
Exploring Monte Carlo Negotiation Search with Nontrivial Agreements

Elijah Malaby, John Licato
Advancing Machine and Human Reasoning (AMHR) Lab

Department of Computer Science and Engineering
University of South Florida

Abstract
The application of automated negotiations to general game
playing is a research area with far-reaching implications.
Non-zero sum games can be used to model a wide variety
of real-world scenarios and automated negotiation provides
a framework for more realistically modeling the behavior
of agents in these scenarios. A particular recent develop-
ment in this space is the Monte Carlo Negotiation Search
(MCNS) algorithm, which can negotiate to find valuable co-
operative strategies for a wide array of games (such as those
of the Game Description Language). However, MCNS only
proposes agreements corresponding to individual sequences
of moves without any higher-level notions of conditional or
stateful strategy. Our work attempts to lift this restriction. We
present two contributions: extensions to the MCNS algorithm
to support more complex agreements and an agreement lan-
guage for GDL games suitable for use with our algorithm. We
also present the results of a preliminary experiment in which
we use our algorithm to search for an optimal agreement for
the iterated prisoners dilemma. We demonstrate significant
improvement of our algorithm over random agreement sam-
pling, although further work is required to more consistently
produce optimal agreements.

1 Introduction
Game playing provides a valuable framework for develop-
ing and experimenting in artificial intelligence. Games pro-
vide controlled environments and clear goals. Furthermore,
a broad class of multi-agent systems can be analyzed in
terms of games. Turn-based zero-sum games like Chess and
Go have already seen extensive research (recently, (Silver et
al. 2018)), and more recent efforts have been made to de-
velop AI for more complex environments like the real-time
strategy game StarCraft 2 (Churchill et al. 2016). Coopera-
tive games are ones where agents are allowed to collaborate
in their strategies (and, broadly speaking, are incentivized
to do so). Automated negotiation is a similarly important
field in AI, tasked with solving the problem of agents com-
ing to mutually-beneficial agreements in complex environ-
ments (Fatima, Kraus, and Wooldridge 2014). At the inter-
section of automated negotiation and game playing is the po-
tential to build robust AIs that can work cooperatively based
only upon knowledge of their shared environment and un-
derstanding of each other’s goals.

Copyright © 2021by the authors. All rights reserved.

A particularly compelling example of a game where ne-
gotiation and careful cooperation are valuable is Diplomacy.
Diplomacy is a perfect information game with a large state
space, no chance, simultaneous moves, and up to seven con-
current players. Players are encouraged to come to agree-
ments during the game. The large state space makes an-
alyzing Diplomacy games challenging, let alone discover-
ing effective cooperative strategies and negotiating agree-
ments. Recent work has explored the problem of automated
negotiation in Diplomacy (Fabregues and Sierra 2011; de
Jonge et al. 2018; Theodoridis and Chalkiadakis 2020;
Marinheiro and Cardoso 2018).

A recent development in the game-negotiation space is
the work on Monte Carlo Negotiation Search (de Jonge
and Zhang 2017), an algorithm for negotiating cooperative
agreements that do not assume any foreknowledge about the
game in question. Instead, it is provided the rules to the
game in the form of the Game Description Language (GDL)
(Genesereth, Love, and Pell 2005) and has to be prepared
to negotiate over any such games. However, MCNS as de-
scribed works over an agreement space where agreements
correspond to sequences of moves. These move sequences
are discovered by the random sampling of its internal Monte
Carlo Tree Search. For simple games, MCNS can reliably
find an optimal strategy but this approach does not scale
as effectively to more complex games (the likelihood that a
given random game will be optimal decreases rapidly) or to
games where a subset of players are party to the agreement
(a move sequence may be insufficient to describe the optimal
strategy under all opposing responses). Our work explores
an approach to decoupling agreement search from the rest of
the MCNS algorithm, allowing it to be applied to more ex-
pressive agreement spaces capable of describing more com-
plex strategies. We make two main contributions. First, in
§3 and §4 we document our proposed extensions to MCTS
and MCNS to support these agreements. Second, in section
§5 we document our approach to a general-purpose GDL-
based agreement language suitable for our algorithm. Fi-
nally, §6 documents a preliminary experiment we performed
applying our agreement search process to generating the op-
timal agreement for the iterated prisoners dilemma.

