
Counterfactual Examples for Data Augmentation: A Case Study

MGM Mehedi Hasan and Douglas A. Talbert
Department of Computer Science

Tennessee Tech University
Cookeville, USA

mmehediha42@tntech.edu, dtalbert@tntech.edu

Abstract

Counterfactual explanations are gaining in popularity as
a way of explaining machine learning models. Coun-
terfactual examples are generally created to help inter-
pret the decision of a model. In this case, if a model
makes a certain decision for an instance, the counter-
factual examples of that instance reverse the decision of
the model. The counterfactual examples can be created
by craftily changing particular feature values of the in-
stance. Though counterfactual examples are generated
to explain the decision of machine learning models, in
this work, we explore another potential application area
of counterfactual examples, whether counterfactual ex-
amples are useful for data augmentation. We demon-
strate the efficacy of this approach on the widely used
“Adult-Income” dataset. We consider several scenarios
where we do not have enough data and use counter-
factual examples to augment the dataset. We compare
our approach with Generative Adversarial Networks ap-
proach for dataset augmentation. The experimental re-
sults show that our proposed approach can be an effec-
tive way to augment a dataset.

Introduction
There has been a desire for explanations of how complex
computer systems make decisions for quite some time. The
need for explanations can be dated back to some of the earli-
est work on expert systems (Buchanan and Shortliffe 1984).
Explanations are critical for machine learning (ML), espe-
cially as machine learning-based systems are being used to
inform decisions in societally critical domains such as fi-
nance, healthcare, education, and criminal justice. However,
most explanation methods depend on an approximation of
the ML model to create an interpretable explanation. For ex-
ample, consider a person who applied for a loan and was
rejected by the loan approval algorithm of a financial com-
pany. Typically, the company may provide an explanation
as to why the loan was rejected, for example, due to “poor
credit history.” However, such an explanation does not nec-
essarily provide the person with sufficient information re-
garding what they need to do to improve their chances of
being approved in the future. Critically, the most important
feature may not be enough to flip the decision of the algo-

Copyright © 2021by the authors. All rights reserved.

rithm and, in practice, may not even be changeable such as
gender or race.

Wachter et al. (Wachter, Mittelstadt, and Russell 2017)
argue that there are three important aims for explanations:
(1) to inform and help the person understand why a partic-
ular decision was reached, (2) to provide grounds to contest
the decision in the case of an undesirable outcome, and (3)
to understand what would need to change in order to get
a desirable result in the future, based on the current deci-
sion making model. A counterfactual explanation of a pre-
diction describes the smallest change to the feature values
that changes the prediction to a predefined output, and it can
be a good candidate to fulfill the three aims proposed by
Wachter et. al. In interpretable machine learning, counter-
factual explanations can be used to explain predictions of
individual instances. In this paper, we use the terms counter-
factuals and counterfactual examples interchangeably.

Counterfactual examples are increasingly seen as enhanc-
ing the autonomy of people subject to automated decisions
by allowing people to navigate the rules that govern their
lives (Barocas, Selbst, and Raghavan 2020). This helps peo-
ple recognize whether to contest the decision making pro-
cess and facilitates direct oversight and regulation of algo-
rithms (Wachter, Mittelstadt, and Russell 2017; Selbst and
Barocas 2018). Specifically, counterfactual examples pro-
vide this information by showing feature-perturbed versions
of the same person who would have otherwise received the
loan (Mothilal, Sharma, and Tan 2020).

Contribution: Even though there are many advantages
to using counterfactuals as a way of explaining model de-
cisions, they can also be considered as a way to augment a
very small dataset. We know that machine learning models
usually require a large amount of data and often the perfor-
mance of the model depends on the size of the dataset. If
we do not have enough data to train the model, we might
not get the desired outcome from the model. There is often
a severe lack of adequate data, which deter us from getting
a well trained model. In such a case, augmenting a small
dataset can be a viable solution. In this work, we explore
this application of counterfactuals and verify the feasibility
of this approach through several experiments. We use a well
known dataset to conduct the experiments in different steps
and analyze the results to measure the extent to which coun-
terfactuals can serve to augment the dataset. We compare our

data augmentation approach with a Generative Adversarial
Networks (GAN) approach (Goodfellow et al. 2014). In this
work, we do not consider data augmentation to correct for
class imbalance and leave that as a future work. We are par-
ticularly interested in dealing with the situation where we
have a small dataset.

