
Anchored Team Formation Games

Jacob Schlueter,1 Christian Addington,1 Judy Goldsmith1

University of Kentucky
Lexington, Kentucky

tjacobschlueter@gmail.com, crad225@uky.edu, goldsmit@cs.uky.edu

Abstract

We propose Anchored Team Formation Games (ATFGs), a
new class of hedonic game inspired by tabletop role playing
games. We establish the NP-hardness of determining whether
Nash stable coalition structures exist, and provide results for
three heuristics for this problem. We highlight costs and ben-
efits of each heuristic and provide evidence that all three are
capable of finding Nash stable coalition structures, when they
exist, much more quickly than a deterministic algorithm.

Introduction
Consider tabletop role playing games (TRPG) such as Dun-
geons and Dragons. In order to play a TRPG, a group must
have players and a game manager (GM); the former working
through challenges set up by the latter. The expectation of
enjoying a particular group to play such a game is based on
expectations that the GM will set up a good story line, with
sufficient challenges and rewards, and that the fellow travel-
ers will offer good measures of cooperation and competition.
We introduce anchored team formation games (ATFGs) to
investigate the formation of groups with a leader, or anchor,
using the formation of TRPG groups as an example appli-
cation. While we refer to the gaming application throughout
the paper, the anchor could be a team lead in a program-
ming or engineering team, in business, class project groups,
or outdoor adventuring. Whatever the application, the driv-
ing question is, how do we divide individuals into groups
that will get the job (or game) done, and choose leaders for
the groups, in a way that is consistent with the individuals’
preferences?

We are interested in determining whether stable coalition
structures (stable CSs) exist for a given ATFG, and how to
find them. Given our proposed use case, we believe Nash
stability is the most relevant stability notion in the litera-
ture. However, the problem of finding a Nash stable CS is
NP-hard. We present experimental results with three effec-
tive heuristics to check the existence of Nash stable coalition
structures in ATFGs. Our first algorithm starts by selecting
anchors around which to build coalitions, then divide players

Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

in a round robin fashion consisting of several rounds where
each coalition chooses one player to add. Our second algo-
rithm is a local search implementation that attempts to mini-
mize the number of blocking players, those who can improve
their utility by unilaterally deviating from their assignment.
Our third algorithm daisy-chains the previous two, using the
output of the round-robin algorithm as a starting place for a
local search.

Experiments on 10–12-agent instances show that the first
two algorithms perform sufficiently well that we did not
need to test the third. On larger instances, we see that daisy-
chaining is a significant improvement over either individual
algorithm. These experiments indicate that good coalition
structures can be found.

In the next section, we give a brief survey of related work.
We formally define hedonic games, ATFGs, and Nash stabil-
ity, then present the algorithms used, the experimental set-
up, and results.

Related Work
Our work is in the area of hedonic coalition formation
games, often shortened to hedonic games. Hedonic games
are a broad category of coalition formation games, formally
codified by Banerjee, Konishi, and Sönmez and Bogomol-
naia and Jackson, where each player’s utility is wholly de-
rived from their coalition and is non-transferable [4, 5]. Gen-
eral case hedonic games can model a wide variety of prob-
lems, but it is difficult to generalize about the computa-
tional complexity of determining the existence, or finding,
stable or optimal coalition structures over all hedonic games.
However, there are some results for general hedonic games,
which provide upper bounds on the complexity for all games
they generalize [3]. Much hedonic games research focuses
on subclasses that exhibit certain useful properties. Early
examples, which predate the formal codification of hedo-
nic games, are Gale and Shapley’s stable marriage and sta-
ble roommates problems, which always have polynomially
computable stable matchings [8]. In both problems players
rank each other based on whom they want to be paired with,
which restricts their scope and applicability; stable marriage
further restricts rankings to members of the opposite gender
[8] or other set in some bipartite graph (e.g., medical resi-

dents and hospitals [17]).
Banerjee, Konishi, and Sönmez and Bogomolnaia and

Jackson introduced additively separable hedonic games
(ASHGs), where players assign utility values to each other,
similar to the rankings in Gale and Shapley’s roommates
problem, but there are no restrictions on coalition size [4,
5, 8]. ASHGs are of particular interest to our work, because
they are generalized by ATFGs; there are many other hedo-
nic games inspired by ASHGs [1, 6, 13, 14, 20]. There are
many hardness results for ASHGs and their variants, which
establish some baselines for our work [2, 15, 16, 19, 29].

