axis) of the training
sets is reported in Figure 3.

4.3 Experimental Results
Results on Classification Performance In Figure 2
we show the classification performance (Micro-F1 and
Instance-F1) of the different multi-label ranking solutions.
The two classification performance measures only compare
the label vectors with the ground truth, not the order of la-
bels. Both CTBN and CRF (our MLR solutions) outperform
three existing MLR solutions Pair, CLR and OBR in terms
of Micro-F1 and Instance-F1 on all the six datasets. This
shows the effectiveness of the multi-label classifiers based
on probabilistic graphical models (PGMs) we have integrat-
ed into our MLR framework. By modeling dependencies a-
mong labels, CTBN and CRF can improve the classification
performance over existing multi-label rankers that do not ex-
plicitly model the dependencies among labels.

Results on Ranking Performance In Figure 3 we show
the ranking performance (Normalized Discounted Cumula-
tive Gain) of different multi-label ranking frameworks. The
ranking performance compares both the label vectors and
the rankings of the relevant (positive) labels with the ground
truth. Similarly to label classification performance, CTBN
and CRF outperform Pair, CLR and OBR also in the ranking
performance. This shows our two-stage multi-label ranker
can effective utilize the label dependency learned from its
stage-one multi-label classifier. The classification and rank-
ing performance together shows the effectiveness of com-
bining the existing multi-label classifiers based on proba-
bilistic graphical models (PGMs) with our auxiliary multi-
label ranker by modeling and utilizing the dependencies a-
mong labels.

5 Conclusion
We have proposed a new multi-label ranker that relies on output-
s of existing multi-label classifiers, which can represent both the
dependencies among labels as well as their importance. Through
extensive experiments we showed that our new two-stage MLR ap-
proach can assign better label rankings to instance than existing
state-of-the-art label ranking solutions.
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