The rest of this paper is organized as follows: Next, we
present the necessary background material to understand the
concept. After that, we discuss related work. Then, we de-
scribe and run relevant experiments to test our proposed ap-
proach, which is followed by the discussion of the exper-
imental results. We then compare our approach with data
augmentation using a GAN-based approach. Finally, we
draw some conclusions and describe some future research
direction.

Background
In interpretable machine learning, counterfactual explana-
tions can be used to explain predictions of individual in-
stances. The counterfactual explanation method is model-
agnostic, since it only relies on the model inputs and out-
put, and the interpretation can be expressed as a summary of
the differences in feature values. Counterfactuals are human-
friendly explanations, because they are contrastive to the
current instance and because they are selective, meaning
they usually focus on a small number of feature changes.

We can generate counterfactual explanations using a sim-
ple, naive approach, searching by trial and error (Molnar
2019). In this approach, we randomly change feature values
of the instance of interest and stop when the desired out-
put is predicted. There are, however, better, more practical
approaches than trial and error. We can start by defining a
loss function that takes as input the instance of interest and
the output is a counterfactual or the desired outcome. This
loss function measures how far the predicted outcome of the
counterfactual is from the predefined outcome and how far
the counterfactual is from the instance of interest (Wachter,
Mittelstadt, and Russell 2017). There are two ways to opti-
mize the loss function. One way is to optimize the loss di-
rectly with an optimization algorithm like Adam (Adaptive
Moment Estimation) (Kingma and Ba 2014). Another way is
to search around the instance. Wachter et. al (Wachter, Mit-
telstadt, and Russell 2017) proposed an approach by mini-
mizing the following loss function, which was later refined
by Molnar (Molnar 2019):

L(xi, x
′
i, y

′, λ) = λ · (f̂(x′i)− y′i)2 + d(xi, x
′
i) (1)

Here, the term λ · (f̂(x′i) − y′i)2 represents the quadratic
distance between the model prediction (f̂(x′i)) for the coun-
terfactual x′i for an instance of interest xi and the desired
outcome y′i, which the user must define in advance. The sec-
ond term d(xi, x

′
i) is the distance d between the instance of

interest xi to be explained and the desired counterfactual x′i.
The parameter λ plays an important role here, which bal-

ances the distance in prediction i.e. λ · (f̂(x′i)− y′i)2 against
the distance in feature values i.e. f̂(x′i). The loss is solved

by choosing an appropriate value of λ, and the solution re-
turns a counterfactual x′i. The value of λ dictates the kind
of compromise we want to make in our preference for coun-
terfactuals. For example, if we choose a higher value of λ
that means we prefer counterfactuals that are closer to the
desired outcome y′i. On the other hand, if we go for a lower
value λ, we prefer counterfactuals x′i that are very similar
to the instance of interest, xi, in the feature values. A very
large value of λ indicates that, the instance with the predic-
tion that comes closest to y′i will be selected, no matter how
far it is away from xi.

The choice of λ depends on the user, as he/she must de-
cide how to balance the requirement that the prediction for
the counterfactual matches the desired outcome with the re-
quirement that the counterfactual is similar to xi. Wachter et.
al suggest instead of selecting a value for λ, we can select a
tolerance ε. The tolerance indicates how far away the predic-
tion of the counterfactual instance is allowed to be from y′i.
We can write this constraint in the following way:

|f̂(x′i)− y′i| ≤ ε (2)

We can use any suitable optimization algorithm to min-
imize this loss function in Eq. (2). For example, if we
have access to the gradients of the machine learning model,
we can use gradient-based methods like RMSprop opti-
mizer (Tieleman and Hinton 2012) or Adam.