Our work on ATFGs expands the body of hedonic games
inspired by gaming. Hedonic games inspired by gaming in-
clude Tiered Coalition Formation Games (TCFGs) inspired
by Pokémon, Roles and Teams Hedonic Games (RTHGs)
inspired by League of Legends, and Role Based Hedonic
Games (RBHGs), which generalize RTHGs [21, 22, 23].

We expand the body of research applying heuristics to he-
donic games with our work on ATFGs. Spradling et al. gives
experimental results with greedy heuristics for RTHGs [23].
Later work by Spradling applies greedy heuristics to RB-
HGs [24]. Keinänen and Keinänen et al. develop local search
heuristics for core stability verification and social welfare
optimization in hedonic games [9, 10, 12]. We conjecture
that Keinänen et al. does not extend this to local search al-
gorithms to construct stable CSs, as we do, in part because
the fitness function we use is unusual, and is specific to
Nash stability. However, Keinänen presents an EXPTIME
breadth first search algorithm to compute all Nash stable CS
in ASHGs [11], which they were able to run on (many) in-
stances of size 10. Our complete algorithm has successfully
run 20-agent instances, despite ATFGs being more compli-
cated the ASHGs. Waxman, Kraus, and Hazon utilize sim-
ulated annealing and leximin heuristics to optimize egalitar-
ian welfare in ASHGs where a fixed number of coalitions
must be formed [28]. Taywade, Goldsmith, and Harrison
give experimental results with three heuristics to optimize
social welfare in decentralized matching [27], which is sig-
nificantly different from our centralized setting, as well as
being focused on optimality rather than stability.

Preliminaries
ATFGs are a subclass of hedonic games, so we establish a
formal definition of this parent class of games.

Definition 1. [4, 5] Hedonic games are coalition formation
games with nontransferable utility wherein players’ prefer-
ences are concerned only with their own coalition. This in-
herently self-interested means of determining utility makes
such games hedonic in nature.

Let Ni be the set of possible coalitions containing player
i ∈ player set N . A preference ordering of Ni is derived
from the preference set Pi ∈ the set of all preferences P . A
solution for a game is a partition, called a coalition struc-
ture (CS) γ; the set of all CSs is Γ. Each player i ∈ N has
preferences over all γ ∈ Γ based solely on their assigned
coalition in each γ. We use ui(γ) as shorthand for ui(C),
the utility player i ∈ N derives from coalition C ∈ γ such
that i ∈ C.

ASHGs are a popular subclass of hedonic games relevant
to our ATFG results.
Definition 2. [4] Additively Separable Hedonic Games
(ASHG) are a class of hedonic game where each player
i ∈ N assigns values to each player j ∈ N , expressed as
vi(j); for all i, vi(i) is 0. The utility a player ai derives
from each coalition S ∈ Ni such that i ∈ S is defined as
ui(S) =

∑
j∈S vi(j).

We now introduce our model of team formation for gam-
ing. A standard play group in many TRPGs consists of four
players and a fifth person, called the Game Manager (GM).
The GM provides the game’s setting and leads the players
through the story. The number of players varies, but there
is only one GM. A GM’s performance can easily make or
break a game. A good GM keeps players engaged, while a
bad GM can make for a poor experience. Since many TRPG
groups are composed of people who are well-acquainted
with each other, we propose the notion of pair utility val-
ues, reflecting the positive or negative synergy a given pair
may bring to the group; a pair of friends may role-play well
together and help keep the game focused, or they could dis-
tract each other by making inside jokes.

We introduce Anchored Team Formation Games to model
the formation of such groups. One of the biggest differences
between our setting and most others is that we assume that
players may have opinions not only on other individuals, but
also on pairs of players, either positively1 or negatively.

Anchored Team Formation Games are a class of coopera-
tive coalition formation games in which each coalition must
contain an anchor, or leading player, and in which upper and
lower bounds limit the permissible sizes of coalitions.
Definition 3. An Anchored Team Formation Game
(ATFG) is a tuple 〈N,V, P,D, cu, cl〉, where N is a set of
n players, and V , P , and D define weight values such that
each i ∈ N , there are vectors vi, pi, and di of lengths n, n2,
and n respectively. The vi[j] is the utility i gets for being in
a coalition with player j ∈ N ; pi[j, k] is the utility i gets
for being in a coalition with the pair of players (j, k); di[j]
is the utility i gets if j is the anchor (GM) for i’s coalition.
Values contained in each vi, pi, and di are assumed to either
be integers or unknowns.