2 Foundation and related work
Games
We focus on simultaneous-move two-player games (games
with two players where each player’s moves are selected
concurrently and applied simultaneously). For the rest of
the paper, definitions are based on an abstract game with
two players, pi for i ∈ {0, 1} and a finite set of game states
s ∈ S. There is an initial state s0 ∈ S and a nonempty subset
of terminal states T ⊂ S . There are two sets of actions A0

andA1 corresponding to the full set of actions the respective
player could take. There are two legality functions, L0 and
L1, defined on (S\T)→ 2Ai and identifying the nonempty
subset of actions legal for a player to take in a given nonter-
minal state. For each nonterminal state s ∈ S\T there is a
game transition function δgs defined on L0(s)×L1(s)→ S
giving the transitions out of that state. Finally, there are two
utility functions U0 and U1 defined on T → R+ giving the
utility values of each terminal state to each player.

Monte Carlo Tree Search
Monte Carlo Tree Search is a family of algorithms for es-
timating properties of games (in particular, Nash Equilib-
ria). A more detailed discussion of MCTS can be found in
(Kocsis and Szepesvári 2006) and particular policies for si-
multaneous move games are discussed in (Lisy et al. 2013).
MCTS has recently used for automated negotiations in the
work of (Buron, Guessoum, and Ductor 2019), in which
they directly apply MCTS to a negotiation game formalism
of their design.

MCTS algorithms work by iteratively exploring the move
tree of the game, with each step incrementally improving
the overall estimates. Each node in the game’s move tree
corresponds directly to a game state. The children of a state
correspond to valid state transitions (moves). Each iteration
of MCTS proceeds in four steps:

1. Selection: Select a promising unvisited node
2. Rollout: Simulate a random game starting at this node
3. Update: Use the reward from the simulation to update

metrics about this node and its parents
4. Expansion: Add the children of this node as unvisited

nodes in the tree
Selection proceeds recursively from the root by selecting

visited nodes according to a policy. A simple greedy policy
selects the node with the highest average result so far, but
this policy is highly chaotic in its results. Many heuristics
have been studied, but a commonly used one is UCT (Kocsis
and Szepesvári 2006). In UCT, the average utility score of
each state (node) is combined with an “exploration” term
encouraging visits to new subtrees. Selection stops when
recursion encounters a node with unvisited children, one of
which is selected arbitrarily.

The Rollout step then performs a simulation of the game
starting at the selected node. For our purposes, actions are
randomly selected in this simulation step. Each player’s ac-
tions are selected with uniform probability from their legal
actions in each state. Finally, rollout records the utility val-
ues of the terminal state for each player.

The Update step walks back up the tree to update each
node based on the rollout result. The update is dependent on
what information is being recorded and what policy is being
used to select nodes. UCT, for example, records the cumu-
lative record and number of times each node is updated.

The Expansion step performs maintenance needed for se-
lection to pick children from the explored node. It allows
the tree to be generated lazily in memory, which is impor-
tant given even finite games have trees with explosive size.

General game playing and GDL
General Game Playing explores the problem of agents play-
ing games without any foreknowledge of the game rules.
The Game Description Language (GDL) was popularized by
the AAAI General Game Playing competition (Genesereth,
Love, and Pell 2005) (which provides a complete reference
for it) as the format all submitted agents must consume to
know what game they are playing. Since then, GDL has
been used to develop game agents based upon minimax,
alpha-beta pruning, and varieties of MCTS. de Jonge and
Zhang (2016) explore the general premise of applying GDL
as a foundation for developing general negotiating agents.

GDL is a language based on Datalog (Ceri, Gottlob, and
Tanca 1989), a logic programming language. In particular,
GDL describes a game in terms of a set of logical rules
which must hold in every state of the game. Each of the
rules defines logical inferences to be made about the game,
framed as implications. A special predicate true is used
to refer to facts about particular game states, so a rule like
true(x) → legal(p, y) says “in states where x holds, it is
legal for player p to take action y. Like Datalog (and Pro-
log before it), the rules are written with the consequent first.
So in practice that rule would be written legal(p, y)
:- true(x) or in the more common s-expression nota-
tion (<= (legal p y) (true x)). The design of
GDL allows agents to follow these logical inferences and
derive all of the relevant information about any given game
state, including how the actions performed in a given state
influence the set of true facts in the next state.