Related Work
Mothilal et. al extended the work of Wachter et. al (Wachter,
Mittelstadt, and Russell 2017) and provided a method to
construct a set of counterfactuals with diversity (Mothilal,
Sharma, and Tan 2020). Ribeiro et al. (Ribeiro, Singh,
and Guestrin 2016) proposed a feature-based approach,
LIME, that fits a sparse linear model to approximate non-
linear models locally. Guidottiet al. (Guidotti et al. 2018)
extended this approach by fitting a decision tree classi-
fier to approximate the non-linear model and then trac-
ing the decision-tree paths to generate explanations. Simi-
larly, Lundberg and Lee (Lundberg and Lee 2017) provided
human-comprehensible approximations for linear models
and present a unified framework that assigns each feature an
importance value for a particular prediction. Russel worked
on efficiently finding coherent counterfactuals avoiding the
need for brute-force enumeration (Russell 2019). Ustun et.
al worked on evaluating a linear classification model in
terms of recourse, which behaves similarly to counterfac-
tuals (Ustun, Spangher, and Liu 2019). In this case, the re-
course provided a person the ability to change the decision
of the model through actionable input variables.

Mahajan et. al addressed the challenge of the feasibil-
ity of counterfactual examples by preserving causal rela-
tionships among input features (Mahajan, Tan, and Sharma
2019). There has been some peripheral of counterfactual
data augmentation in natural language processing for Mit-
igating Gender Stereotypes in Languages (Zmigrod et al.
2019) and reducing bias (Kaushik, Hovy, and Lipton 2019).
The authors use counterfactual examples as a tool to mitigate
those issues but not as a tool to augment the dataset.

None of the approaches talk about how counterfactual
examples can efficiently augment dataset especially tabular
dataset. In this work, we demonstrate that counterfactual ex-
amples can be a viable option for data augmentation using
different scenarios. We are specially interested to augment a
small dataset rather than addressing class imbalance issue.

Case Study
We apply a technique introduced by Mothilal et.
al (Mothilal, Sharma, and Tan 2020) to generate the
counterfactual examples (CFEs). We generated counter-
factual examples using a shallow artificial neural network
(ANN) and then used those counterfactual examples in
other models. We used different models to experiment with
the generated counterfactual examples to avoid potential
bias that might arise when the same model that generated
the CFEs is again used to test those CFEs. At the same time,
we also wanted to make sure that CFEs generated by one
model are transferable to another model.

Dataset
In this experiment, we consider the Adult-Income data set,
which contains demographic, educational, and other infor-
mation based on the 1994 Census database and is avail-
able on the UCI machine learning repository (Kohavi and
Becker 1996). The data set is credited to Ronny Kohavi
and Barry Becker (Kohavi 1996). It involves using per-
sonal details such as education level, hours of work per
week, etc. to predict whether an individual will earn more
or less than $50,000 per year. The Adult-Income data set
is a widely used, standard machine learning data set and has
become a de facto data set for counterfactual example exper-
iments (Karimi et al. 2020; Mothilal, Sharma, and Tan 2020;
Mahajan, Tan, and Sharma 2019).

We obtained 8 features, namely, hours per week, educa-
tion level, occupation, work class, race, age, marital status,
and sex by applying the preprocessing based on a prior anal-
ysis (Zhu 2016). In this case, the ML model’s task is to clas-
sify whether an individual’s income is over $50,000.

Experiments
We trained an artificial neural network (ANN) model us-
ing the Adult-Income dataset. We randomly selected 400 in-
stances and generated a maximum of 4 CFEs for each of
the instances. In total, we generated 1000 CFEs. We added
these CFEs to multiple, differently sized, subsets of the orig-
inal Adult-Income dataset. We ran our experiments using six
different scenarios.