The values cu and cl define upper and lower bounds on
coalition size. Any valid coalition C ⊆ N must satisfy
cu ≥ |C| ≥ cl. Further, all valid coalitions C ⊆ N must
contain a designated player g(C) who serves as the anchor,
or coalition leader. In order for a CS γ to be valid, it must
consist solely of valid disjoint coalitions.

The utility ui(γ) a player i ∈ N derives from a valid CS
γ is defined as follows:

di[g(Ci)] +
∑

j∈Ci\{i}

vi[j] +
∑

{j,l}⊂Ci\{i}

pi[{j, l}].

Observation 1. Evaluating ui(C) takes time O(n2).

1Consider James and Elyse Willems (https://www.youtube.
com/channel/UCboMX UNgaPBsUOIgasn3-Q): most players
would yield a higher utility from having both James and Elyse in a
TRPG campaign as opposed to either, singly.

Note that evaluating ui(C) takes time O(m2) ⊆ O(n2),
wherem is an upper bound on |C|, due to the pi summation.
Thus, evaluating the total utility of a coalition isO(m2) (and
thusO(n2)) and of an entire CS isO(n3), or more precisely,
O(nm2).

Stability
An assignment of players to tables is only useful if the play-
ers consent to the assignment; we presume that, if they are
aware of an assignment that Pareto-dominates the one on
offer, they will move to the better assignment. Pareto dom-
inance is one of many forms of stability, the idea that a
CS will not be disrupted by players rejecting their assigned
coalitions and moving to other coalitions. There are many
sets of constraints placed on such disruptions, such as the
number of players that can move simultaneously; whether all
moving players must see an increase in utility; whether play-
ers left behind by movers must see their utility increase, or
whether players being joined by movers must see their util-
ity improve. We focus on Nash stability, which was adapted
to hedonic games by Bogomolnaia and Jackson [5].
Definition 4. [5] A CS is Nash stable for a coalition forma-
tion game if no individual player can improve their utility by
deviating from their current coalition to join another coali-
tion or to become a singleton.

Note that there are some trivial cases of stable CSs, which
we ignore. For instance, if coalitions must have size ≥ 3,
then the CS of all singletons is Nash stable, since no pair is
a valid coalition. We assume that all CSs contain at least one
valid coalition.

Our local search heuristic (Algorithm 2) defines fitness
by the number of blocking players, players who want to uni-
laterally leave their current coalition to join another or to
become a singleton. This measure, the Degree of Instabil-
ity (DoI), was suggested by Roth and Xing for matching in
decentralized markets [18]. A more robust notion of instabil-
ity based on blocking pairs was proposed by Eriksson and
Häggström [7]. We use the simpler count of blocking players
as it is more appropriate for Nash stability.

Complexity of ATFGs
Proposition 1. Nash stability verification for ATFGs runs
in polynomial time.

Proof. Consider some ATFG (N,V, P,D, cu, cl) with CS
γ = {C1, ..., Ck}. For each i ∈ N , recall that ui(γ) is de-
fined by:

di[g(Ci)] +
∑

j∈Ci\{i}

vi[j] +
∑

{j,l}⊂Ci\{i}

pi[{j, l}].

For each i and each C ′ ∈ γ, we compute ui(C ′ ∪ {i}) in
time O(n2), by Observation 1. If ∃i : ui(C

′∪{i}) > ui(γ),
the CS is not Nash stable. This computation is order O(n4),
as there are n players and O(n) coalitions.

Proposition 2 highlights the relationship between ATFGs
and ASHGs.
Proposition 2. ATFGs generalize ASHGs.

Proof. We can convert any ASHG into an ATFG as follows:

1. Taking the values each player assigns to each other player
as-is.

2. For all pi ∈ P set all values p ∈ pi to 0.
3. For all di ∈ D set all values d ∈ di to 0.
4. Set cu = n.
5. Set cl = 0.

Following this conversion, the anchor becomes irrelevant, as
they have no impact on utility. The bounds set on coalitions
are such that they impose no limits whatsoever, as any coali-
tion size obtainable from a set of n players is permitted.

