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Abstract
Normative ethics has been shown to help automated
planners take ethically aware decisions. However, state-
of-the-art planning technologies don’t provide a sim-
ple and direct way to support ethical features. Here, we
propose a new theoretical framework based on a con-
struct, called ethical rule, that allows to model prefer-
ences amongst ethically charged features and capture
various ethical theories. We show how the framework
can model and combine the strengths of these theories.
Then, we demonstrate that classical planning domains
extended with ethical rules can be compiled into soft
goals in PDDL.

Introduction
We place ourselves in the intersection of normative ethics
and automated planning. Past research in this subject aimed
to apply ideas from the field of normative ethics, the sub-
field of ethics that studies the admissibility of actions, to
make autonomous agents take into account the decision
process behind diverse ethical theories (Berreby, Bourgne,
and Ganascia 2017; Lindner, Mattmüller, and Nebel 2019;
Cointe, Bonnet, and Boissier 2016; Dennis and Fisher 2018).
Still, none provide a direct way to support ethical fea-
tures in PDDL (Gerevini et al. 2009) which profits from
its state-of-the-art planning algorithms. As a result, it has
given rise to many controversial arguments around the man-
ner in which ethics should be embedded into AI systems
(Brundage 2014). One of which is whether the welfare of
society can be interpreted as a maximization of perceived
utility in the context of AI systems. Here, we will focus on
this last point by taking planning problems featuring ethical
elements and reducing them to a maximization of utilities in
such a way that it can profit from PDDL planners.

Concretely, our model gives autonomous systems the abil-
ity to capture (i) the ethical features considered in a decision
making or classical planning problem, and (ii) qualitative
model to represent their relative importance, and determine
what sequence of actions is the best, capturing and combin-
ing the intuitions prescribed by well-known ethical theories.

First, we show how to extend classical planning problems
like tasks with ethical rules, a construct that models the con-
ditions under which certain actions or plan outcomes have
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an ethical feature to be taken into account. This construct is
based on (Cointe, Bonnet, and Boissier 2016), but is adapted
for STRIPS like domains and extended with ranks i.e. lev-
els of importance. We chose to use ranks as in (Feldmann,
Brewka, and Wenzel 2006), as they provide a simple and di-
rect way of modeling qualitative preferences amongst plans
presenting ethical features. We call this extended model
STRIPS*E. Then, we show how the three main normative
ethical theories, namely consequentialist, deontological and
virtue ethics can be represented with our framework.

Second, we demonstrate how STRIPS*E planning tasks
can be compiled into STRIPS*U planning tasks i.e. tasks
with soft goals and utility-based preferences.

Third, we implement our notions by defining a novel ex-
tension for STRIPS like tasks encoded using the PDDL3
(Gerevini et al. 2009) language, that models our ethical
rules. We provide an implementation that compiles these
tasks into PDDL tasks with utility-based preferences.

Finally, we showcase how a state-of-the-art planner
(Coles and Coles 2011) can be applied to STRIPS*E tasks
by compiling away the ethical rules.

Planning framework
To represent planning tasks, we will use a STRIPS-like rep-
resentation (STRIPS*), which will correspond to classical
STRIPS tasks (Fikes and Nilsson 1971), but extended with
conditional effects as in ADL (Pednault 1989).

A STRIPS* problem is a 4-tuple T = 〈F, s0, s∗, A〉 that
describes all the relevant information that characterizes the
states of the domain, the changes actions bring in the form
of transitions between states, the initial state and the final
conditions a plan has to reach. More precisely:

• F is a finite set of propositions called fluents, which rep-
resent the characterizing properties of a state.

• s0 denotes the initial state. A state is a set of fluents in F
that correspond to the propositions that hold in a particular
state. All fluents that are not present are considered to be
false in a state.

• s∗ is a set of fluents called the goal conditions.

• A is a finite set of actions, also called operators, in the
form of pairs a = 〈Pre(a), Eff(a)〉, which consist
of a set of fluents Pre(a) denoting the preconditions,



and a finite set of effects Eff(a). An effect is a pair
〈Cond,Aff〉 where Cond is a set of fluents called the
effect condition, and Aff is a set of literals denoting the
affected fluents. A literal is either a fluent f ∈ F , or its
negation ¬f .