Experiment 1: First, to establish a gold-standard perfor-
mance against which to compare the other experiments, we
ran an experiment using the whole original Adult-Income
dataset to train and tested three kinds of models, which were
decision trees, Random Forests, and Bagging applied to de-
cision trees. From the dataset, we made an 80:20 train/test
split. The results for this and the other five experiments are
reported in Table 1.

Experiment 2: Next, to simulate performance when sig-
nificantly less data is available, we ran an experiment using

only 20% of the original Adult-Income dataset to train and
test three the same three models. As in Experiment 1, we
used an 80:20 train/test split.

Experiment 3: For our first data augmentation experiment,
we combined 20% of the original Adult-Income dataset with
the generated CFEs to form our data set and evaluated the
performance using the three models. Once again, we used
an 80:20 train/test split.

Experiment 4: In this experiment, we trained the models
using only the generated CFEs, and for the test set, however,
we used the original data from the Adult-Income dataset.
The amount of test data was equal to the 20% of the CFEs
used to train the models in this experiment.

Experiment 5: This experiment required that we first
trained a different ANN model from which to generate the
CFEs. This time, however, we used a much smaller dataset
i.e., only 10% of the Adult-Income dataset. We then com-
bined the resulting CFEs with the 20% of the original Adult-
Income dataset to train and test the three models using an
80:20 train/test split

Experiment 6: In our final experiment, we trained the
models using only the CFEs that were generated in Exper-
iment 5. Then, as in Experiment 4, we tested the models
again using 20% of the original data from the Adult-Income
dataset.

Table 1: Accuracy on test set for the three models for all six
experimental scenarios.

Scenario Decision
Tree

Rand. For-
est

Bagging

Experiment 1 78.1% 79.99% 80.99%
Experiment 2 72.78% 75.27% 75.72%
Experiment 3 77.18% 79.72% 80.18%
Experiment 4 77.91% 80.03% 80.75%
Experiment 5 76.82% 79.01% 80.02%
Experiment 6 76.11% 78.17% 79.88%

Discussion
To test how well CFEs can be used to augment a dataset, we
reduced the original dataset by 80%. This truncated dataset
became our new baseline dataset, which we wanted to aug-
ment. The rationale behind this idea is if, for some exper-
iments, we do not have enough data to adequately train a
model then whether CFEs can be used to effectively supple-
ment the given data.

In such a case, we would use that small dataset to train a
model and use this trained model to generate CFEs. These
CFEs along with the original dataset can then be used to train
another model. In the latter case, choosing a different model
than the one used to generate the CFEs is preferable. In this
way, we can avoid the bias that might potentially be created
using the same model for both the purposes. This also paves
the way for the generated CFEs to become model-agnostic
i.e., we can train any classifier with the generated CFEs.

The experimental results show very encouraging output
in this regard. Experiment 1 shows the accuracies of the
three models when models trained and tested using the full

dataset. However, Experiment 2 shows the test accuracy,
when the models are trained on a much smaller dataset. We
wanted to observe whether adding the generated CFEs to
this small dataset improved the accuracy i.e. whether CFEs
can effectively augment the dataset. This attempt resulted in
the test accuracy seen in Experiment 3. We observed a clear
improvement over Experiment 2 in all three models. How-
ever, Experiment 4 put the CFEs to a further test, we trained
the three models using only the CFEs and tested the accu-
racy with the 20% of the original dataset. Like Experiment
3, these results also show improved accuracy compared to
Experiment 2.

The CFEs used thus far were generated from an ANN
model that was trained on the complete Adult-Income
dataset, and we have already observed that they are effec-
tively augmenting the reduced dataset. However, we might
not always have a dataset as big as the full Adult-Income
dataset. In that case, we would need to train a model with
that smaller dataset and subsequently generate CFEs. How
effective will data augmentation using those CFEs be? To
test this scenario, Experiment 5 trained the ANN model with
a much smaller dataset, only 10% of the original Adult-
Income dataset and then generated CFEs from this trained
model. We merge these CFEs with the 20% of the original
Adult-Income dataset to train and test the same three mod-
els. The results still show improvement compared to Exper-
iment 2 albeit not as much as the results from Experiment
3.

