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Abstract

We propose a new weakly supervised approach for clas-
sification and clustering based on mixture models. Our
approach integrates multi-level pairwise group and class
constraints between samples to learn the underlying
group structure of the data and propagate (scarce) ini-
tial labels to unlabelled data. Our algorithm assumes the
number of classes is known but does not assume any
prior knowledge about the number of mixture compo-
nents in each class. Therefore, our model : (1) allocates
multiple mixture components to individual classes, (2)
estimates automatically the number of components of
each class, 3) propagates class labels to unlabelled data
in a consistent way to predefined constraints. Experi-
ments on several real-world and synthetic data datasets
show the robustness and performance of our model over
state-of-the-art methods.

Introduction
Recently, semi-supervised learning (SSL) has received a
great interest in the fields of pattern recognition and machine
learning. It has been applied to domains such as data mining,
information retrieval, bioinformatics, image analysis & pro-
cessing and text classification, where significant improve-
ments have been obtained in comparison to fully supervised
or unsupervised methods (Van Engelen and Hoos 2019).

SSL algorithms are broadly divided into two main cat-
egories: SSL for classification and SSL for clustering also
known as constrained clustering. While the former are usu-
ally trained upon a small amount of labelled data and a very
large amount of unlabelled data (Van Engelen and Hoos
2019), the latter try to group data by incorporating side in-
formation from domain or user knowledge (Boulmerka and
Allili 2018). Side information usually comes in the form of
pairwise constraints (must-links and cannot-links) between
samples of data (Shental et al. 2004), which can be directly
observed or inferred as background knowledge from user
feedback (Nouboukpo and Allili 2019). The must-link es-
tablishes the samples which must be in the same cluster (or
class) and the cannot-link refers to those samples that cannot
be in the same cluster (or class).

Among the most popular SSL methods dealing simul-
taneously with clustering and classification, we can find
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graph-based and generative methods (Van Engelen and Hoos
2019). Graph-based methods have demonstrated a great per-
formance to separate classes with a manifold structures
thanks to their ability to efficiently encode relational in-
formation among samples (Filali, Allili, and Nadjia 2016).
However, given their transductive nature, they are not gen-
eralizable to classifying new data. Generative methods, on
the other hand, can predict the outcome of unseen data, but
lack the relational aspect between data samples (Van Enge-
len and Hoos 2019).

In the past, Gaussian mixture models (GMMs) have been
investigated for SSL (Van Engelen and Hoos 2019). These
models seek to discover group structures from data by
maximizing a likelihood function while using user/domain
knowledge to avoid poor local minima (Zhao and Miller
2005). This knowledge can be either class labels on a
small proportion of data (Van Engelen and Hoos 2019) or
hard pairwise relationships indicating whether particular in-
stances should be grouped together (Shental et al. 2004).
Side information can also be available as group relations
among samples known as chunklets. For example, in social
networks, groups can be constructed by forming strong com-
munities. Likewise, superpixel groups can be formed in im-
age/video segmentation using spatially/temporally contigu-
ous pixels (Filali, Allili, and Nadjia 2016).

Previous SSL algorithms using GMMs provide effective
ways to make use of both labelled and unlabelled data. How-
ever, they can lose their efficiency notably when the labelled
samples are scarce and classes with complex structure (Zhao
and Miller 2005). Indeed, when labelled data are scarce,
classification is mainly driven by unlabelled data (i.e. un-
supervised learning) which tend to assign unlabeled data
to the closest classes in the feature space by maximizing
their likelihood. Although this can maximise model fitting,
it can be sub-optimal for applications such as image seg-
mentation where spatial contiguity of classes (e.g., objects,
scenes, etc.) is more desirable than data fitting. Thus, biased
models should be more encouraged to meet the desired seg-
mentation output. Note also that GMM has been used for
classification where each class is assumed to constitute one
mixture component but the model can not deal with multi-
component classes (Shental et al. 2004).

