
Vegetation Coverage in Marsh Grass Photography
Using Convolutional Neural Networks

Lucas Welch
University of North Florida

1 UNF Drive, Jacksonville, FL 32224
n00797216@unf.edu

Xudong Liu
xudong.liu@unf.edu

Ikdika Kahanda
indika.kahanda@unf.edu

Sandeep Reddivari
sandeep.reddivari@unf.edu

Karthikeyan Umapathy
k.umapathy@unf.edu

Abstract

Vegetation monitoring is one of the major cornerstones
of environmental protection today, giving scientists a
look into changing ecosystems. One important task in
vegetation monitoring is to estimate the coverage of
vegetation in an area of marsh. This task often calls
for extensive human labor carefully examining pixels in
photos of marsh sites, a very time-consuming process.
In this paper, aiming to automate this process, we pro-
pose a novel framework for such automation using deep
neural networks. Then, we focus on the utmost compo-
nent to build convolutional neural networks (CNNs) to
identify the presence or absence of vegetation. To this
end, we collect a new dataset with the help of Guana
Tolomato Matanzas National Estuarine Research Re-
serve (GTMNERR) to be used to train and test the
effectiveness of our selected CNN models, including
LeNet-5 and two variants of AlexNet. Our experiments
show that the AlexNet variants achieves higher accu-
racy scores on the test set than LeNet-5, with 92.41%
for a AlexNet variant on distinguishing between veg-
etation and the lack thereof. These promising results
suggest us to confidently move forward with not only
expanding our dataset, but also developing models to
determine multiple species in addition to the presence
of live vegetation.

Introduction

Around the world, humans are having a large impact on
the environment. These impacts are varied and are be-
ing felt by our society more every day. Because of these
pressures, it is important to monitor the vegetation
community of a habitat. These vegetation communities
are easily disturbed by both sea level rise and habitat
loss (Warren and Niering 1993). At Guana Tolomato
Matanzas National Estuarine Research Reserve (GTM-
NERR)1, researchers monitor the percent cover and
species composition of several marsh sites surrounding
the city of St. Augustine, Florida. To do this, they first
obtain one meter-square images of the marshland with
a high resolution camera (Bacopoulos, Tritinger, and
Dix 2019). Determining the percent vegetation cover

Copyright © 2021by the authors. All rights reserved.
1https://gtmnerr.org/

of the image requires a volunteer or researcher to la-
bel a set of randomly chosen points and tally the to-
tal number of each category (unvegetated and one of
five vegetated categories) in order to obtain the percent
cover of each image. Because this must be done manu-
ally and is labor-intense, the reserve is limited in how
much area it is able to monitor. As such, it is our goal
to automate this process by first creating a model to
determine whether a small randomly chosen snippet is
vegetated or not. This will eliminate much of the labor
requirement for the vegetation monitoring program at
GTMNERR. This will allow for more images to be pro-
cessed by GTMNERR, increasing their productivity. In
this paper we describe our approach to solve a relaxed
version of this problem—determining the presence or
absence of vegetation at one of these points. This model
can be simpler and serve as a proof of concept for the
idea of determining vegetation density. The model best
suited for this task will, at a later time, be coupled with
a model to determine the species contained on a vege-
tated point; together, these two models will determine
the class to which a point belongs.

This task, however, is not without precedent, as
machine learning techniques have become popular in
ecology—image recognition having wide ranging appli-
cations in such a visual field. For instance, Mihail et al.
2018 develop a model that is able to segment an image
for Spanish moss and use these image segmentations
to attempt to measure the density of Spanish moss in
the images. In the realm of marine ecology, it has also
become commonplace for image recognition models to
be used for coral identification on reefs. For instance,
Marcos et al used supervised learning to train a feedfor-
ward neural network to distinguish between live coral,
dead coral, and bare seabed (sand) (Marcos, Soriano,
and Saloma 2005). Additionally, work has been done
on Serengeti camera traps (hidden cameras designed to
candidly photograph wildlife) with the goal of identi-
fying and counting fauna that are photographed with
the traps (Tabak et al. 2019). This model had the added
feature of distinguishing between a number of behaviors
such as eating, and sleeping. These concepts, however,
have not yet been applied to marsh monitoring. As such,
this paper presents the first model in a pipeline of mod-

https://gtmnerr.org/


Figure 1: A flowchart representing the major compo-
nents of the vegetation density pipeline. The pipeline
begins with a full-size image before picking 100 random
points and snipping the context around them (31x31).
They are then passed into the described model, which
will classify and pass them along to either the next clas-
sifier or tallier. The total number of each species for the
100 points is then printed to a CSV file.

ules to carry out the task of automating the vegetation
monitoring program at GTMNERR.