The slight difference in performance between Experiment
3 and Experiment 5 is understandable. In the former case,
we generated CFEs from a model that was trained using a
complete dataset, and this gives the model a better under-
standing of the counterfactual world. As a result, the model
generated more effective CFEs. However, in the latter case,
the CFEs were generated from a model that was trained on a
much smaller dataset, which resulted in a more limited un-
derstanding of the counterfactual world and thereby result-
ing in less effective counterfactual examples. The important
takeaway from here is that even those less effective coun-
terfactual examples worked pretty well in augmenting the
dataset.

Lastly, Experiment 6 trained those three models again but
this time only with the CFEs that were generated using the
reduced dataset stated above. In this case, we test the ac-
curacy with the reduced original dataset. In this case, the
amount of test data was equal to the 20% of the CFEs used
to train the models in this experiment. This experiment’s re-
sults also show improved performance compared to Experi-
ment 2. Again, The slight difference in performance between
Experiment 4 and Experiment 6 can be attributed to the same
reasoning we gave for Experiment 3 and Experiment 5.

Overall, we observed a clear improvement in terms of per-
formance for all the three models when we use CFEs to aug-
ment the small dataset (20% of the original Adult-Income
dataset).

Why Counterfactual Examples Work?
Counterfactual examples generation method is model-
agnostic, since it only works with the model inputs and out-

put (Molnar 2019). As we have demonstrated in the exper-
iments, we used one model (e.g. ANN) to generate coun-
terfactual examples and different models (e.g. decision tree,
RandomForest, and Bagging) to test the utility of the gener-
ated examples.

To generate good counterfactual examples, there are cer-
tain criteria that need to be fulfilled. One of the foremost
requirements is that a counterfactual instance produces the
predefined prediction as closely as possible by defining a rel-
evant change in the prediction of an instance (i.e. the alterna-
tive reality) (Molnar 2019). However, it is not always possi-
ble to match the predefined output exactly i.e. we might not
get proper counterfactual example for every instance. To be
considered as a good counterfactual example, it should be as
similar as possible to the instance regarding feature values.
This criterion necessitates an appropriate distance measure
between two instances. The counterfactual example should
not only be close to the original instance, but should also
change as few features as possible (Molnar 2019). To ful-
fill this criterion, an appropriate distance measure like the
Manhattan distance is required. The last requirement is that
a counterfactual instance should have feature values that are
likely or practically possible. For example, in the case of
Adult-Income dataset, it would not make sense to generate
a counterfactual example, which requires an individual to
change his/her race to earn $50,000 per year. Fulfilling all
these criteria forces counterfactual examples to better ap-
proximate the actual instances. As a result, these counter-
factuals can be good candidates to augment the dataset.

Generative adversarial networks (GANs)
GANs (Goodfellow et al. 2014) are a neural network archi-
tecture that has shown impressive improvements over pre-
vious generative methods (Doersch 2016) especially for im-
age data (Frid-Adar et al. 2018; Mariani et al. 2018). A GAN
composes of two deep neural networks, which are the gener-
ator model and the discriminator model (Mirza and Osindero
2014). Both of networks are simultaneously trained. The
task for the generator model is to generate samples, which
cannot be distinguished from real samples by the discrim-
inator model. The generator generates a batch of samples,
and these, along with real examples from the domain, are
provided to the discriminator and classified as real or fake.
The discriminator is then updated to get better at discrimi-
nating real and fake samples in the next round, and impor-
tantly, the generator is updated based on how well, or not,
the generated samples fooled the discriminator (Goodfellow
2016). In this way, the two models are competing against
each other, they are adversarial in the game theory sense, and
are playing a zero-sum game (Gibbons 1992). At a limit, the
generator generates perfect replicas from the input domain
every time, and the discriminator cannot tell the difference
and predicts “unsure” (e.g. 50% for real and fake) in every
case. The training drives the discriminator to attempt to learn
to correctly classify samples as real or fake. Simultaneously,
the generator attempts to fool the classifier into believing its
samples are real. At convergence, the generator’s samples
are indistinguishable from real data, and the discriminator
outputs 1/2 everywhere. The discriminator may then be dis-

Table 2: Comparing the accuracy of GAN and CFE as a Data Augmentation Technique.