Given a state s and an action a, the successor state
SuccT (a, s) obtained by applying a is defined, or possible,
iff Pre(a) ⊆ s and there are no two effects e1, e2 ∈ Eff(a)
such that e1 = 〈Cond1, Aff1〉, e2 = 〈Cond2, Aff2〉,
Cond1 ⊆ Pre(a), Cond2 ⊆ Pre(a), f ∈ Aff1 and
¬f ∈ Aff2. If an action is indeed possible, for every flu-
ent f ∈ F , it holds that f ∈ SuccT (a, s) iff there is some
effect 〈Cond,Aff〉 ∈ Eff(a) such that Cond ⊆ s and
f ∈ Aff , or f ∈ s and there is no effect 〈Cond,Aff〉 ∈
Eff(a) such that Cond ⊆ s and ¬f ∈ Aff .

A plan is a sequence of actions π =
[a0, a1, . . . , an] with n ≥ 0 and a0, a1, . . . , an ∈ A
which satisfies the goal conditions. The final
state of a plan is defined as SuccT (π, s0) =
SuccT (an, SuccT (. . . , SuccT (a1, SuccT (a0, s0)))).
A plan satisfies the goal conditions if and only if
s∗ ⊆ SuccT (π, s0).

A STRIPS-like problem with utility based soft goals, de-
noted STRIPS*U, is a tuple T = 〈F, s0, s∗, A, u〉, where
〈F, s0, s∗, A〉 is a STRIPS* problem, and u is a partial func-
tion u : Form(F ) 7→ R+ that maps propositional for-
mulas (called the soft goals) into positive reals. We de-
note Form(F ) the set of all propositional formulas that can
be constructed using the propositions from F , the negation
symbol (¬) and the conjunction symbol (∧). We will also
use the consequence symbol (|=) as usual in propositional
logic. The utility of a state s is obtained as the sum of the
utilities of its soft goals: u(s) =

∑
φ∈Dom(u):s|=φ

u(φ).

Likewise, the utility of a plan π corresponds to the utility
of its final state i.e. u(π) = u(SuccT (π, s0)).

An optimal plan π for a STRIPS*U problem is one for
which no other plan π′ has a higher utility.

Both STRIPS* and STRIPS*U planning problems are
captured and extended by the PDDL3.0 planning language
(Gerevini et al. 2009) featured in the IPC5.

Example 1. (Hospital) An autonomous vehicle is tasked to
get its passengers quickly from their house to a hospital as
one of them has suffered an injury. The vehicle can get to the
hospital either through a highway (fast) or a normal road
(slow). To take the highway, the vehicle has to pass through a
toll and present its id. If it presents its own id ‘A’, it will have
to pay a fine, as the id is not authorized for this highway.
If the vehicle presents another id ‘B’ i.e. if it lies about its
identity, no fine will be paid, but someone else will have to
pay for it.

We can represent this problem with a STRIPS* task
〈F, s0, s∗, A〉 as follows:

• F = {atHouse, atToll, atRoad, atHospital,
atHighway, barrierOpen, presentedIdA,
presentedIdB, tookHighway},

• A = {a0 = 〈{atHouse}, {〈∅, {atRoad}〉}〉,
a1 = 〈{atRoad}, {〈∅, {atHospital}〉}〉,
a2 = 〈{atHouse}, {〈∅, {atToll}〉}〉,
a3 = 〈{atToll, barrierOpen},
{〈∅, {atHighway, tookHighway}〉}〉,
a4 = 〈{atHighway}, {〈∅, {atHospital}〉}〉,
a5 = 〈{atToll},
{〈∅, {barrierOpen, presentedIdA}〉}〉,
a6 = 〈{atToll},
{〈∅, {barrierOpen, presentedIdB}〉}〉},

• s0 = {atHouse},
• s∗ = {atHospital}.

We can consider following three plans:

• π1 = 〈a0, a1〉 i.e. take the normal road,
• π2 = 〈a2, a5, a3, a4〉 i.e. take the highway with id ’A’, and
• π3 = 〈a2, a6, a3, a4〉 i.e. take the highway with id ’B’.

Representing ethical features
In the context of decision making and planning for au-
tonomous systems, ethics can be used to imbue agents with
ethical values and a theory of the right. Yet, autonomous
systems deal with problems that are fundamentally differ-
ent from real-life human decision making tasks. For once,
AI systems rely on frameworks, such as the one presented
above, that replicate real-life scenarios with several exten-
sions or simplifications that depend on the system designer.