To this end, our goal is to automate the process
of determining the vegetation density in given marsh
grass photography. In Figure 1, we describe a pipeline
to achieve our goal. The first component is a random
number generator that, given the height and width of
an image, will choose 100 random coordinates. The next
module will then cut out a snippet of 31 pixels by 31
pixels around each point, which will then be passed into
the binary classifier model, which will determine if the
central pixel contains vegetation. If the pixel is unveg-
etated, the output is used by a tallying module to in-
crement the number of bare points by one. If the pixel
is determined to have vegetation, however, it is passed
to another module that will determine the species of
the vegetation before being tallied as a member of that
species by the tallying module. After all 100 random
points have been classified, the tallying module will
record the number of each species found in the image,
along with the images name. This is taken as the per-
cent cover of each species.

In this paper, we will be discussing the data set that
was designed for this novel application. We will also
discuss the binary classifier for distinguishing between
vegetation and the lack thereof. Afterward, we discuss
the results of the training and compare the various mod-
els before addressing the work that is still be done on
the additional modules as well as the wrapper program
that will be implemented to track the number of points
of each class contained in a given image.

Preliminaries
In this work, we present a multi-class vegetation dataset
of Florida marshland images and demonstrate the effec-
tiveness of LeNet-5 and AlexNet on predicting whether
an image contains vegetation or not for our dataset.

The images we collected are snippets of the one
meter-squares, and these snippets are labeled with six
classes: bare, Spartina alterfloris, Batis maritima, Jun-
cus roemerianus, Avicennia germinans, and Sarcocornia
perennis. The point of interest that is being labeled is
at the center of these snippets. They are 31x31 images
that are full-color three channel, and they are normal-
ized by dividing the RGB values by 255. The central
points are chosen from any point more than 15 pixels
from the edge of the image. The size of 31x31 was cho-
sen for a window size because of the desire to eliminate
the need to work with padding. However, the desire to
eliminate padding means that central points cannot be
less than one half the length of the snippet from the
edge of the image. Because of this, the larger the snip-
pets are, the less area one has to select from for random
points. As such, we must find a balance between how
large of a subimage we pass into the model and how
many possible random points we have from which to
choose. As such, 31x31 was the first value we decided
to test. Points were chosen for the dataset such that
windows could be as large as 101x101. This does not
necessarily mean that the final pipeline will only choose
points more than 50 pixels from the border, however.
For the time being, 31x31 will be used with the plan to
test several snippet sizes in the future (see Future Work
section). The images are passed into the two models,
LeNet-5 and AlexNet, as arrays of dimensions 31x31x3.

Both models in this paper are Convolutional Neu-
ral Networks (CNNs) that have previous appearances
in literature (LeNet-5 and AlexNet). We also manip-
ulate AlexNet further to reduce the amount of time
spent training the network. In the following sections, we
discuss how we implement the models to adapt to our
learning tasks and our data. The models discussed here
were trained on loss and evaluated using accuracy. Be-
cause it is a binary classification problem being solved,
the accuracy is defined as (number of true positives +
number of true negatives) / total data set size.

LeNet-5
LeNet-5 is a simple CNN that was designed and imple-
mented for optical character recognition on the MNIST
dataset of images of 32x32x1(LeCun et al. 1998). Be-
cause our images are of a different size, we adopt a slight
variation of the original LeNet-5 model. The details of
the LeNet-5 model we adapt are included in Table 1.
There are two differences between our model and the
original model. One is the filter size used in the first
convolutional layer (C1) is 4x4, instead of 5x5 in stan-
dard LeNet-5. Because of this tweak in the first con-
volutional layer, it produces the output of size 28x28,
same with the standard model, to ensure the rest of the
hidden layers are the same as well. The other difference



is the size of the output layer, for which we have 2 val-
ues for the binary classification task, as opposed to 10
values for the single digits. From Table 1, we calculate
the number of parameters to be learned is 59,964.

