
The Role of Model Selection in Preference Learning

Michael Huelsman and Mirosław Truszczyński
University of Kentucky

michael.huelsman@uky.edu, mirek@cs.uky.edu

Abstract

Learning preferences of an agent requires choosing which
preference representation to use. This formalism should be
expressive enough to capture a significant part of the agent’s
preferences. Selecting the right formalism is generally not
easy, as we have limited access to the way the agent makes
her choices. It is then important to understand how “univer-
sal” particular preference representation formalisms are, that
is, whether they can perform well in learning preferences of
agents with a broad spectrum of preference orders. In this pa-
per, we consider several preference representation formalisms
from this perspective: lexicographic preference models, pref-
erence formulas, sets of (ranked) preference formulas, and
neural networks. We find that the latter two show a good po-
tential as general preference representation formalisms. We
show that this holds true when learning preferences of a sin-
gle agent but also when learning models to represent consen-
sus preferences of a group of agents.

Introduction
When predicting an agent’s behavior it is important to un-
derstand her preferences. To this end, we aim to build pref-
erence representation models for agent’s preferences, often
exploiting learning. While a simple list of the alternatives
from most to least preferred seems like a good way to rep-
resent preference orders, it is impractical when the number
of alternatives is large. This work deals with cases where
alternatives come from a combinatorial domain, which rep-
resents objects in terms of values of their attributes. Since
such domains are exponential in size, wrt the number of
attributes, a compact preference representation is needed.
Hence, compact preference representation languages have
received much attention in economics/operational research
(Fishburn 1974; Dombi, Imreh, and Vincze 2007; Kohli
and Jedidi 2007) and in AI (Boutilier et al. 2004; Brewka,
Niemelä, and Truszczynski 2003; Kaci 2011). These lan-
guages have their own advantages and disadvantages, with
no particular model being best in all situations.

Preference learning has been studied for many prefer-
ence representation languages, including lexicographic pref-
erence models (Bräuning et al. 2017; Yaman et al. 2010;
2008; Dombi, Imreh, and Vincze 2007; Schmitt and Mar-
tignon 2006), and conditional preference networks (Lang

Copyright c© 2021by the authors. All rights reserved.

and Mengin 2009; Alanazi, Mouhoub, and Zilles 2016).
That work ignores the question of selecting a target for-
malism for learning. Our results show that learning works
best when the preference model we learn is the same as or
similar to that of the agent. Identifying a preference model
that matches the agent’s preferences may be difficult, espe-
cially when we have limited data on how the agent makes her
choices. Thus, it is desirable to select a preference model to
learn that shows a good degree of “universality,” that is, of-
fers acceptable performance for a wide variety of possible
preference models an agent may be using.

We study four preference models for their universality:
lexicographic preference models (LPMs), preference formu-
las (PFs), preference theories (PTs), and artificial neural net-
works (ANNs). The latter are not explicitly studied as pref-
erence representations but have proved their mettle as a uni-
versal model for learning. We consider both single and mul-
tiagent cases. In the single agent case we attempt to learn a
model with good accuracy in predicting an agent’s choices.
In the multiagent case we seek to learn a “fair” joint prefer-
ence model as a consensus preference model for the group.

In this work, we propose a simulated annealing algorithm
for learning (ranked) PFs. We evaluate experimentally this
algorithm, as well as algorithms from the literature for learn-
ing LPMs (Schmitt and Martignon 2006) and neural net-
works (Rumelhart, Hinton, and Williams 1986), and analyze
the ability of the models these algorithms learn to represent
a wide range of preference orders.

The results show a good performance of our algorithm for
learning PFs and RPTs when compared with LPM and ANN
models. Further, we find that of the four types of models,
RPTs and ANNs provide structures flexible enough to sup-
port learning accurate preference models for data sets from
a broad range of preference representations.

The remainder of this paper consists of five sections. The
first of them provides background information. The next one
addresses the complexity of problems involved. The third
section defines the algorithms and experimental setup, the
fourth one contains the results and discussion, and the last
section offers concluding comments.

Background
We assume that preferences on alternatives from a set U are
a preorder on U , a binary relation on U that is reflexive and



transitive. We denote preorders by symbols such as � or ≥,
possibly with annotations. A preorder � is an order (on U )
if it is antisymmetric. A preorder � is total if for every pair
a, b ∈ U either a � b or b � a. If � is a preorder (order)
on U , we define its strict counterpart, �, by setting a � b
if a � b and b 6� a, its associated incomparability relation
./ by setting a ./ b if a 6� b and b 6� a, and its associated
indifference relation ≈ by setting a ≈ b if a � b and b � a.

In this work, the domain U of alternatives, is a combina-
torial domain. A combinatorial domain C(V,D) is defined
by a set of attributes, V = {v1, v2, . . . , vn}, and the set of
the domains of those attributes D = {D1,D2, . . . ,Dn} (the
finite sets of values the attributes can take). We write D(vi)
to denote the domain of an attribute vi. Alternatives from
a combinatorial domain are then n-tuples of values — for
each attribute one value from the domain of that attribute.