This is why, our approach separates the process of deter-
mining ethically correct choices into two steps. The first is
recognizing the ethical features of a plan. As such, a set of
rules that characterize when an action in a particular context
entails a feature (such as stealing, sharing, or killing) that
should be judged on ethical terms and its relative level of im-
portance, must be given as an input. The second is applying
these features, and it consists of taking the ethical features
induced by a sequence of actions, and using them to com-
pare the possible plans an autonomous agent might take. By
doing this, we are able to separate the (model based) action
selection process from the ethical reasoning of the agent.

Recognizing ethical features
We introduce a construct that permits to recognize the states
and actions that should be judged ethically. We denoteE the
set of ethical features, i.e. the ethical characteristics that an
action entails e.g. E = {killing, lying, stealing}.

For the following, let T = 〈F, s0, s∗, A〉 be a planning
domain and E a set of ethical features.

Definition 1. An ethical rule is a triple r =
〈Id(r), P re(r), Act(r)〉, where:

• Id(r) ∈ E is the identifier i.e. the ethical feature of r,
• Pre(r) is a set of fluents of F called the preconditions,
• Act(r) ∈ A ∪ {final}, is either an action or the constant

symbol final, called the activation condition.



An ethical rule defines the conditions under which it is
necessary to judge an action ethically. These conditions
are represented by the precondition Pre(r) and the acti-
vation condition Act(r). The intuition behind them is that
a plan that goes from a state si satisfying Pre(r) to an-
other state by executing an action specified by Act(r), is
assigned the ethical feature Id(r). Moreover, in the special
case Act(r) = final, the feature is assigned when the final
state of the plan satisfies Pre(a).

Let R = {r1, r2, . . . , rk} with k ∈ N0 be a set of ethical
rules, and π = [a0, a1, . . . , an] a plan passing through states
s0, s1, . . . , sn+1 where si+1 = SuccT (ai, si):

Definition 2. The set of ethical features assigned to π with
respect to the planning domain T and the ethical rules R is
denoted ERT (π), or more concisely Eπ , and defined as:

ERT (π) = {Id(r) : r ∈ R, and (∃i ∈ {1, 2, ..., n}
such that Pre(r) ⊆ si and Act(r) = ai), or
(Pre(r) ⊆ si+1, and Act(r) = final)}

Capturing ethical theories
In what follows, we will exemplify how recognizing ethical
features in a plan allows to extract the information required
by different ethical theories, and then compare plans with
respect to their ethical characteristics.

All three main branches of normative ethics, namely con-
sequentialism, deontological ethics and virtue ethics have
been studied to some degree in the context of automated
planning. Some works focus on particular theories, while
others more closely related to this work, try to combine
the mechanisms of several of them as in (Cointe, Bon-
net, and Boissier 2016; Lindner, Bentzen, and Nebel 2017;
Lindner, Mattmüller, and Nebel 2019; Bonnemains, Saurel,
and Tessier 2016; Berreby, Bourgne, and Ganascia 2017).

For recent surveys on existing implementations and chal-
lenges of applying ethical concepts into artificial intelli-
gence systems, we refer the reader to (Yu et al. 2018;
Dennis and Fisher 2018).

Consequentialist ethics In this theory, actions are evalu-
ated upon their consequences. The precise method to deter-
mine which action is right varies between branches of con-
sequentialist ethics. Some of the most prominent contrast
points are the way in which consequences are determined,
the perspective from which consequences are evaluated, and
how consequences are compared. For an overview of conse-
quentialism’s branches, refer to (Haines 2006).

Here, the perspective from which consequences are de-
termined will be the welfare of society, also called utilitari-
anism. In addition, we consider that an action is better than
another if the overall consequences are better (Singer 1977).

To represent consequentialism in our framework, we in-
troduce an ethical rule for each ethically relevant fluent.

Example 2. (Hospital continued) The ethical rules that
characterize the overall ethically relevant consequences of
a plan in T can be modeled as:
Rcon = {r0 = 〈fast, {tookHighway},final〉,

r1 = 〈paysF ine, {presentedIdA},final〉}.

Then, the ethical features assigned to the plans areEπ1 =
∅, Eπ2 = {fast, paysF ine}, and Eπ3 = {fast}.