AlexNet and mAlexNet

Similar to LeNet-5, AlexNet also is a convolutional
neural network with numerous convolution and pool-
ing layers(Krizhevsky, Sutskever, and Hinton 2012). It
is a more complex model than LeNet-5, primarily at-
tributed to the fact that AlexNet has more convolu-
tional layers with more feature maps. However, the
size of the input image originally used for AlexNet was
224x244 with three color channels. Because our input
image is only 31x31, we had to make adjustments to the
stride and receptive field sizes of the layers in the net-
work in order to fit the model to the size of the image.
As such, while the number of feature maps and number
of units in fully connected layers were kept the same, we
adjusted kernel size and stride to work with the image
size we have. The hidden layers, much like LeNet-5, con-
sist of an alternating pattern of convolutions and pool-
ing layers. However, for AlexNet, max pooling is used
instead of average pooling. As with our LeNet-5 vari-
ant, we resort to a different implementation of AlexNet
because of the different input size. Table 2 provides the
details of our adopted AlexNet model, where we see the
differences are not only in the first convolutional layer
and output layer, but also in the intermediate layers so
as to fit our input size. From the parameters provided
in Table 2, we calculate the number of parameters to
be 24,271,968. Clearly, there are more parameters for
AlexNet than for LeNet-5; this is caused mostly by the
much deeper feature space of AlexNet compared to its
counterpart, potentially enabling AlexNet to solve more
difficult learning problems.

Due to this sheer large number of trainable param-
eters, we observe extensive training time shown later
in our experiment sections. Consequently, we also pro-
pose to experiment another model, a modified variant
of AlexNet, for which we call mAlexNet, with the two
fully connected layers of 100 neurons instead, resulting
in about 3.4 million parameters, a very considerable
decrease from AlexNet. We include such differences be-
tween AlexNet and mAlexNet in Table 2.

The Dataset

The images used for the creation of the dataset were
provided by GTMNERR in St. Augustine, Florida. The
image set from which our data was obtained consists
of 811 one square-meter photographs of mash grass
known as “photoquadrats.” These photoquadrats, each
of which is of dimension ranging from 1653x1666 to
3268x2830, are used to obtain data in a per-square-
meter fashion that allows for easy interpretation (such
as density of a species per square meter). Because the
program currently used by GTMNERR does not record
the coordinates for the random pixels chosen, we were

not able to use the work previously done by GTMN-
ERR in the creation of our dataset. As such, we had to
create our own set of points for labeling. To do this, we
chose 100 random pixels from each image that fit the
criteria of being at least 50 pixels away from the edge
of the image, so, when passing an image into our algo-
rithms, we would not have to pad the image in order for
it to fit our input vector for the neural network—even
when we begin to try different snippet sizes.

As far as can be seen, there is no publicly available
data set for this problem. Aside from our results in this
paper, this provides an opportunity for us to contribute
a marsh dataset to the public to allow others to attempt
this problem. The data set consists of a set of 811 dif-
ferent photoquadrat images and a list of 57,372 points
with the image the point is found in, the coordinates for
the point, and a label representing the class to which
the point belongs.

After generating a set of pixels to use for the dataset,
we then had to label each one for use as our ground
truth. This was done with a group of volunteers who
are trained university students. The dataset consists of
points that are classified into six different categories:
bare or unvegetated ; Spartina, which is the dominant
species in the marsh; Juncus; Batis; Avicennia; and
Sarcocornia. The latter four are less common than
Spartina, and, as such, are less represented in the data.

When analyzing our data, we see the unvegetated
class is the most prevalent with over 71.9% of the im-
ages, compared to 28.1% being vegetated. This is, how-
ever, to be expected, for every site that was sampled,
while it never contained all species, contained bare ar-
eas. We also see the lack of data for Avicennia and Sar-
cocornia, which combine for only 0.4% of the dataset.
This is drastic compared to Spartina, Batis, and Jun-
cus, which have frequencies of 18.3%, 6.9%, and 2.4%
respectively. This disproportion may be challenging to
training an effective species identifier; nonetheless, it is
not much of a concern, for we focus on learning a bi-
nary classifier to separate unvegetated from vegetated
images in this work.