In this paper, we propose a mixture model which effi-
ciently integrates weak supervision in classication/clustering



data problems. The supervision can come in the form of
pairwise or group relationships as well as partially la-
belled data. The group constraints and the number of data
within each group can be application-driven or generated
automatically by initially clustering the data into a large
number of groups (Boulmerka, Allili, and Ait-Aoudia 2014;
Nouboukpo and Allili 2019). The group constraints are
defined at two levels. The first level encodes hard musk-link
constraints imposing all the data in a group to be assigned
to the same mixture component. The groups defined by
these constraints constitute atomic parts or building blocks
constituting large clusters. The second level encodes soft
inter-group class affinity when available. Our mixture
model seamlessly integrates the two-level constraints where
each class can be constituted of one or multiple mixture
components and have very few labelled data initially. Our
model can therefore achieve optimal fitting and labelling to
data generated by manifold-structured classes.

The rest of this paper is organized as follows. Section II
presents in details our proposed semi-supervised algorithms
based on the EM method. The datasets, the experimental and
results are presented in section III. Section IV draws the con-
clusion of this paper and discusses future work.

Proposed method
Before introducing our method, we first explain some ter-
minology which will be used in this paper. Given a data set

X = {xn}Nn=1, let us assume that X =
M⋃
i=1

Si where Si

denotes a subset (chunklet or group) of samples xn from
the same unknown (Gaussian) distribution. We consider the
assumption that chunklets are sampled i.i.d, with respect to
the weight of their corresponding source (points within each
chunklet are also sampled i.i.d).

Let us assume also that our data is composed of two
subsets: XL = {(Si, ti), ..., (SML , tML)} is the subset of
labelled chunklets and XU = {Sj , ..., SMU } is the subset
of unlabelled chunklets. Here, ti ∈ T is the class label
from the label set T = {1, 2, ..., C}, ML (MU ) denote
the number of labelled chunklets (number of unlabelled
chunklets) and M = MU + ML denote the number of
all chunklets (with MU >> ML). Moreover, we can
separate XL according to the labels in C disjoints sets
Xc = {(Si, ti)|ti = c, i = 1, · · · , Nc} one for each class

where XL =
C⋃
c=1

Xc.

Let us suppose that K denotes the number of compo-
nents and βck denotes the probability that component k

is assigned to class c such that
C∑
c=1

βck = 1. For each

component k, k = 1, · · · ,K, we assume the Gaussian PDF
as p(xn|θk) with θk = {µk,Σk} where µk and Σk are the
mean and covariance matrix. Each θk defines the parameter
of the kth component. We defined αk as the mixing weights.

We first develop our learning objective assuming multi-

ple component per class using only group-level constraints.
The goal is to show the influence of using inter-groups in
the model estimation and components classification. With-
out any class constraints, the complete log-likelihood func-
tion of our mixture model is given by:

Q(Θ) =

MU∑
i=1

K∑
k=1

C∑
c=1

ZUikV
U
kc log

(
αkβck

∏
xn∈Si

p(xn|θk)
)

+

C∑
c=1

Nc∑
i=1

K∑
k=1

ZLikV
L
kc log

(
αkβck

∏
xn∈Si

p(xn|θk)
)

(1)

where:

• Θ = {αk, θk, βck,∀k, c} is the complete set of parame-
ters needed to specify the model

• Zik = ZUik or ZLik denotes the assignment matrix with
Zik = 1 if chunklet Si is assigned to component k else
Zik = 0

• Vkc = V Ukc or V Lkc denotes the cluster assignment with
Vkc = 1 if component k is assigned to class c else Vkc = 0

By incorporating class constraints, Eq. 1 is modified by sum-
ming only over assignments which comply with the con-
straints (instead of summing over all possible assignments
of data points to sources). The class constraints are derived
from labelled samples which are used to specify what kind
of structure is expected to be found. Thus, if two groups have
different class labels, then this information indicates that
they are known to be generated by different sources, which
should of course have implications for their cluster assign-
ments. This means that groups which do not belong to the
same class should not belong to the same cluster/component.
Our complete negative data log likelihood becomes:

J(Θ) = −Q(Θ)

+
γ

2

ML∑
i=1

ML∑
j=1

Wij

C∑
c=1

( K∑
k=1

ZikVkc

)( K∑
k′=1

Zik′Vk′c

)
(2)

where γ is a positive number tuning the contribution of the
penalty term. The weights Wij ensure that chunklets con-
taining data with different labels will not be assigned to the
same class. In opposite, chunklets containing data with same
labels are encouraged to be assigned to the same class. Their
values are defined as follows:

Wij =

{
1 cannot-link between Si and Sj
−1 must-link between Si and Sj
0 otherwise

The term associated with class constraints works as
regularisation that force the model to select the appropriate
group structure and choose the optimal number of com-
ponents per class. To estimate the model parameters, the



objective is to maximize the log-likelihood function with
respect to the parameters in Θ using the EM algorithm
which consists of an E-Step and M-Step. Our resulting EM
is carrying through the mean-field approximation as (Zhao
and Miller 2005).

E-Step I (No class constraints assumed): The chunklet
posterior probability derived from Eq. 1 is:

τUikc =
hnkc

K∑
m=1

αm
∏

xn∈Si

p(xn|m, θm)

τLikc =
hnkc

K∑
m=1

hnmc

(3)

where τikc = p(Zik, Vkc|Si) is the probability that Si is
generated by component k and component k is generated by
class c and hnkc = αkβck

∏
xn∈Si

p(xn|θk)

E-Step II (Class constraints assumed): Using the class
constraints, the chunklet posterior probability becomes:

τUikc =
hnkc

K∑
m=1

C∑
c=1

hnmc

τLikc =

hnkc exp

−γ2 ML∑
j=1

Wij

( K∑
k′=1
k′ 6=k

τLjk′c

)
K∑
m=1

C∑
c=1

hnmc exp

−γ2 ML∑
j=1

Wij

( K∑
m′=1
m′ 6=m

τLjm′c

)
(4)

M-Step : The parameter updates of Eq. 1 or Eq. 2 take the
form:

αk =

MU∑
i=1

τUik +
C∑

c=1

Nc∑
i=1

τLikc

M
(5)

βck =

MU∑
i=1

τUikc +
Nc∑
i=1

τLikc

Mαk
(6)

µk =

MU∑
i=1

τUik
∑

xn∈Si

xn +
C∑

c=1

Nc∑
i=1

τLikc
∑

xn∈Si

xn

MU∑
i=1

τUik|Si|+
C∑

c=1

Nc∑
i=1

τLikc|Si|
(7)

Σk =

MU∑
i=1

λikτ
U
ik +

C∑
c=1

Nc∑
i=1

λikτ
L
ikc

MU∑
i=1

τUik|Si|+
C∑

c=1

Nc∑
i=1

τLikc|Si|
(8)

where |Si| denotes the number of points in chunklet Si,

λik =
∑

xn∈Si

(xn − µk)(xn − µk)T and τUik =
C∑

c=1

τUikc.

Model selection
In order to estimate automatically the number of compo-
nents, we adopt the deterministic method. This method starts
by obtaining a set of candidate models for a range of values
ofK (fromKmin toKmax) which is assumed to contain the
true/optimalKbest by minimizing using a cost function. The
cost function is a penalized negative likelihood using Min-
imum Message Length (MML) (Figueiredo and Jain 2002)
and has the form as follows:

F(θ̂k,K) = J(Θ)+
A

2

K∑
k=1

log(
Mαk

12
)+

K

2
log

A

12
+
K(A+ 1)

2

(9)
where A is the number of parameters in each component.