Combinatorial domains are exponential in size, wrt the
number of attributes. Thus, representing preorders over a
combinatorial domain by listing alternatives from most to
least preferred is not practical. Instead, preference orders are
represented implicitly by expressions (preference models)
from some preference representation language. When con-
structing these preference models by learning, we assume
only partial information about the preference order given as
a set of examples of correctly ordered pairs of alternatives.
Formally, an example is a triple (α, β,R) where α and β
are alternatives and R is the relation between them, any of
the possible “comparing” relations introduced above. This
work’s goal is to understand how learning preference repre-
sentations depends on the model used by the agent to capture
her preferences and on the model that is learned to approxi-
mate them.

Problem 1 (Preference Learning). Given a set of examples
ε, consistent with the preferences of an agentA over alterna-
tives from C(V,D), find a preference model �A in a chosen
preference representation language that satisfies (decides in
the same way) the maximum number of examples in ε.

Extending this problem to multiple agents is called rank
aggregation. It is a natural extension of the preference learn-
ing problem. There are, however, two key differences. First,
in the case of a single agent, inconsistencies in the set of ex-
amples can only occur (assuming we ignore data collection
errors) when the agent does not have a coherent picture of
her own preferences. In the multi-agent case, example sets
consisting of preferences elicited from different agents may
naturally contain inconsistencies, as agents may have oppos-
ing preferences. Second, one has to select a fairness criterion
to optimize. In this work, we have chosen to focus on two
fairness criteria: utilitarian and maximin.

Under the utilitarian criterion, we aim to satisfy as many
examples as possible. This means that utilitarian rank aggre-
gation is the same as learning from a single agent, but one
which provides inconsistent examples.

Problem 2 (Utilitarian Rank Aggregation). Given a set of
agents A = {a1, . . . , ak}, with each agent ai having a pref-
erence orders�i over a combinatorial domain C(V,D), and
a family of sets of examples ε = {ε1, ε2, . . . , εl}, with each
εi ∈ ε representing the preference order�i of agent ai, find

a preference model �A in a chosen preference representa-
tion language that satisfies the maximum number of exam-
ples in ∪ki=1εi.

The maximin fairness criterion maximizes the satisfaction
of the least satisfied agent.

Problem 3 (Maximin Rank Aggregation). Given a set of
agents A = {a1, . . . , ak} with preference orders over a
combinatorial domain C(V,D), and a family of sets of exam-
ples ε = {ε1, ε2, . . . , εl}, with each εi ∈ ε representing a
preference order�i of agent ai, find a preference model�A

in a chosen preference representation language that maxi-
mizes minε∈ε satisfaction(�A, ε).

The important difference between maximin and utilitarian
criterions is that maximin cares about the performance of
individual agents, and expresses a need for every agent to be
as satisfied as possible.

We conclude this section by recalling the preference rep-
resentation formalisms we study. A lexicographic preference
model (LPM) π = (r,�) over the domain C(V,D) consists
of a one-to-one function r : V → [1..n] (a ranking) and a
collection of total orders�= {�v1

,�v2
, ..,�vn}, with each

�vi a total order on the domain Di of the attribute vi (Fish-
burn 1974). Given alternatives α, β ∈ C(V,D), α is pre-
ferred to, or dominates, β, α �π β, if for some attribute a,
α[a] �a β[a], and for all attributes b such that r(b) < r(a),
α[b] = β[b]. That is, one alternative is preferred to another
if it has a more preferable value for the most important at-
tribute where the two alternatives differ. Preference orders
defined by LPMs are total orders.

A preference formula (PF) is an ordered finite tuple of
boolean formulas ϕ = (ϕ1, ϕ2, . . . , ϕk) built over an alpha-
bet of propositional variables (or atoms) xv,d, where v ∈ V
and d ∈ D(v) (Brewka, Niemelä, and Truszczynski 2003).
Alternatives are represented by special truth assignments to
these atoms: if an alternative α has value d on attribute v,
the corresponding truth assignment assigns true to the atom
xv,d and false to all atoms xv,d′ , where d′ ∈ D(v) \{d}. We
denote this truth assignment by Iα. Propositional formulas
over this alphabet represent properties of truth assignments
and so, in particular, of alternatives from C(V,D). An alter-
native α has a property ϕ if Iα satisfies ϕ according to the
standard definition of satisfiability.

The satisfaction degree of an alternative α wrt to a PF ϕ,
denoted sϕ(α), is the smallest i such that Iα satisfies ϕi, or
k + 1, if no such i exists. This induces a preference order
on alternatives: an alternative α is at least as preferred as an
alternative β wrt ϕ, denoted α �ϕ β, if sϕ(α) ≤ sϕ(β).
The relation �ϕ is a total preorder.

A preference theory (PT) is a collection of preference for-
mulas. Given a PT P = {ϕ1, . . . ,ϕn}, we use Pareto dom-
inance to define a preorder on C(V,D). Namely, we define
α �P β if for every ϕ ∈ P , sϕ(α) ≤ sϕ(β).