Scenario Decision Tree Rand. Forest Bagging
CFE GAN CFE GAN CFE GAN

Experiment 7 77.18% 59.39% 79.72% 64.66% 80.18% 67.66%
Experiment 8 77.91% 59.97% 80.03% 70.48% 80.75% 73.26%
Experiment 9 76.82% 58.26% 79.01% 69.09% 80.02% 71.74%
Experiment 10 76.11% 64.25% 78.17% 69.25% 79.88% 68.4%

carded (Bengio, Goodfellow, and Courville 2017).
The counterfactual generation method, on the other hand,

does not require access to the data or the model. The method
can do its job by only accessing the model’s prediction func-
tion. Once, the method has access to the prediction function,
it can generate n (n ∈ N ∪ {0}) number of CFEs for each
of the instances following the criteria stated in Section and
a loss function like Eq. (1). Usually, we should be able to
find n CFEs for each of the instances. However, there might
be cases where we might not find CFEs for some instances.
In this case, the burden lies more with the quality of those
instances than on the CFEs generation model.

Experimental result comparison with GANs
Recently, we have seen a flurry of works using GANs im-
age data augmentation (Wu et al. 2018; Tanaka and Aranha
2019; Han et al. 2019; Singh, Dutta, and Saha 2019).How-
ever, GANs are also being considered for tabular data aug-
mentation (Ba 2019; Xu and Veeramachaneni 2018).To get
a sense of which of the two approaches perform better,
we compare our counterfactual data augmentation approach
with GANs for tabular data as shown in Table 2. We use
Tabular GAN (TGAN) (Xu and Veeramachaneni 2018) to
generate the data that we use for data augmentation in dif-
ferent steps.

This time as well we use the Adult-Income dataset and
generate CFEs and GAN data in different scenarios. We ran
our experiments using four different scenarios. In this case,
Experiment 9, Experiment 10, Experiment 11, and Experi-
ment 12 correspond to Experiment 3, Experiment 4, Exper-
iment 5, and Experiment 6, respectively but this time the
performance is compared with the GAN generated dataset.

Experiment 7: We combined 20% of the original Adult-
Income dataset with the generated GAN data to form our
data set and evaluated the performance using the three mod-
els. Once again, we used an 80:20 train/test split. The result
is shown Table 2 along with the similar experiment done
with CFEs in Experiment 3.

Experiment 8: Similar to Experiment 4, we trained the
models using only the generated GAN data, and for the test
set, we used the original data from the Adult-Income dataset.
The amount of test data was equal to the 20% of the GAN
data used to train the models in this experiment. The result is
shown Table 2 along with the similar experiment done with
CFEs in Experiment 4.

Experiment 9: In this case, we used a much smaller
dataset i.e., only 10% of the Adult-Income dataset to train
the GAN discriminator. We then combined the resulting
GAN data with the 20% of the original Adult-Income dataset

to train and test the three models using an 80:20 train/test
split. The result is shown Table 2 along with the similar ex-
periment done with CFEs in Experiment 5.

Experiment 10: Similar to Experiment 6, we trained the
models using only the GAN data that were generated in Ex-
periment 9. We tested the models using 20% of the original
data from the Adult-Income dataset. The result is shown Ta-
ble 2 along with the similar experiment done with CFEs in
Experiment 6.