Sung and Dimitrov prove that determining if a Nash sta-
ble CS exists is NP-complete for ASHGs [25]. Their proof
shows that this holds even when there is a bound of 7 on the
size of coalitions. Because ATFGs generalize ASHGs, we
know that the Nash stability existence problem is NP-hard
for ATFGs. Proposition 1 shows that Nash stability verifica-
tion is in P, so Nash stability existence is in NP. Thus Nash
stability existence is NP-complete.

An ATFG constructed from an ASHG does not make use
of coalition size restrictions or utility values assigned to an-
chors or pairs of players. Our focus is on settings where
coalition sizes are restricted and a coalition’s anchor is an
important part of each player’s utility.

Algorithms
For the heuristic algorithms, the first step is to choose the
GMs, and then to assign players to coalitions. We present
the GM selection function, and then describe how agents’
utilities are represented. We then describe local search and
round-robin algorithms, and the complete algorithm.

In all algorithms, W represents an arbitrary ATFG in-
stance (N,V, P,D, cu, cl).

Definition 5. We use a GM Selection algorithm to select
agents who are willing to be GMs. The algorithm checks the
value each agent derives from being a GM, then places all
agents that derive positive value from being a GM into a
list of potential GMs. Next, a number of GMs, gs ← s ∈
[d |N |cu

e, b |N |cl
c], are selected at random from that list. As GMs

are selected, they are moved to the final GM list. The list of
remaining agents becomes the list of players.

Note that the GM Selection algorithm runs in time O(n),
assuming that the random number generation takes constant
time.

Next, we introduce introduce several algorithms to assign
these players to tables.

Complete search
As a baseline for our heuristics, we have a branch and bound
algorithm that finds all Nash stable partitions of a given in-
stance. We refer to this as the complete algorithm. It is based
on a depth-first search tree, where nodes at each level consist
of coalitions that can be constructed from as-yet unassigned
agents. To eliminate redundant branches, each node in the
search tree contains the lowest-numbered available node.

Branches are pruned if a node introduces instability, either
because agents in the new coalition prefer to join an ear-
lier coalition, or agents in earlier coalitions prefer to join the
new one. Furthermore, singleton coalitions are disallowed as
nodes, branches are pruned if they cannot be extended stably
without singletons.

We ran the complete algorithm on 20 instances with 15
agents and 25 instances with 20 agents. The 15 agent in-
stances averaged 22.7 seconds of wall clock runtime with a
standard error of 3.8 seconds on our virtual machine, which
was a Linux machine with a CPU of Intel Xeon 2 cores at
2.1GHz, and 4GB of RAM. The 20 agent instances averaged
6489.5 seconds of runtime with a standard error of 1270.4
seconds on the same machine. We started three 24 agent in-
stances to completion, but all three were terminated after 24
or more hours.

Heuristics
Our first heuristic is a greedy round robin.
Definition 6. The Utilitarian Round Robin (URR) algo-
rithm first chooses GMs. The GMs then take turns choosing
players whose addition to the table maximizes total utility
for the table, this utility value is computed by Algorithm 1.

Algorithm 1 Update coalition values
Input: ATFG W , GM g, player set A∗, Coalition C s.t. g ∈ C
Output: Mg % Pairs 〈i,mi〉 where mi is the marginal utility of
adding i to C
Mg ← ∅
utilC ← 0
for k ∈ C do
utilC ← utilC + uk(C)

end for
for i ∈ A∗ do
util← 0
for k ∈ C ∪ {i} do
util← util + uk(C ∪ {i})

end for
mi ← util − utilC
Mg ←Mg ∪ {〈i,mi〉}

end for
return: Mg

The URR algorithm maintains a matrix of valuations of
players by GMs, representing the value of adding a player to
that GM’s table. Choosing a best addition is O(n) for each
of the O(n) GMs. After each round of additions, the O(n2)
matrix is updated, with each update taking O(n2), by Ob-
servation 1. There are O(n) rounds, so an iteration runs in
time O(n5).

Algorithm 2 is a local search heuristic, with the goal of
minimizing the number of blocking players. Each iteration
of the algorithm chooses a random set of players to be GMs,
and randomly assigns other players to the GMs’ tables. It
then repeatedly chooses a neighboring CS (defined by a sin-
gle player being assigned to a different table) that improves
(lowers) the fitness. Note that it is possible that a CS is not
Nash stable, but has no improving neighbor — even if there
is a Nash stable CS for that ATFG instance. This local-but-
not-global optimum is a typical phenomenon of local search
algorithms; to handle this, we use multiple random re-starts.