Deontological ethics It asserts that an action should be
judged on whether it complies with a set of duties and obli-
gations, rather than based on the consequences of the action.
As such, deontological ethics is applied to automatic sys-
tems by constructing and enforcing restrictions that charac-
terize what is permitted and what forbidden.

Example 3. (Hospital continued) The main restriction we
would want to impose deals with lying about the agent’s
identity when passing by the toll to access the highway. This
can be modeled as follows using our framework:
Rdeo = {r2 = 〈lying, {atToll}, a6〉}.
Then, the ethical features assigned to the plans presented

before are Eπ1 = ∅, Eπ2 = ∅, and Eπ3 = {lying}.

Virtue ethics In contrast to the other theories, virtue ethics
relies on the moral values of an agent. As such, an agent is
deemed ethical when it acts according to some moral values
e.g. fairness, honesty and compassion. An agent that reasons
ethically according to this theory should exhibit the charac-
teristics of a virtuous agent i.e. perceived to favor others.

Example 4. (Hospital continued) The main property we
wish to capture is the virtue behind carrying an injured per-
son to the hospital as fast as possible i.e. compassion. Also,
we can say that only by presenting the id ’A’ at the toll we
are being honest.
Rvir = {r3 = 〈honesty, {atToll}, a5〉,

r4 = 〈compassion, {atToll}, a3〉}.
Then, the ethical features assigned to the plans presented

before are Eπ1 = ∅, Eπ2 = {compassion, honesty}, and
Eπ3 = {compassion}.

A model for ethical preferences
We turn our attention to the challenge of providing a frame-
work that allows to reason with conflicting ethical features
from one or many different ethical theories.

An important requirement we demand of our language is
that it must allow for qualitative preferences. It has been em-
phasized (Brundage 2014) that AI systems in which ethics
is useful, can take dangerous decisions in situations of ex-
treme trade-offs. This could be a problem if the preference
language was strictly quantitative. For instance, we want to
be able to model that a set of ethical rules R takes prece-
dence over an arbitrarily large set of rules R′ whenever R
presents a critical rule r ∈ R that precedes features in R′.

Here, we will use ranked knowledge bases (Feldmann,
Brewka, and Wenzel 2006), as our preference representation
model, as it combines naturally with our ethical rules and is
concise and easy to elicit from external sources. A ranked
knowledge base is a model to represent qualitative prefer-
ences amongst sets of alternatives. In contrast to the original
work, we will not define the preferences for arbitrary formu-
lae, but rather for ethical rules.

Definition 3. An ethical ranked base (ERB) is a function
erb(r) = 〈Type(r), Rank(r)〉 that maps an ethical rule r ∈



R to a pair consisting of a symbol Type(r) ∈ {+,−} rep-
resenting the type i.e. whether activating the rule is ethically
right or wrong, and a non-negative integer Rank(r) ∈ N,
which denotes the rank of the rule i.e. its level of importance.

The idea behind the type and the rank of an ethical rule is
to make it possible to compare plans on ethical terms with
respect to the rules they satisfy or break.
Definition 4. Given a STRIPS* problem T , a set of ethical
rules R, an ethical ranked base erb over R, and π a plan of
T , let Ri(π) = {r ∈ R : (Id(r) ∈ Eπ ⇐⇒ Type(r) =
+) and Rank(r) = i} for i ∈ N, then π is at least as pre-
ferred as another plan π′ of T , denoted π �erb π′ iff:

∀i ∈ N, it holds that Ri(π) = Ri(π
′), or

∃i ∈ N, such that Ri(π) ⊃ Ri(π′), and

∀j > i : Rj(π) = Rj(π
′).

We denote �erb and =erb as usual: π �erb π′ iff π �erb
π′ and π′ 6�erb π; π =erb π

′ iff π �erb π′ and π′ �erb π.
Now, we define our concept of an ethical planning prob-

lem by extending STRIPS* tasks with a set of ethical rules
and an ethical ranked base as follows:
Definition 5. A STRIPS*E problem is a tuple T =
〈F, s0, s∗, A,R, erb〉 where 〈F, s0, s∗, A〉 is a STRIPS*
problem, R is a finite set of ethical rules over a set E of
ethical features, and erb is an ethical ranked base over R.