From Table 2, we observe that counterfactual examples
approach for dataset augmentation outperforms GAN ap-
proach in each of the experiments. Though we see some
performance improvements on experiment basis for GAN
dataset augmentation approach, those improvements are
dwarfed by the counterfactual examples approach in each
of the experiments. For example, counterfactual examples
approach for dataset augmentation offers 29.95%, 23.29%,
18.5% better accuracy for Decision Tree, Random Forest,
and Bagging, respectively in Experiment 7. Moreover, the
performance of GAN is even worse than that of small dataset
without augmentation. For example, the worst performer
with the small dataset was decision tree with 72.78% accu-
racy and none of the data augmentation scenario with GAN
can even beat that. The very reason behind the poor perfor-
mance of data augmentation with GAN might be that GAN
data looks too much like the original data and does not bring
any new information to the dataset, whereas CFEs appar-
ently do contribute useful information and put pints in space.
Additionally, GAN is data hungry process, which cannot
perform well in a data starved environment.

Conclusion and Future Work

Counterfactual examples as a mean of interpretabiltiy and
explainability in machine learning models has garnered a
lot of attention in recent literary work. As a possible appli-
cation area of counterfactual examples, we wanted to ex-
plore whether data augmentation can be of those. Our ex-
perimental results show some positive signs in this endeavor.
We compared counterfactual dataset augmentation approach
with GAN dataset augmentation approach and we observed
that counterfactual approach is more effective. In this case,
counterfactual approach for tabular dataset augmentation
looks promising. In the future, we want to experiment with
other datasets from different application areas. Additionally,
we want to consider other models and other counterfactual
example generation techniques. Other than merely augment-
ing the dataset, we want to explore how CFEs can also be
used to address class imbalance.

References
Ba, H. 2019. Improving detection of credit card fraudulent
transactions using generative adversarial networks. arXiv
preprint arXiv:1907.03355.
Barocas, S.; Selbst, A. D.; and Raghavan, M. 2020. The
hidden assumptions behind counterfactual explanations and
principal reasons. In Proceedings of the 2020 Conference on
Fairness, Accountability, and Transparency, 80–89.
Bengio, Y.; Goodfellow, I.; and Courville, A. 2017. Deep
learning, volume 1. MIT press Massachusetts, USA:.
Buchanan, B. G., and Shortliffe, E. H. 1984. Rule-based ex-
pert systems: the mycin experiments of the stanford heuristic
programming project.
Doersch, C. 2016. Tutorial on variational autoencoders.
arXiv preprint arXiv:1606.05908.
Frid-Adar, M.; Klang, E.; Amitai, M.; Goldberger, J.; and
Greenspan, H. 2018. Synthetic data augmentation using
gan for improved liver lesion classification. In 2018 IEEE
15th international symposium on biomedical imaging (ISBI
2018), 289–293. IEEE.
Gibbons, R. 1992. Game theory for applied economics.
Princeton University Press.
Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.;
Warde-Farley, D.; Ozair, S.; Courville, A.; and Bengio, Y.
2014. Generative adversarial nets. In Advances in neural
information processing systems, 2672–2680.
Goodfellow, I. 2016. Nips 2016 tutorial: Generative adver-
sarial networks. arXiv preprint arXiv:1701.00160.
Guidotti, R.; Monreale, A.; Ruggieri, S.; Pedreschi, D.;
Turini, F.; and Giannotti, F. 2018. Local rule-based ex-
planations of black box decision systems. arXiv preprint
arXiv:1805.10820.
Han, C.; Rundo, L.; Araki, R.; Nagano, Y.; Furukawa, Y.;
Mauri, G.; Nakayama, H.; and Hayashi, H. 2019. Com-
bining noise-to-image and image-to-image gans: Brain mr
image augmentation for tumor detection. IEEE Access
7:156966–156977.
Karimi, A.-H.; Barthe, G.; Balle, B.; and Valera, I. 2020.
Model-agnostic counterfactual explanations for consequen-
tial decisions. In International Conference on Artificial In-
telligence and Statistics, 895–905.
Kaushik, D.; Hovy, E.; and Lipton, Z. C. 2019. Learning
the difference that makes a difference with counterfactually-
augmented data. arXiv preprint arXiv:1909.12434.
Kingma, D. P., and Ba, J. 2014. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980.
Kohavi, R., and Becker, B. 1996. UCI machine learning
repository. https://archive.ics.uci.edu/ml/datasets/adult.
Kohavi, R. 1996. Scaling up the accuracy of naive-bayes
classifiers: A decision-tree hybrid. In Kdd, volume 96, 202–
207.
Lundberg, S. M., and Lee, S.-I. 2017. A unified approach to
interpreting model predictions. In Advances in neural infor-
mation processing systems, 4765–4774.