An iteration of local search hasO(n) improvements of fit-
ness, since at most n agents can want to deviate at a given
time. Further, since an agent only successfully moves if the
movement improves the fitness, we avoid potential loops.
The algorithm maintains a GM by players matrix of valu-
ations, indicating the value each player derives from each
GM’s table. A scan of a player’s row can identify if they
wish to move; to test stability requires scanning the O(n2)
matrix, and potentially updating it if a player moves. Each
move of player i from GM j to GM k requires O(n2)-time
updates to the utilities of all O(n) players for the coalitions
with GMs j and k. The hardest part of the algorithm is de-
termining which agent, if any, want to move. For each of the
n potential movers, i, and for each of the O(n) coalitions
C they might join, we check, for each other agent j, does j
newly want to move (to C∪{i}, to the coalition i just left, or
another coalition if j ∈ C and j doesn’t like the addition of
i)? Determining if j wants to move takes O(n2), by Obser-
vation 1. Thus, the entire check for acceptable moves takes
O(n5), and an iteration of LS, involving O(n) such checks,
is O(n6).
Algorithm 2 Local Search

Input: ATFG W , GM set G, player set A∗

Output: γ, Potentially Nash stable CS
γ ← ∅ %randomly assigned CS
for all g ∈ G do
γg ← |A∗|

|G| random players +

γ ← γ ∪ {{g} ∪ γg}
end for
M ← ∅
for all i ∈ N do

if i can receive higher utility by moving then
mi ← # players wanting to move after i moves
M ←M ∪ {mi}

end if
end for
while ∃m ∈M : m < |M | do

choose {i : mi = min(M)}
γ ← γ modified by i’s move
M ← ∅
for all i ∈ N do

if i can receive higher utility by moving then
mi ← # players wanting to move after i moves
M ←M ∪ {mi}

end if
end for

end while
return: γ

+ |A∗|
|G| is

⌈ |A∗|
|G|

⌉
or

⌊ |A∗|
|G|

⌋
based on players available

Our third heuristic, DC, daisy-chains URR and local
search, by using the CS output by URR to hot-start the local
search algorithm. The complexity of DC is d O(n6).

Experiments
Our experimental contributions are results for our three
greedy heuristic algorithms, demonstrating the relative ben-
efits and detriments of each and showing that all three out-
perform a deterministic algorithm on instances with 12 or
more players.

Experimental Setup
Our heuristics were coded in Python 3.7 and currently do not
rely on third-party packages. We tested our heuristics against
four hand-crafted benchmark instances with known Nash
stable CSs, with 10, 12, and 25 players, respectively. We also
tested the heuristics against randomly generated instances;
50 with 10 players; 20 with 12 players; 25 with 20 players;
25 with 24 players; 20 with 25 players; 25 with 30 players.
To randomly generate these instances, we used coalition size
limits of 3–5 for 10, 12, and 15 player instances and 3–8 for
20, 24, 25, and 30 player instances, asymmetric valuations
between−n and n inclusive for individuals, pairs, and GMs,
and a pair valuation probability of 15%.

Using the complete algorithm, we found Nash stable CSs
for 24 of the randomly generated 10-player instances and
12 of the 12-player instances. We then ran the heuristic al-
gorithms with fixed maximum numbers of random restarts.
(Note that the heuristic algorithms halt as soon as they find
a single Nash stable CS for the given instance.)

For each of our heuristics, we conducted 10 trials each for
the 10, 12, 15, 20, 24, 25, and 30 player instances. Trials
for utilitarian round robin heuristic were capped at 100,000
restarts, while trials for local search and daisy-chain were
capped at 10,000 restarts. Our experiments were run on
Linux Ubuntu with an Intel Xeon Processor, with 2.1GHz
CPU and 4GB of RAM. We collected data on the total num-
ber of restarts before a Nash stable CS was found, and the
time duration of the trials, as well as the number of restarts
and time per size of instance.

Results
We observe that local search is significantly slower per it-
eration than URR, and thus our tests of LS run slower than
those of URR, even using a factor of 10 fewer restarts. How-
ever, running the two algorithms in a daisy chain is much
faster than running local search on its own.

Local search also does poorly in finding stable CSs. The
number of possible CSs is much larger than the number of
Nash stable CSs for most of these instances, so LS has to be
extremely lucky to be started near a local optimum that is in
fact globally optimal.