Then,�erb will model which plans are more ethically cor-
rect than others according to our framework:
Definition 6. Let T = 〈F, s0, s∗, A,R, erb〉 be a STRIPS*E
problem and π a plan for T , π is optimal if and only if, for
any other plan π′, it holds that π �erb π′.
Example 5. (Hospital continued) Given the planning task
T as defined before, we can extend it with the set of ethical
rules R = Rcon ∪Rdeo ∪Rvir over a set of ethical features
E = {fast, paysF ine, honesty, compassion, lying},
and an ethical ranked base erb where:

erb(r0) = 〈+, 1〉 erb(r1) = 〈−, 1〉 erb(r2) = 〈−, 4〉
erb(r3) = 〈+, 2〉 erb(r4) = 〈+, 3〉

In this scenario, we have that:

Eπ1
= ∅

Eπ2
= {fast, paysF ine, compassion, honesty}

Eπ3 = {fast, lying, compassion}
Then, π1 �erb π3 and π2 �erb π3 since R4(π1) =
R4(π2) = {lying} ⊃ R4(π3) = ∅, and π2 �erb π1 be-
cause R3(π2) = {compassion} ⊃ R3(π1) = ∅.

This makes sense according to our defined semantics as
the plan that violates the highest ranked ethical rule con-
cerning ‘lying’ (π3) is weaker than those plans which don’t
(π1, π2). Similarly, plan π2 is preferred to π1, as it satisfies
the next most important rule concerning ‘compassion’.

Planning with ethical preferences
It is simple to show that the �erb preference relation is re-
flexive and transitive, thus it is a preorder. However, cer-
tain plans may satisfy different elements at level n ∈ N,

so we can’t say this order is total. We follow the work of
(Feldmann, Brewka, and Wenzel 2006), who propose to use
linearizations. A linearization of �erb is a total preorder
�linerb that extends the first in such a way that �erb⊆�linerb,
=erb⊆=lin

erb and �erb⊆�linerb. This extension is useful as
there is always a linearization for any preorder and it can
be constructed by using a valuation function as follows:

Definition 7. Given a STRIPS*E problem T =
〈F, s0, s∗, A,R, erb〉 and a plan π of T , let maxval0 = 0,
then ∀i ∈ {1, . . . , n}:

vali = maxvali−1 + 1

maxvali = |{r ∈ R : Rank(r)=i}| × vali +maxvali−1

val(π) =
∑
i∈N
|Ri(π)| × vali

(Ross 1930) argues that while (prima facie) duties can
conflict, no true dilemma can occur since one of these du-
ties will always be the strongest, leading to a linearization of
the duties in any context. We assume that the ranking of the
duties is given, and we use (Feldmann, Brewka, and Wenzel
2006) as the linearization mechanism for �erb:
Proposition 1. Let the preference relation between two
plans �linerb be defined as π �linerb π′ iff val(π) ≥ val(π′),
then it is indeed a linearization of �erb.

Proof. Suppose that π =erb π′, then trivially val(π) =
val(π′) because Ri(π) = Ri(π

′). In the case π �erb π′,
then val(π) > val(π′) by construction of vali because there
is an i such that Ri(π) ⊃ Ri(π

′) and ∀j > i : Rj(π) =

Rj(π
′), and |Ri(π)| × vali >

i∑
k=1

|Rk(π′)| × valk. Then,

�erb⊆�linerb follows from the two previous cases. Finally, be-
cause val assigns an integer to every plan, �linerb is total.

Example 6. (Hospital continued) Following our running ex-
ample, it holds that val1 = 1, val2 = 3, val3 = 6 and
val4 = 12, then:

val(π1) =|R1(π1)| × 1 + |R4(π1)| × 12 = 13.

val(π2) =|R1(π2)| × 1 + |R3(π2)| × 6 +

|R4(π2)| × 12 = 19.

val(π3) =|R1(π3)| × 1 + |R3(π1)| × 6 = 8.

In order to find an optimal plan, we will show that
any STRIPS*E can be transformed into an equivalent
STRIPS*U problem. In what follows, we make the follow-
ing assumptions for STRIPS*E problems:

• Ethical rules with activation condition ‘final’ refer to dif-
ferent fluents i.e. @r, r′ ∈ R s.t. Act(r) = Act(r′) =
final and Pre(r) = Pre(r′),

• Ethical features are unique i.e. @r, r′ ∈ R s.t. Id(r) =
Id(r′), and distinct from the fluents i.e. @r ∈ R s.t.
Id(r) ∈ F .