Automated Negotiation
Automated negotiation is a broad subfield of AI, with
many recent works centering on the Automated Negotiat-
ing Agents Competition (Fujita et al. 2016; Aydoğan et al.
2020). However, much of the work in this space either
makes too many simplifying assumptions about the nego-
tiation space to be applied directly to game negotiations or
is highly domain specific (like the Diplomacy agents refer-
enced in the introduction). One of the more general pur-
pose works recently has been that of Marinheiro and Car-
doso (2018), but this only presents a framework which must
be tailored for particular games.

Monte Carlo Negotiation Search
Monte Carlo Negotiation Search (de Jonge and Zhang 2017;
2020) is a recent algorithm which builds upon MCTS to pro-
duce a generic algorithm for negotiating cooperative agree-
ments between agents in non-zero-sum games. MCNS ac-
complishes this by using a modified MCTS to compute the

Negotiation Value and Reservation Value of states. The
reservation value refers to the utility each agent expects to
get despite failing to negotiate, while the negotiation value
refers to the utility each agent can expect to receive from
successful negotiations. Under MCNS agents get an oppor-
tunity to negotiate a new agreement at the start of each state
(regardless of if an agreement had already been established).
So, the reservation value is taken as the negotiation value of
the expected next state if negotiation fails (or as the average
utility of the state itself, as a lower bound). The negotiation
value is itself also computed based on the reservation value
of the same state (although in a less direct fashion).

The mutually-referential nature of the negotiation and
reservation values makes them difficult to compute directly.
To compute these values, MCNS replaces the normal loop
of MCTS with a nested loop. The outer loop of MCNS per-
forms a modified MCTS but replaces the rollout step with a
nested instance of MCTS. In the outer loop, the negotiation
values are used for selection instead of the average rollout
scores (to select a state which is promising under negotia-
tion). Then MCTS is used to compute the average rollout
score of the selected node (the expected utility despite fail-
ing to negotiate). This nested MCTS loop is also augmented
to record each of its rollout simulations, the best of which
are used as agreements. Using the average rollout score as
a lower bound for the reservation value, the update step can
estimate the negotiation value of that state. This new nego-
tiation value can be used to estimate the reservation value
of the parent state and update its negotiation value. This
process continues back up the tree, updating the negotiation
values of each parent. Depending on the exact implemen-
tation, the expansion step of the outer loop can be skipped
as the nested MCTS will have had to explore that subtree
already.

The full MCNS algorithm implements a negotiation strat-
egy based upon these negotiation and reservation values.
However, given the only agreements it generates are move
sequences found by guided MCTS, the algorithm has chal-
lenges scaling optimally to games with larger move spaces.
As mentioned above, the focus of this work is expanding
MCNS to work with more complex agreements.

3 Monte Carlo Agreement Tree Search
Our first contribution is the development of Monte Carlo
Agreement Tree Search (MCATS) and Monte Carlo Agree-
ment Forest Search (MCAFS), described in this and the fol-
lowing sections respectively. Monte Carlo Agreement Tree
Search builds on MCTS by augmenting the underlying game
state and transition system with agreements. MCATS is in-
stantiated with an agreement space on the game in question,
based on a set of agreements α ∈ Ag. In addition, an agree-
ment space has three functions. The first two are the execu-
tion functions exi defined on S ×Ag → 2Ai , giving the ac-
tions legal for each player in the given state according to the
agreement. The second is the agreement transition function
δa defined on S×A → A which defines how the agreement
itself changes as the game progresses. The agreement transi-
tion function allows us to capture stateful agreements with-
out needing to introduce an explicit notion of state, which

would otherwise complicate our model, by forcing any state
to be encoded into the agreement itself.

Based on our agreement model, we define an agreement-
restricted game. Intuitively, an agreement-restricted game
is a game whose legal transitions are restricted by an ini-
tial agreement between the players. The states of this
game are S × A state-agreement pairs, and the terminal
states are similarly T × A terminal state-agreement pairs.
The initial state is the pair (s0, α). The full sets of ac-
tions are the same. The legality functions are defined as
L′
i(s) := Li(s) ∩ exi(s, α) if said intersection is nonempty,

otherwise just Li(s). Without handling this edge case it
would be possible for an agreement to prevent a player from
taking any move. The transition functions are defined as
δ(s,α)(a0, a1) := (δgs(a0, a1), δas(α)).