Mahajan, D.; Tan, C.; and Sharma, A. 2019. Preserv-
ing causal constraints in counterfactual explanations for ma-
chine learning classifiers. arXiv preprint arXiv:1912.03277.
Mariani, G.; Scheidegger, F.; Istrate, R.; Bekas, C.; and Mal-
ossi, C. 2018. Bagan: Data augmentation with balancing
gan. arXiv preprint arXiv:1803.09655.
Mirza, M., and Osindero, S. 2014. Conditional generative
adversarial nets. arXiv preprint arXiv:1411.1784.
Molnar, C. 2019. Interpretable Machine Learning.
https://christophm.github.io/interpretable-ml-book/.
Mothilal, R. K.; Sharma, A.; and Tan, C. 2020. Explain-
ing machine learning classifiers through diverse counterfac-
tual explanations. In Proceedings of the 2020 Conference on
Fairness, Accountability, and Transparency, 607–617.
Ribeiro, M. T.; Singh, S.; and Guestrin, C. 2016. ” why
should i trust you?” explaining the predictions of any classi-
fier. In Proceedings of the 22nd ACM SIGKDD international
conference on knowledge discovery and data mining, 1135–
1144.
Russell, C. 2019. Efficient search for diverse coherent ex-
planations. In Proceedings of the Conference on Fairness,
Accountability, and Transparency, 20–28.
Selbst, A. D., and Barocas, S. 2018. The intuitive appeal of
explainable machines. Fordham L. Rev. 87:1085.
Singh, A.; Dutta, D.; and Saha, A. 2019. Migan: malware
image synthesis using gans. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 33, 10033–
10034.
Tanaka, F. H. K. d. S., and Aranha, C. 2019. Data augmen-
tation using gans. arXiv preprint arXiv:1904.09135.
Tieleman, T., and Hinton, G. 2012. Lecture 6.5-rmsprop:
Divide the gradient by a running average of its recent mag-
nitude. COURSERA: Neural networks for machine learning
4(2):26–31.
Ustun, B.; Spangher, A.; and Liu, Y. 2019. Actionable re-
course in linear classification. In Proceedings of the Confer-
ence on Fairness, Accountability, and Transparency, 10–19.
Wachter, S.; Mittelstadt, B.; and Russell, C. 2017. Coun-
terfactual explanations without opening the black box: Au-
tomated decisions and the gdpr. Harv. JL & Tech. 31:841.
Wu, E.; Wu, K.; Cox, D.; and Lotter, W. 2018. Conditional
infilling gans for data augmentation in mammogram classi-
fication. In Image Analysis for Moving Organ, Breast, and
Thoracic Images. Springer. 98–106.
Xu, L., and Veeramachaneni, K. 2018. Synthesizing tabular
data using generative adversarial networks. arXiv preprint
arXiv:1811.11264.
Zhu, H. 2016. Predicting earning potential using the adult
dataset.
Zmigrod, R.; Mielke, S. J.; Wallach, H.; and Cotterell, R.
2019. Counterfactual data augmentation for mitigating gen-
der stereotypes in languages with rich morphology. arXiv
preprint arXiv:1906.04571.