Experimentation and Analysis
To this end, we set off to experiment with the three
aforementioned CNN models—LeNet-5, AlexNet, and
mAlexNet—for our marsh dataset to show their effec-
tiveness of deciding whether the area in a marsh image
is vegetated or not.

To solve this binary classification problem for each
model, we combine all five species classes into one “veg-
etated” class. We then carry out a stratified test-train
split with a ratio of 80% training and 20% test set. We
then place the test set aside until the end when a best
model is decided. We split the training set, through
a simple random sample, into 100 near-equally sized
buckets to be used for constructing a learning curve.

Learning curves for the three CNNs are constructed
in the same manner. Using a hold-out method, we as-
sign the first bucket to the training set and the other



Table 1: Structure and number of parameters of each layer in LeNet-5 model for 31x31 image. Parameters have been
tweaked to accommodate the different size of the input.

Layer Type Size Feature Maps Kernel Size Stride Activation Parameters
Input 31x31 3 — — — —

Convolution 28x28 6 4x4 1 ReLU 294
Avg Pooling 14x14 6 2x2 2 ReLU —
Convolution 10x10 16 5x5 2 ReLU 1216
Avg Pooling 5x5 16 2x2 2 ReLU —
Convolution 1x1 120 5x5 1 ReLU 48120

Fully Connected 84 — — — ReLU 10164
Output 2 — — — Softmax 170
Total 59964

Table 2: Structure and number of parameters of each layer in AlexNet model for 31x31 image. Parameters have been
tweaked to accommodate the different size of the input. Included are the number of trainable parameters for our
downsized AlexNet model as well, separated by a ”/”

Layer Type Size Feature Maps Kernel Size Stride Activation Parameters
Input 31x31 3 — — — —

Convolution 28x28 96 4x4 1 ReLU 4704
Max Pooling 13x13 96 3x3 2 ReLU —
Convolution 11x11 256 3x3 1 ReLU 221,440
Max Pooling 9x9 256 3x3 1 ReLU —
Convolution 7x7 384 3x3 1 ReLU 885,120
Convolution 5x5 384 3x3 1 ReLU 1,327,488
Convolution 3x3 254 3x3 1 ReLU 878,078
Max Pooling 2x2 254 2x2 1 ReLU —

Fully Connected 4096/100 — — — ReLU 4,165,632/101,700
Fully Connected 4096/100 — — — ReLU 16,781,312/10,100

Output 2 — — — Softmax 8194/202
Total 24,271,968/3,428,832

99 to the validation set. We then train a model using
the training set and validate it on the validation set.
The number of buckets used for the training set for
each model is incremented by one until 20 buckets are
being used for training—at which point the number of
buckets being used for training will be incremented by
10 until we are using 90 buckets for training, at which
point the remaining 10 buckets are used for validation.

Thereafter, the 100 buckets are merged into 10, buck-
ets 1–10 into fold 1, etc., for a final 10-fold cross valida-
tion, when a best model is selected to test on the test
set to report its predicting accuracy.

In the following, we present our experimental results
and analysis in the order of learning curves and then
cross validations before testing results unveiled.

Learning Curves

LeNet-5 vs. AlexNet: We start with training LeNet-
5 and AlexNet models to see their learning curves and
testing accuracies in cross validations.

The instances in the learning curves are done five
iterations and the averages are reported in 2a, where we
present accuracies of models relevant to experience that
is the set of training examples. We see that, though both

LeNet-5 and AlexNet exhibit underfitting, AlexNet has
a clear advantage over LeNet-5. For AlexNet, we have a
peak validation accuracy of over 96.74% versus LeNet-
5’s of 95.73%, over 1% more accurate.