Finally, Monte Carlo Agreement Tree Search is MCTS
over an agreement-restricted game. MCATS allows us to
approximate the Nash Equilibrium and expected utility of
the game under the assumption that the given agreement is
binding, which allows us to compare agreements by direct
simulation.

4 Monte Carlo Agreement Forest Search
Monte Carlo Agreement Forest Search applies MCNS to the
game as a whole and MCATS to a pool of agreements. To
remain entirely agnostic to the agreement space, MCAFS
takes an evolution function that operates on the agreement
pool and each agreement’s MCATS tree. The purpose of the
evolution function is to use the MCATS data to improve the
pool of agreements as the corresponding trees are explored:
removing agreements that do not appear promising and re-
placing them with new ones. The idea of MCAFS is to use
MCNS to estimate the negotiation and reservation values of
the current state but not to generate the agreements them-
selves. We need the negotiation values from MCNS to cal-
culate the reservation value of the current state, with which
we can calculate the negotiation value of the current state
based on our pool of agreements. Then alternation between
exploring the MCATS trees and calling the evolution func-
tion to try new agreements is used to search the agreement
space.

5 An Agreement Language
Our second contribution in this work is the design of
an agreement language for simultaneous move games (in
particular, GDL games) compatible with MCAFS. While
existing agreement languages exist (in, for example, the
blockchain smart contract space), and constructing one for a
specific game is straightforward, to our knowledge a suitable
language for concisely expressing agreements over arbitrary
GDL games does not exist. This section gives a high-level
description of our agreement language. The language is
tree-structured (using s-expressions) and has five main con-
structs broken into three categories: the temporal operators,
the conditional operator, and the requirement operators. All
of these form clauses and an agreement is simply a set of
such clauses. We chose these operators to strike a balance
between keeping the overall language simple and capturing

Rcl(state,(next clauses...)) ::= {}
Rcl(state,(until pred clauses...)) ::=

if pred(state) then {} else
⋃

c∈clauses

Rcl(state, c)

Rcl(state,(when pred clauses...)) ::=

if pred(state) then
⋃

c∈clauses

Rcl(c, state) else {}

Rcl(state,(force agent moves...)) ::=

{(force agent moves...)}
Rcl(state,(block agent moves...)) ::=

{(block agent moves...)}
Ragent((force agent moves...)) ::= agent

Ragent((block agent moves...)) ::= agent

Rmoves(state,(force agent moves...)) ::=

{moves...}
Rmoves(state,(block agent moves...)) ::=

Lagent(state)\{moves...}
Rpi(state, agreement) ::=

{r|c ∈ agreement ∧ r ∈ Rcl(c) ∧Ragent(r) = pi}
expi(state, agreement) ::=⋂
s∈Rpi

(state,agreement)

Rmoves(s)

δcl(state,(next clauses...)) ::=

{clauses...}
δcl(state,(until condition clauses...)) ::=

if condition(state)

then {}
else {(until condition clauses...)}∪⋃
c∈clauses

δcl(state, c)

δcl(state,(when condition clauses...)) ::=

if condition(state)

then
⋃

c∈clauses

δcl(state, c)

else {}
δcl(state,(force agent moves...)) ::= {}
δcl(state,(block agent moves...)) ::= {}

δa(state, agreement) ::=
⋃

c∈agreement
δcl(state, c)

Figure 1: Execution and Transition functions of our agree-
ment language. For the execution functions: Rcl collects the
requirements of a given clause,Ragent extracts the agent of
a requirement, Rmoves gives the set of legal moves under a
requirement, Rpi is the set of requirements for a given agent
in a state. For the transition function: δcl is the transition
function for a given clause

clause ::=(next S +)

|(until condition agreement)

|(when condition agreement)

|(force agent A+)

|(block agent A+)

agreement ::=clause|clause agreement

Figure 2: ENBF of our agreement language

a large range of possible agreements. Figure 1 gives the
semantics of these operators in terms of the execution and
transition functions, while Figure 2 gives the syntax of the
language in EBNF.