Proposition 2. Given a STRIPS*E problem T =
〈F, s0, s∗, A,R, erb〉, two plans π, π′ of T , and let T ′ =
〈F ′, s0, s∗, A′, u〉 be a STRIPS*U problem where:



• F ′ = F ∪ {Id(r) : r ∈ R ∧Act(r) ∈ A},
• A′ = {〈Pre(a), Eff(a) ∪ {〈Pre(r), Id(r)〉 : Act(r) =
a}〉 : a ∈ A}, and

• The utilities u are defined as follows:
1. u(Id(r)) = valRank(r) if ∃r ∈ R s.t. Type(r) = +

and Act(r) ∈ A,
2. u(¬Id(r)) = valRank(r) if ∃r ∈ R s.t. Type(r) = −

and Act(r) ∈ A,
3. u(f1∧. . .∧fn) = valRank(r) if ∃r ∈ R s.t. Type(r) =

+, Act(r) = final and Pre(r) = {f1, . . . , fn},
4. u(¬(f1 ∧ . . . ∧ fn)) = valRank(r) if ∃r ∈ R s.t.
Type(r) = −, Act(r) = final and Pre(r) =
{f1, . . . , fn}, and

5. u(φ) is undefined otherwise.

Then, π �erb π′ w.r.t. T iff u(π) ≥ u(π′) w.r.t. T ′.

Proof. It is trivial to see that any plan π of T is a plan in
T ′ and vice versa, due to the fact that the goal conditions
are left unchanged, the initial state is the same, the fluents
of T are included in those of T ′, preconditions of actions
don’t change, and the changes in the effects of actions only
deal with the new fluents in F ′ (as they are distinct from the
fluents in F by assumption). Next, let π be a plan of T :

a. For any rule r ∈ R such that Act(r) ∈ A, it holds that
Id(r) ∈ Eπ if and only if Id(r) ∈ SuccT ′(π, s0) because
Id(r) is only added to a state s according to A′ iff action
Act(r) is executed while Pre(r) ⊆ s.

b. Given any rule r ∈ R such that Act(r) = final,
it holds that Pre(r) ⊆ SuccT (π, s0) if and only if
SuccT ′(π, s′0) |= Pre(r) (treating the set Pre(r) as a
conjunction) as none of the original fluents are affected
by the transformation (as they are distinct from the new).

Furthermore, let s = SuccT ′(π, s′0) be the final state
of plan π, for every ethical rule r ∈ R such that
Act(r) ∈ A, due to property (a) it holds that s |= Id(r)
iff Id(r) ∈ Eπ . Also, due to property (b) for every
ethical rule r ∈ R such that Act(r) = final, it holds
that s |= Pre(r) iff Id(r) ∈ Eπ . Thus, let C1 =
{r ∈ R : Type(r)= + ∧Act(r) ∈ A ∧ s |= Id(r)}, C2 =
{r ∈ R : Type(r)=− ∧Act(r) ∈ A ∧ s 6|= Id(r)}, C3 =
{r ∈ R : Type(r)= + ∧Act(r)= final∧s |= Pre(r)},
C4 = {r ∈ R : Type(r)=− ∧Act(r)= final∧s 6|= Pre(r)},
due to the definition of utility (1-5) of a plan,
u(π) = u(s) =

∑
r∈C1∪C2∪C3∪C4

valRank(r) =∑
{r∈R:Id(r)∈Eπ ⇐⇒ Type(r)=+}

valRank(r) = val(π).

Finally, let π′ be another plan s.t. π �erb π′, then u(π) =
val(π) and u(π′) = val(π′), thus u(π) ≥ u(π′) as val
induces a linearization over �erb from Proposition 1.

In terms of computational costs, each ethical rule r with
Act(r) ∈ A will add a fluent to the planning domain and a
conditional effect to its corresponding action. Additionally,
each ethical rule will induce utilities to be checked by the
planner.

Implementation
One of the main benefits of our approach is that by trans-
forming the STRIPS*E problem into another with only soft
goals and utilities, it is possible to apply PDDL planners
designed for this purpose. This is why, in order to exem-
plify our framework we have implemented (i) an extension
of STRIPS* in the syntax of the language PDDL3.0 that
models ethical rules and our qualitative preference model,
and (ii) a translation routine from domains with ethical rules
into an equivalent one with utilities applying Proposition 2.