However, the training time for AlexNet turns out
overwhelming for large numbers of training examples.
We plot the computational time over training sample
sizes, blue, in 2d. This training time varies from 340
minutes to train an AlexNet model when a training set
1% of the total training set size, to 1022 minutes to
train a model for 90%. These large training times re-
sult in taking, on average, 9.9 days for each iteration
of the learning curve, our full 5 iteration learning curve
for the original size AlexNet taking very near 50 days to
generate. This time is too excessive and a faster version
of AlexNet is desirable. Consequently, we introduce a
modified variant, mAlexNet, with same convolutional
and pool layers but with much fewer trainable param-
eters. Next, we show mAlexNet is highly comparable
to AlexNet in learning curves, yet train in noticeably
shorter time.

AlexNet vs. mAlexNet: Learning curves for AlexNet
and its modified counterpart are shown in 2b. Clearly,
the two models generally are close to identical on



(a) LeNet-5 vs. AlexNet over 5 iterations (b) AlexNet vs. mAlexNet over 5 iterations

(c) LeNet-5 vs. mAlexNet over 10 iterations (d) Comparing training time

Figure 2: Learning curves comparing our three models—LeNet-5 and both AlexNet models—over 5 or 10 iterations.
Figure 2d is also included , which compares the time to train a model of both AlexNets using a given percentage of
the training set.

Table 3: Table denoting the execution time in our three
models. This was done by tracking the time to pass
all examples in the dataset into the model. We then
calculate the average time per snippet and the average
time per 100 snippets (number of snippets in an image
assessment). All times are in seconds.

Model Dataset Snippet Image

LeNet-5 3.786 6.60E-5 0.006
AlexNet 40.718 7.10E-4 0.071
mAlexNet 30.24 5.27E-4 0.053

both training and validation accuracies. The two mod-
els are very similar in how they behave too. More-
over, mAlexNet’s training and execution times both
are faster than AlexNet’s. (cf. 2d, Table 3). As was ex-
pected, the time for training continues to grow as the
number of training examples increases, but this advan-
tages mAlexNet, as the number of examples is bound to
increase as we improve out dataset, so the discrepancy
between the two models will continue to grow. These
facts together point us to employ mAlexNet, instead of
AlexNet, from this point on.

LeNet-5 vs. mAlexNet: To this end, learning curves

for LeNet-5 and mAlexNet over 10 iterations are pos-
sible in a much shorter time window. We demonstrate
them in 2c. Compared to 2a, we see the more iterations
pay off to smooth out most fluctuations. Not surpris-
ingly, mAlexNet shows comparable behavior and supe-
riority to LeNet-5. This trend is true for both training
and validating results over all, but the first few small,
samples.

Testing Results

Finally, for we see all three models (LeNet-5 and our
two versions of AlexNet) ripe at 90% of training sam-
ples, we perform a 10-fold cross validation for them and
include the results in Table 4. With this, we observe
that AlexNet and LeNet-5 models both produce mod-
els that are able to attain 99% accuracy on training
and 98% accuracy on validation sets, though AlexNet
does it more consistently. Similarly, when comparing
the two AlexNet models, the modified version has a
slightly higher validation accuracy and training accura-
cies. Lastly, in terms of testing accuracies, we see that
both AlexNet variants are over one percent better than
LeNet-5, with mAlexNet a nuance ahead of AlexNet.



Table 4: Results for 10-fold cross validations for LeNet-5 and both AlexNet models. Only the model with the best
validation performance is assessed on the test set for each of our three architectures. The top-performing versions of
each model have their results in bold.

Model LeNet-5 AlexNet mAlexNet
Val Bucket Train Val Test Train Val Test Train Val Test

1 98.96% 97.46% — 99.38% 97.67% — 99.44% 97.67% —
2 99.04% 98.13% — 99.40% 98.52% — 99.48% 98.61% 92.41%
3 99.01% 97.83% — 99.46% 98.21% — 99.46% 98.19% —
4 99.05% 98.41% 91.34% 99.42% 98.54% 92.40% 99.48% 98.54% —
5 99.07% 96.88% — 99.39% 97.32% — 99.48% 98.54% —
6 99.00% 97.56% — 99.43% 98.13% — 99.20% 98.10% —
7 98.92% 95.97% — 99.28% 95.93% — 99.34% 96.10% —
8 99.08% 96.51% — 99.49% 97.56% — 99.46% 97.60% —
9 98.89% 95.42% — 99.45% 95.35% — 99.50% 96.67% —
10 98.65% 95.95% — 99.37% 96.15% — 99.49% 96.82% —

Conclusion and Future Work

In this paper, we proposed a framework to automate the
process of identifying whether an image of marshlands
is vegetated, built a new collection of such images, and
experimented with CNNs to show their effectiveness.
The results we obtained were very encouraging for our
overarching multiclass classification problem. With an
accuracy of over 92% on a test set for our best model, we
have surpassed the expectation of biological scientists
and researchers for a model with 80-90% accuracy.