We incorporate GDL terms in three ways: predicates,
moves, and identifying agents. By predicates, we mean
GDL queries: logical statements whose truth value can be
determined by exhaustively searching the game’s GDL in-
ference rules concerning the current game state. Incorpo-
rating GDL queries allows our agreements to capture any
properties of the game state or rules used to define the game
itself. Using GDL terms for moves reflects the GDL-centric
nature of the language. We use the GDL agent identities for
the same reason, but we have to keep in mind that GDL does
not assign agents to integers (or even limit the number of
agents to two). As such, to use MCATS as defined above,
a mapping must be defined to the two agents of our formal
game definition in section §2.

The two temporal operators are next and until. These
operators define how the contract can evolve as the game
changes. The next operator takes an agreement and defers
its enforcement (execution/transition) to the next state. The
until operator takes a GDL predicate along with an agree-
ment. If the predicate holds it enforces the nested agreement
and is included in the next agreement (the output of the tran-
sition function). The conditional operator when also takes
a GDL predicate alongside an agreement and enforces the
nested agreement if the predicate holds. Finally, the require-
ment operators are force and block, both of which take
the name of an agent and a set of moves for that agent. The
requirement operators are the leaves of any agreement, the
building blocks which the agreement uses to enforce higher-
level goals. The force operator requires that the given
agent’s move come from among its set, while the block
operator prevents the agent from taking any of the given
moves. These operators are complementary. However, for
games with large move spaces, it would be impractical to
simulate the effect of one with using the other: enumerating
all moves less one in a force to simulate a block does
not scale well.

Example agreements

(f o r c e w h i t e l a y c l a i m)
(n e x t

(f o r c e b l a c k end game))

The above agreement is based on the GDL rules for the
Dollar Auction (DA) game and represents the optimal (co-
operative) solution to it. In DA, players take turns laying
claims to some prize. Each claim costs 5 points and be-
ing the last player to lay a claim wins you back 25 points.
The first player to pass ends the game, winning it for the
other player. Let us say this agreement goes into force on
the first turn and white goes first. The agreement forces
white to lay a claim and on the next turn forces black
to pass. Thus, both players have minimized their losses.
For this agreement, just having (next (force black
end game)) would be equivalent in effect: safe in the
knowledge that black will skip next turn, white is already
incentivized to lay a claim.

(u n t i l f a l s e
(when (and (t r u e (c e l l 1 1 x))

(t r u e (c e l l 3 1 x)))
(b l o c k x (mark 2 1))))

This agreement is based on a tic-tac-toe game, where x
and o are the agents and the cell predicate is used to iden-
tify what markings are in what (x,y) coordinates of the grid.
Informally, the contract blocks the x player from ever com-
pleting a column by marking the (2,1) location. until
false is used to enforce the clauses of the contract on the
state it goes into force and all subsequent states. false here
is a stand-in for any GDL query which would never succeed:
GDL makes no mention of a guaranteed false statement, but
any condition requiring mutually exclusive facts about the
game board would suffice. The when condition checks if
x has already marked cells (1,1) and (3,1), and finally the
block requirement prevents marking (2,1). Importantly,
the contract as stated only prevents marking (2,1) last: if the
column were filled in from the top to bottom (for example)
the contract would never come into play.

6 Experiment
We performed a preliminary experiment to test the effective-
ness of MCAFS-guided agreement evolution versus a ran-
dom sampling of our agreement space. Our evolution mech-
anism was randomly mutating (re-generating) subtrees of
randomly generated agreements. The agents and respective
valid moves needed to generate agreements were queried
from the GDL rules and sampled randomly. To generate
the queries we queried for all of the possible valid state
propositions and randomly generated conjunctions of these
as needed. We focused our experiment on the GDL defi-
nition of the iterated prisoners dilemma (IPD). We tested if
preferentially mutating agreements that scored well under
MCATS would more consistently generate an optimal IPD
agreement than random mutations would.

Although our algorithm is game agnostic, we chose to fo-
cus on IPD for a couple of reasons. Firstly, it is not only
non-zero-sum but the optimal cooperative strategy is signifi-
cantly better than the nash equilibrium. Equally importantly
howver, despite being a fairly simple game, IPD already
shows the limitation of MCNS (de Jonge and Zhang 2017).
Although MCNS performed well against IPD, with the full
20 rounds it did not perform optimally. This sub-optimal

play was attributed to the large state space and MCNS only
sampling move sequences for its agreements. These prop-
erties of IPD make it an important benchmark for our work,
where an optimal agreement as described by our agreement
language should be significantly easier to find.