While URR was not as effective as we had hoped in
finding Nash stable CSs, we believe it often provided CSs
that were close to stable, i.e., with low degree of instability,
meaning, here the number of agents that would individually
prefer to deviate from their assigned coalitions. Using lo-
cal search to relocate those individuals worked significantly
better than either algorithm individually. (See Table 2.)

We observe that the percentage of instances for which the
heuristics found Nash stable CSs is quite small for instances
of sizes 25 and 30. We attribute this to an insufficiency of
random restarts; with a larger number of cores on our VMs,
we are confident that the algorithms will run significantly
faster, and these percentages will increase. We were unable
(so far) to verify the existence of Nash stable CSs on those
instances using the complete algorithm, but with high proba-
bility, a larger percentage of them have Nash stable CSs than
these results indicate.

Table 1: Average run time (CPU seconds) and percentage of
instances for which NS coalitions are found.

Players URR LS DC
time % time % time %

10 24.5 47.3 16.2 47.9 2.0 36.5
12 43.2 17 52.9 17.5 22.9 52.5
15 239.0 65.5 224.5 0.5 44.6 71.5
20 898.4 20.4 328.6 0 178.1 25
24 268.4 94.4 588.4 0 748.5 79.6
25 1745.7 0 1156.4 0 591.9 4
30 2605.8 7.6 1936.2 0 1533.8 2.5

Note: For the 24 agent DC test, 50,000 restarts were al-
lowed.

Of the randomly generated instances: 48% of our 10 agent
instances are stabilizable, 60% of 12 agent instances are sta-
bilizable, 95% of 15 agent instances are stabilizable, and
96% of 20 agent instances are stabilizable. We conjecture
that a smaller percentage of 10 and 12 agent instances are
stabilizable because they both have utility ranges from -20 to
+20, whereas the other instances were generated with limits
no wider than -n to +n where n is the number of agents.

We provide information on the degree of instability (DoI),
the number of agents who prefer to move to show the im-
provements from the URR hot start.

Table 2: Average DoI

Players Number of movers
URR LS DC

15 0.345 0.885 0.045
20 0.952 2.676 0.116
24 0.056 4.284 0.028
25 2.455 4.36 1.105
30 1.3 6.892 1.18

Conclusions and Future Work
We have introduced a novel coalition formation game for
a subject dear to our hearts, namely social and (in pre-
pandemic days) in person gaming. Like many such coop-
erative games, finding stable CS is NP-hard. However, we
have introduced three fast and effective heuristic algorithms
to find Nash stable CS. We focus on Nash stability because
we believe it is, socially, the most relevant notion in the lit-
erature; though we can imagine social cliques that would be
blocking coalitions for core stability, we imagine that such
cliques would not throw themselves into the centralized as-
signment process.

Future work may include decentralized matching algo-
rithms for ATFGs in the style of Taywade et al. [26, 27].

References
[1] Aziz, H.; Brandt, F.; and Harrenstein, P. 2014. Frac-

tional hedonic games. In AAMAS, 5–12. International
Foundation for Autonomous Agents and Multiagent
Systems.

[2] Aziz, H.; Brandt, F.; and Seedig, H. G. 2013. Comput-
ing desirable partitions in additively separable hedonic
games. Artificial Intelligence 195: 316 – 334.

[3] Ballester, C. 2004. NP-completeness in hedonic
games. Games and Economic Behavior 49(1): 1 – 30.

[4] Banerjee, S.; Konishi, H.; and Sönmez, T. 2001. Core
in a simple coalition formation game. Social Choice
and Welfare 18(1): 135–153.

[5] Bogomolnaia, A.; and Jackson, M. O. 2002. The sta-
bility of hedonic coalition structures. Games and Eco-
nomic Behavior 38(2): 201–230.

[6] Dimitrov, D.; Borm, P.; Hendrickx, R.; and Sung, S. C.
2006. Simple priorities and core stability in hedonic
games. Social Choice and Welfare 26(2): 421–433.

[7] Eriksson, K.; and Häggström, O. 2008. Instability of
matchings in decentralized markets with various pref-
erence structures. International Journal of Game The-
ory 36(3-4): 409–420.

[8] Gale, D.; and Shapley, L. S. 1962. College admissions
and the stability of marriage. The American Mathemat-
ical Monthly 69(1): 9–15.