For our learning curves show our models are underfit-
ting, we conjecture that better models could be trained
purely through the addition of data. However, because
of its limited complexity and lower relative accuracy, it
could very well be more prudent to stop working with
LeNet-5 and instead focus on improving AlexNet’s per-
formance. One such problem is the fact that our test
accuracy is comparatively lower than the validation ac-
curacy in our cross validation results. This was not an
isolated occurrence either, as it had happened in all
three models. This can likely be linked to the lack of
representation in the dataset as well as the use of simple
random sampling for our buckets for cross validation.
These will be remedied in future experiments.

Because many of the classes in our dataset are under-
represented, our first and most important future goal is
to expand the size and diversity of our data to more
uniformly represent the data. This will done through
volunteers at GTMNERR. To ensure the integrity of
the dataset, we will administer a 1000 point test to not
only these volunteers, but also our other volunteers from
the university.

In addition to attempting to refine our binary clas-
sifier, we will test several different models on a 5 class
species classifier once we have begun to get data from
our volunteers, using the expanded dataset on our full
problem—determining the species of vegetation present
on that point. We will test several different models
on species identification—not only our currently tested
models LeNet-5 and AlexNet, but also deeper and more

complex networks like GoogLeNet and ResNet.

References
[Bacopoulos, Tritinger, and Dix, 2019] Bacopoulos, P.;
Tritinger, A. S.; and Dix, N. G. 2019. Sea-level rise
impact on salt marsh sustainability and migration for a
subtropical estuary: Gtmnerr (guana tolomato matan-
zas national estuarine research reserve). Environmental
Modeling & Assessment 24(2):163–184.

[Krizhevsky, Sutskever, and Hinton, 2012] Krizhevsky,
A.; Sutskever, I.; and Hinton, G. E. 2012. Imagenet
classification with deep convolutional neural networks.
In Advances in neural information processing systems,
1097–1105.

[LeCun et al., 1998] LeCun, Y.; Bottou, L.; Bengio, Y.;
and Haffner, P. 1998. Gradient-based learning ap-
plied to document recognition. Proceedings of the IEEE
86(11):2278–2324.

[Marcos, Soriano, and Saloma, 2005] Marcos, M. S.
A. C.; Soriano, M. N.; and Saloma, C. A. 2005.
Classification of coral reef images from underwa-
ter video using neural networks. Optics express
13(22):8766–8771.

[Mihail et al., 2018] Mihail, R. P.; Cook, W. I.; Griffin,
B. M.; Uyeno, T. A.; and Anderson, C. D. 2018. Vege-
tation density estimation in the wild. In Proceedings of
the ACMSE 2018 Conference, 9. ACM.

[Tabak et al., 2019] Tabak, M. A.; Norouzzadeh, M. S.;
Wolfson, D. W.; Sweeney, S. J.; VerCauteren, K. C.;
Snow, N. P.; Halseth, J. M.; Di Salvo, P. A.; Lewis, J. S.;
White, M. D.; et al. 2019. Machine learning to classify
animal species in camera trap images: Applications in
ecology. Methods in Ecology and Evolution 10(4):585–
590.

[Warren and Niering, 1993] Warren, R. S., and Niering,
W. A. 1993. Vegetation change on a northeast tidal
marsh: Interaction of sea-level rise and marsh accretion.
Ecology 74(1):96–103.


	Introduction
	Preliminaries
	LeNet-5
	AlexNet and mAlexNet

	The Dataset
	Experimentation and Analysis
	Learning Curves
	Testing Results

	Conclusion and Future Work