Such an optimal agreement is given by white and
black both being forced to cooperate every round, as in:

(u n t i l f a l s e
(f o r c e w h i t e c o o p e r a t e)
(f o r c e b l a c k c o o p e r a t e))

We performed 40 executions of MCAFS, 20 where the
evolution step accounted for the MCATS results and the
other 20 where random agreements were selected. In both
cases, we maintained a pool of 8 agreements. MCAFS was
configured to run 100 samples for each agreement in the
pool on each iteration. On the evolution step we selected
two agreements and replaced four others with mutations of
those two. In the MCATS-aware pool, agreements were
sorted primarily by the sum of their rewards to all players
and secondarily by their reward for one of the players (white,
in our tests, to simulate the preference a particular player
would give to agreements that reward them). In the end,
the MCATS-aware runs generated an optimal agreement 10
times out of 20 while random generation only found it once.
Despite the simplicity of our evolution step, using MCAFS
to guide the search through the agreement space shows a
clear advantage over random sampling.

7 Conclusion and Future Work
Autonomous systems of the future will increasingly find
themselves in environments where they are bound by a hier-
archy of rules, which may include laws, ethical guidelines,
norms of proper behavior, and temporary agreements. Nego-
tiating and reasoning about possible agreements still is out
of reach of even the most advanced AI systems currently
available, especially when those agreements are themselves
subject to constraints set by additional factors such as an
agent’s goals, preferences of other parties involved, and so
on. The work we describe in this paper represents small, but
important, steps towards negotiation-capable AI.

How an environment’s rules should be represented by a
negotiation-capable AI is a question which leads to many
unanswered questions, which we hope to address with fu-
ture work. For example: How can such an AI reason over
agreements containing open-textured terms? For example:
consider the rule “Compensation shall be granted as soon
as is reasonably possible.” How should the open-textured
term “reasonably possible” be defined? Though it is some-
what ambiguous and can lead to differing interpretations,
it is difficult to avoid the use of such terms because it is
implausible (and ill-advised) to explicitly state every possi-
ble scenario which does and does not count as “reasonably
possible.” Such open-textured terms are a common, but nec-
essary, part of both legal and ethical systems (Hart 1961;
Franklin 2012), and improving automated reasoning over
them should be considered an imperative for AI research
(Licato and Marji 2018; Licato, Marji, and Abraham 2019;
Quandt and Licato 2019).

The clear next step we see is to develop our implemen-
tation of MCNS and MCAFS to the point where we can
directly test negotiating agents against the benchmark of
(de Jonge and Zhang 2017). We also see improvements to
be made in our agreement evolution: for this experiment,
we did not take advantage of any of the MCTS-tree data
to guide mutating agreements (beyond just comparing the
agreements by their average utility). A more detailed anal-
ysis of the game trees could be used to prefer certain mu-
tations over others. Our agreement generation algorithm
is also only able to generate ground GDL queries— ones
that do not involve logic variables. Allowing for logic vari-
ables in these conditions introduces complicated questions
of scope and state, but it may prove vital for capturing agree-
ments in spaces as complex as (for example) Diplomacy.

In conclusion, our work presents an incremental but im-
portant step forward in automated game negotiations. We
have described an extension to MCNS which allows it to op-
erate in more complex agreement spaces as well as an agree-
ment language to test our extensions upon. We are hopeful
that our work will serve as a foundation for further explo-
ration into the game negotiation space.

8 Acknowledgement
This material is based upon work supported by the Air Force
Office of Scientific Research under award numbers FA9550-
17-1-0191 and FA9550-18-1-0052. Any opinions, findings,
and conclusions or recommendations expressed in this ma-
terial are those of the authors and do not necessarily reflect
the views of the United States Air Force.