[9] Keinänen, H. 2009. Local Search Algorithms for Core
Checking in Hedonic Coalition Games. In Compu-
tational Collective Intelligence. Semantic Web, Social
Networks and Multiagent Systems: First International
Conference, ICCCI 2009, Wroclaw, Poland, October
5-7, 2009, Proceedings, volume 5796, 51. Springer
Science & Business Media.

[10] Keinänen, H. 2009. Simulated annealing for multi-
agent coalition formation. In KES International Sym-
posium on Agent and Multi-Agent Systems: Technolo-
gies and Applications, 30–39. Springer.

[11] Keinänen, H. 2010. An algorithm for generating Nash
stable coalition structures in hedonic games. In In-
ternational Symposium on Foundations of Information
and Knowledge Systems, 25–39. Springer.

[12] Keinänen, H.; et al. 2011. Algorithms for coalitional
games. Master’s thesis, Turku School of Economics
Ae-2: 2011.

[13] Lang, J.; Rey, A.; Rothe, J.; Schadrack, H.; and
Schend, L. 2015. Representing and solving hedonic
games with ordinal preferences and thresholds. In Pro-
ceedings of the 2015 International Conference on Au-
tonomous Agents and Multiagent Systems, 1229–1237.
International Foundation for Autonomous Agents and
Multiagent Systems.

[14] Nguyen, N.-T.; Rey, A.; Rey, L.; Rothe, J.; and Schend,
L. 2016. Altruistic hedonic games. In Proceedings
of the 2016 International Conference on Autonomous

Agents & Multiagent Systems, 251–259. International
Foundation for Autonomous Agents and Multiagent
Systems.

[15] Peters, D. 2017. Precise complexity of the core in
dichotomous and additive hedonic games. In Inter-
national Conference on Algorithmic DecisionTheory,
214–227. Springer.

[16] Rey, A.; Rothe, J.; Schadrack, H.; and Schend, L. 2016.
Toward the complexity of the existence of wonder-
fully stable partitions and strictly core stable coalition
structures in enemy-oriented hedonic games. Annals
of Mathematics and Artificial Intelligence 77(3): 317–
333.

[17] Roth, A. E. 1984. The evolution of the labor market
for medical interns and residents: a case study in game
theory. Journal of political Economy 92(6): 991–1016.

[18] Roth, A. E.; and Xing, X. 1997. Turnaround time and
bottlenecks in market clearing: Decentralized match-
ing in the market for clinical psychologists. Journal of
political Economy 105(2): 284–329.

[19] Schlueter, J.; and Goldsmith, J. 2020. Internal Stability
in Hedonic Games. In FLAIRS.

[20] Schlueter, J.; and Goldsmith, J. 2020. Super Altruistic
Hedonic Games. In FLAIRS.

[21] Siler, C. 2017. Tiered Coalition Formation Games. In
The Thirtieth International Flairs Conference.

[22] Spradling, M.; and Goldsmith, J. 2015. Stability in role
based hedonic games. In The Twenty-Eighth Interna-
tional FLAIRS Conference.

[23] Spradling, M.; Goldsmith, J.; Liu, X.; Dadi, C.; and
Li, Z. 2013. Roles and teams hedonic game. In Inter-
national Conference on Algorithmic Decision Theory,
351–362. Springer.

[24] Spradling, M. J. 2017. Optimizing Expected Utility
and Stability in Role Based Hedonic Games. In The
Thirtieth International Flairs Conference.

[25] Sung, S.-C.; and Dimitrov, D. 2010. Computational
complexity in additive hedonic games. European Jour-
nal of Operational Research 203(3): 635–639.

[26] Taywade, K.; Goldsmith, J.; and Harrison, B. 2018.
Decentralized Multiagent Approach for Hedonic
Games. In 16th European Conference on Multi-Agent
Systems.

[27] Taywade, K.; Goldsmith, J.; and Harrison, B. 2020.
Decentralized Marriage Models. In The Thirty-Third
International Flairs Conference.

[28] Waxman, N.; Kraus, S.; and Hazon, N. 2020. On
Maximizing Egalitarian Value in K-coalitional Hedo-
nic Games. arXiv preprint arXiv:2001.10772 .

[29] Woeginger, G. J. 2013. Core Stability in Hedonic
Coalition Formation. In International Conference on
Current Trends in Theory and Practice of Computer
Science, 33–50. Springer.