In our work, we set Kmin ≥ C to prevent that some classes
will not be represented by the model. The steps composing
our model estimation can be summarised in the following
algorithm:

Algorithm 1: Our proposed algorithm
Input : N chunklets, Kmin, Kmax

Output : Mixture model in Θ̂best and Kbest

t← 0, Kbest ← Kmax, Fmin ← +∞
Initialize the parameters
Θ̂(0) = {αk, µk,Σk, βck,∀k}

Compute Wij

while Kbest > Kmin do
• t← t+ 1

• Evaluate the responsibilities using Eq. 4
• Re-estimate the mixing weights using Eq. 5
• Check if there are irrelevant components:

if αk < 10−6 then
? Discard the component k
? Set Kbest ← Kbest − 1

? Renormalizes the remaining mixing weights

end
• Re-estimate the rest of the parameters

using Eq. 6, 7 and 8
• Evaluate Ft using Eq. 9
• if Ft ≤ Fmin then

? Fmin ← Ft
? Θ̂best ← Θ̂(t)

end

end

Experiments
To evaluate the performance of our approach, we conducted
experiments on five datasets such two synthetic datasets Syn-



data3G and Twomoons and three real-word datasets from
Waveform (Dua and Graff 2017), MNIST (MNIST 2018),
Banana (Team 2017) presented in Table 1. On synthetic
and real-word datasets, we compare our proposed method
to (Zhao and Miller 2005) denoted by MCGMM which sur-
passed other existing generative SSL methods. We use the
combined measure of Purity and Accuracy scores named ρc
to make the performance comparison. The combination is
defined as follows:

ρc =
2Purity ∗Accuracy
Purity +Accuracy

(10)

where Purity measures the homogeneity of estimated
classes, i.e., how many of the estimated class points belong
to a single true class and Accuracy measures how many of
the true class points reside in a single estimated class (rather
than being spread over several estimated classes).

Note that, the larger value of ρc indicates the best result.
All the datasets were split into 70% and 30% ratio for train-
ing and test sets. We assume that the number of classes is
known but the number of mixture components is unknown
and must be inferred from the data. The performance curves
were obtained by varying the labelled set size. The reported
results is based on average over 10 executions.

Table 1: Summary of the employed datasets: N = Number of
samples, D = Number of dimensions, C = Number of Classes

Dataset N D C
Syndata3G 1350 2 2
Twomoons 1650 2 2
Banana 5300 2 2
Waveform 5000 40 3
MNIST : digit 1,2 and 3 3177 784 3
MNIST : digit 4,5, 6 and 7 3860 784 4

Employed dataset
Note that, we choose datasets that have high overlapping
clusters and classes and have manifold structure in order
to evaluate the robustness of our methods. Syndata3G is
built with three components from two classes (with one
containing two components). We randomly generate 30
labelled chunklets and 170 unlabelled chunklets for the
three components. In each chunklet, we randomly generate
sample between the range [1, 10] to form the final dataset
(see Fig. 1a). The number of class constraints is randomly
chosen as 15% of the chunklets length for Syndata3G. The
Twomoons dataset consists of 1650 samples and is manifold
moons structure (see Fig. 2a). For a fair comparison on
Twomoons dataset, the number of class constraints is chosen
as 30% in each class. The labelled samples coupled the
unlabelled samples for Syndata3G and Twomoons datasets
are shown respectively in Fig. 1b and Fig. 2b.

For the MNIST, we divided the original dataset into
two datasets (see Table 1) such that the first one named

mnist123 contains the digits 1,2 and 3 and the second one
named mnist4567 owns the digits four to seven. As prepro-
cessing for Waveform, mnist123, mnist4567, standard prin-
cipal component analysis was used to reduce the dimension
for some dataset. We produce chunklets using KMeans algo-
rithm. Afterwards, we assign every sample to its nearest ini-
tial chunklet. The constraints derived from classes are cho-
sen randomly at each execution.

Evaluation results and Discussion
We used Syndata3G and Twomoons to verify the effective-
ness and robustness of the clustering/classification results
of our algorithm.