References
Aydoğan, R.; Baarslag, T.; Fujita, K.; Mell, J.; Gratch, J.;
de Jonge, D.; Mohammad, Y.; Nakadai, S.; Morinaga, S.;
Osawa, H.; Aranha, C.; and Jonker, C. M. 2020. Challenges
and main results of the automated negotiating agents com-
petition (anac) 2019. 366–381.
Buron, C. L. R.; Guessoum, Z.; and Ductor, S. 2019. Mcts-
based automated negotiation agent. In Proceedings of the
18th International Conference on Autonomous Agents and
MultiAgent Systems, volume 11873, 1850–1852.
Ceri, S.; Gottlob, G.; and Tanca, L. 1989. What you al-
ways wanted to know about datalog (and never dared to
ask). IEEE Transactions on Knowledge and Data Engineer-
ing 1(1):146–166.
Churchill, D.; Preuss, M.; Richoux, F.; Synnaeve, G.; Uri-
arte, A.; Ontañnón, S.; and Čertický, M. 2016. Starcraft
bots and competitions. Encyclopedia of Computer Graphics
and Games 1–18.
de Jonge, D., and Zhang, D. 2016. Using gdl to repre-
sent domain knowledge for automated negotiations. In Inter-
national Conference on Autonomous Agents and Multiagent
Systems, 134–153.
de Jonge, D., and Zhang, D. 2017. Automated negotiations
for general game playing. In AAMAS ’17 Proceedings of
the 16th Conference on Autonomous Agents and MultiAgent
Systems, 371–379.

de Jonge, D., and Zhang, D. 2020. Strategic negotiations for
extensive-form games. Autonomous Agents and Multi-Agent
Systems 34(1):1–41.
de Jonge, D.; Baarslag, T.; Aydogan, R.; Jonker, C. M.; Fu-
jita, K.; and Ito, T. 2018. The challenge of negotiation in
the game of diplomacy. In Agreement Technologies 2018,
Revised Selected Papers, 100–114.
Fabregues, A., and Sierra, C. 2011. Dipgame: A challenging
negotiation testbed. Engineering Applications of Artificial
Intelligence 24(7):1137–1146.
Fatima, S.; Kraus, S.; and Wooldridge, M. 2014. Principles
of Automated Negotiation.
Franklin, J. 2012. Discussion paper: How Much of Com-
monsense and Legal Reasoning is Formalizable? A Review
of Conceptual Obstacles. Law, Probability and Risk 11(2-
3):225–245.
Fujita, K.; Aydoğan, R.; Baarslag, T.; Hindriks, K.; Ito, T.;
and Jonker, C. 2016. The first automated negotiating agents
competition (anac 2010). volume 674. 139–151.
Genesereth, M. R.; Love, N.; and Pell, B. 2005. General
game playing: Overview of the aaai competition. Ai Maga-
zine 26(2):62–72.
Hart, H. 1961. The Concept of Law. Clarendon Press.
Kocsis, L., and Szepesvári, C. 2006. Bandit based monte-
carlo planning. In ECML’06 Proceedings of the 17th Euro-
pean conference on Machine Learning, 282–293.
Licato, J., and Marji, Z. 2018. Probing formal/informal
misalignment with the loophole task. In Proceedings of the
2018 International Conference on Robot Ethics and Stan-
dards (ICRES 2018).
Licato, J.; Marji, Z.; and Abraham, S. 2019. Scenarios and
recommendations for ethical interpretive ai. In Proceedings
of the AAAI 2019 Fall Symposium on Human-Centered AI.
Lisy, V.; Kovarik, V.; Lanctot, M.; and Bosansky, B. 2013.
Convergence of monte carlo tree search in simultaneous
move games. In Advances in Neural Information Processing
Systems 26, volume 26, 2112–2120.
Marinheiro, J., and Cardoso, H. L. 2018. Towards general
cooperative game playing. Trans. Comput. Collect. Intell.
28:164–192.
Quandt, R., and Licato, J. 2019. Problems of autonomous
agents following informal, open-textured rules. In Proceed-
ings of the AAAI 2019 Spring Symposium on Shared Context.
Silver, D.; Hubert, T.; Schrittwieser, J.; Antonoglou, I.; Lai,
M.; Guez, A.; Lanctot, M.; Sifre, L.; Kumaran, D.; Graepel,
T.; Lillicrap, T.; Simonyan, K.; and Hassabis, D. 2018. A
general reinforcement learning algorithm that masters chess,
shogi, and go through self-play. Science 362(6419):1140–
1144.
Theodoridis, A., and Chalkiadakis, G. 2020. Monte carlo
tree search for the game of diplomacy. In 11th Hellenic Con-
ference on Artificial Intelligence, 16–25.