We chose the IPC planning definition language PDDL3.0
(Gerevini et al. 2009), which models STRIPS domains, con-
ditional effects, utilities and other extensions. We tested our
framework using the planner in (Coles and Coles 2011). The
definition of ethical rules should be included in the domain
file of a PDDL representation:

<eth-rule> ::= (:ethical-rule <name>
:type <eth-type>
:precondition φ
:activation <eth-actv>
:rank <positive integer>)

<eth-type> ::= + | -
<eth-actv> ::= <action-name> | final

Where φ is an atomic formulae over the (grounded) predi-
cates of the domain with no comparison or numeric terms.

Our translation routine then parses a domain and problem
file and generates a pair of updated files. This routine has
been implemented using Python and is publicly available1.
Example 7. (Hospital continued) Back to our ongoing ex-
ample, we represent the ethical rules r0 and r2 as:

(:ethical-rule fast
:type + :precondition (tookHighway)
:activation final :rank 1)

(:ethical-rule lied
:type - :precondition (atToll)
:activation presentB :rank 4)

Then, our translation routine will update the domain and
problem definition files with a new fluent ‘lied’ and change
the effects of action ‘presentB’ (see Proposition 2):

(:action presentB
:parameters ()
:precondition (atToll)
:effect (and (<original effect>)

(when (atToll) (lied))))

And add the following preferences:

(:goal (and (<original goal>)
(preference p_fast (tookHighway))
(preference p_lied (not (lied)))))

(:metric minimize (+
(* (is-violated p_fast) 1)
(* (is-violated p_lied) 4)))

Notice that instead of maximizing the utility like in the
previous section, PDDL3.0 preferences specify utilities us-
ing the operator ‘is-violated’, which forces us to (equiva-
lently) invert the problem to minimize ethical rule violations.

1https://github.com/martinjedwabny/pddl-ethical



Related work
Regarding normative ethics in the context of AI, (Cointe,
Bonnet, and Boissier 2016) introduce a framework for eth-
ical reasoning and planning based on BDI agents, that
presents a construct called moral rule, which is related to
our ethical rules, but used in a different fashion. (Berreby,
Bourgne, and Ganascia 2017) present a modular frame-
work that implements several ethical theories in answer set
programming, as well as different mechanisms to combine
them. Deontic logics has been applied to produce ethics-
aware systems based on the event calculus (Govindarajulu
and Bringsjord 2017; Hashmi, Governatori, and Wynn 2014;
Marı́n and Sartor 1999). An extension for (transition sys-
tem defining) language C+ is presented in (Sergot 2004), in
which fluents and actions (under specified circumstances)
can be forbidden, states and transitions are thus labeled per-
mitted or not, according to whether any of those rules are
broken. In (Panagiotidi and Vázquez-Salceda 2011), restric-
tions are characterized using context-dependent norms, and
applied to STRIPS-based planning domains. However, these
approaches were not designed for PDDL planners, which
prevent them from being more practical in real use cases.

Discussion
We have shown a flexible framework that allows automated
planners to represent the three main normative ethical the-
ories. Qualitative preferences between the ethical features
are represented using ranks as in (Feldmann, Brewka, and
Wenzel 2006). Our model has the advantage that it can be
translated into utility-based preferences. One possible way
of extending this work would be by providing a more gen-
eral language to express preferences as described in (Brewka
2004). A qualitative framework is imperative in ethical do-
mains e.g. consider a problem in which an agent is assigned
a unit of utility for executing a trivial action, such as giving
away ice creams, while on the other hand is assigned a thou-
sand units, or any other fixed utility to not killing a person.
Summing up simple utilities would effectively compensate
killing a person if the agent gives away enough ice creams.
In contrast, the rank-based approach prohibits such kind of
behaviour as we showed earlier. In addition, a rank-based
approach makes it easier to elicit priorities amongst ethical
rules from external sources, as one doesn’t need to specify
the utility for every combination of ethical rules, but for each
ethical rule separately.

Finally, we have shown how our framework profits from
PDDL planners, which opens up interesting avenues of re-
search for ethical planning for real world use-cases. For fu-
ture work, an in-depth analysis of the computational costs
induced by our norms is necessary.
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