We denote the combined measure of Purity-Accuracy
with respect to cluster by ρ. As we can see in Fig. 1 and
2, the different results of ρc shown below, demonstrate
that our algorithm perform better than the MCGMM
method. Moreover, we clearly see that in Fig. 1c, 1d and
1e, our simplified and proposed method capture well the
ground-truth clusters than MCGMM. Note that, we did not
compare the clustering result on Twomoons data because
the groundthruth clusters are not available. Our simplified
and proposed method captures the true labels and clusters
because as the constraints in second level are chosen
randomly (which can be inconsistent and maybe hurt the
performance), we decrease the sample spreading sensibility
and the effect of inconsistent constraints by our first level
constraint.

For the real-word datasets, as shown in figure 3a, 3c,
3d and 3b, the obtained average ρc results of our sim-
plified method and our proposed method are better than
MCGMM method. These results are not a surprise because
our methods avoid the spreading of data. In other word,
we reduce initialisation sensibility by firstly grouping points
who are most similar using. Our proposed method gives bet-
ter performance than the simplification which ignore depen-
dence on labelled samples. This suggests that it is impor-
tant to account for the role played by labelled samples. The
other advantage of our algorithms is that, as the number of
constraints increases also our algorithm increases the classi-
fication performances. We argued that when the number of
samples are too high the complexity of MCGMM increase
heavily.

Foreground image segmentation
The proposed method is applied for foreground image
segmentation where C = 2 (foreground/background) using
natural color image dataset MSRA10K (Cheng et al. 2015).
Our method is compared to existing algorithms such as
(Glaister, Wong, and Clausi 2014), (Scharfenberger et al.
2013), (Martinez-Uso, Pla, and Sotoca 2010) and (Rother,
Kolmogorov, and Blake 2004) named respectively TDLS,
TD, SSLGMM and GC. TDLS is modified version of TD
and both are based on statistical texture distinctiveness.
SSLGMM is a semi-supervised apporaoch based on EM for
model-based clustering. GC is based on graph-cut method
using texture and edge information. Here, the chunklet is
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Figure 1: Average ρ and ρc scores comparison results for Syndata3G data
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Figure 2: Average ρc score comparison results for twomoons data
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Figure 3: Average ρc score results on real-word datasets

constructed by the concept of superpixel using the SLIC
(Achanta et al. 2012) method. Wij is computed using the
spatially adjacent of each superpixel and updated by manual
labbelled superpixels (between 5 and 10). Therefore, we let
our algorithms to form the clusters of the set of produced
superpixels. After, each cluster is classified as foreground
or background and propagate this information to unlabelled
superpixels.

We evaluate the segmentation result with 500 images us-
ing ρc score that measure how close the predicted bound-
ary of an object matches the groundthruth boundary. Figure
4 shows the visual comparison result provided by our pro-
posed method compared to the groundtruth. By comparing
the values listed in the Table 2, it is observed that, our algo-
rithm achieved the highest value than other algorithms.



Table 2: Quantitative comparison results

Method GC SSLGMM TD TDLS Ours
ρc 88.64 90.12 95.78 98.59 99.7

(a)

(b)

(c)

Figure 4: Qualitative result: Original image(first column),
Estimated superpixels(second column) , Proposed method
with optimal L (third column) Our segmentation map (forth
column) Groundtruth(last column)

Conclusion
In this work, we proposed a generative model integrat-
ing weak supervision for semi-supervised classification and
clustering. The supervision comes in the form of group con-
straints where the samples of each group (chunklet) are as-
sumed to belong to one class label and be generated by
the same mixture component. This supervision enables our
model to seamlessly integrate spatial relationships between
data, and for each class to be constituted of one or multi-
ple mixture components. Our model can therefore achieve
optimal fitting and labelling to data generated by classes
with complex manifold structure. This work can be easily
extended to other types of distributions such as General-
ized Gaussian and Student distribution. It can also be readily
adapted to discrete data.

Acknowledgments.
The authors would like to thank the Natural Sciences and
Engineering Research Council of Canada (NSERC) for their
support.

References
Achanta, R.; Shaji, A.; Smith, K.; Lucchi, A.; Fua, P.;
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