A PT can be extended by assigning ranks to preference
formulas. Formally, a ranked PT (or an RPT) is a collection
P of preference formulas and a mapping that assigns a rank
r(ϕ) to each preference formula ϕ ∈ P . Dominance be-
tween alternatives α and β in an RPT is determined by first
comparing the alternatives on the lowest ranked PFs. If these



formulas determine that α dominates β, then α dominates β
in the order defined by P . Otherwise, we consider the next
lowest rank group of PFs and proceed in the same way.

We also represent preference orders by ANNs. While
ANNs may have many different structures (Rosenblatt 1958;
Hopfield 1982; Elman 1990), we chose to use simple feed-
forward networks which take as input two alternatives, in a
canonical order, and use a softmax output layer to determine
a class label for the pair of alternatives describing how they
compare. The labels used are �,�,≈,≺,�, ./.

Finally, to model agents in experiments, in addition to
LPMs and PFs, we also use CP-nets, a well known formal-
ism in research about preferences (Boutilier et al. 2004). We
omit formal details on CP-nets due to space limits.

Problem Complexity
In this section we consider computational complexity of
learning PFs and (R)PTs, as well as the power of PFs and
(R)PTs in expressing preorders and total preorders. We fo-
cus the discussion on combinatorial domains C(A) over a set
A = {X1, . . . , Xn} of n binary attributes, where the domain
of every attributeXi ∈ A is binary and has values xi and x̄i.
Resttiction to binary domains is common and not limiting,
as combinatorial domains with non-binary domains can be
effectively reduced to those with binary attributes only. We
outlined this reduction earlier, when discussing PFs and PTs
as preference models on arbitrary combinatorial domains.

Of key interest to us is the problem of learning preference
models.
Problem 4 (Preference Model Learning PML(L)). LetL be
a preference language for a binary combinatorial domain
C(A). Given an integer k and a set of examples ε repre-
senting a preference order over alternatives in C(A), decide
whether there is a preference model M in L that satisfies at
least k examples from ε.

The complexity of PML(L) depends onL. The case when
L = LPM was studied by Schmitt and Martignon (2006).
They proved that the problem was NP-complete. They also
proposed a greedy algorithm for learning LPMs. Their al-
gorithm guarantees that the learned model satisfies at least
half of the examples and, in the case when the example set
is consistent with some LPM, all of them. Learning ANNs
was proved to be NP-complete by Blum and Rivest (1989).

To the best of our knowledge the complexity of learning
of PFs, PTs and RPTs has not been studied. We show PML is
NP-complete for each of these formalisms. This holds even
when we restrict ourselves to only DNF formulas.
Theorem 1. The problem PML(L) is NP-complete for L =
PF, PT and RPT, even when formulas appearing in prefer-
ence formulas are in DNF.

We consider the rank aggregation problem under utilitar-
ian and maximin goal functions. Formally, we state the rank
aggregation model learning problem RAML(L) as follows.
Problem 5 (RAML(L)). Let L be a preference language
for a binary combinatorial domain C(A). Given an inte-
ger k and a collection of sets of examples (ε1, . . . , εn), with
each εi representing a preference order over C(A) used by

an agent ai, i = 1, . . . , n, decide whether there is a pref-
erence model M in L that satisfies at least k examples in
ε =

⋃n
i=1 εi (for the utilitarian criterion), or at least k ex-

amples in each set εi (for the maximin criterion).

One can show that both versions of the RAML(L) prob-
lem are in NP. Moreover, if n = 1 then the RAML(L)
problem (in for each fairness criterion) reduces to PML(L).
Thus, we have the following corollary to Theorem 1.
Corollary 1. The problem RAML(L) (in each of its ver-
sions) is NP-complete for L = PF, PT and RPT, even when
formulas appearing in preference formulas are in DNF.

The last problem we discuss briefly is the expressivity of
PFs, PTs and RPTs in modeling preference orders over com-
binatorial domains. All preorders can be captured by PTs
and all total preorders by PFs.
Theorem 2. Let C(A) be a combinatorial domain over bi-
nary attributes from A. Let � be any preorder (resp., to-
tal preorder) over C(A). Then, there is a preference theory
(resp., preference formula) Φ such that � and the preorder
(resp., total preorder) �Φ defined by Φ coincide.

This suggests that PFs and (ranked) PTs are good candi-
dates for general preference learning. This result has a lim-
itation. Namely, PFs and PTs may have large sizes, often
exponential in the number of attributes. However, when a
preorder is specified by a set of examples, the formula (the-
ory) Φ is of polynomial size in the size of the example set.

Algorithms and Setup
We study four formalisms for their ability to represent, with
good accuracy, a wide range of possible preference orders.
These formalisms are: LPMs, PFs, RPTs, and ANNs. To
learn LPMs we use the greedy algorithm which was studied
by Schmitt and Martignon (2006). This algorithm chooses
the ranking of attributes in an LPM by iteratively selecting
the attribute which produces the least number of unsatisfied
examples. We modified it for use in maximin rank aggrega-
tion case by having it choose the next attribute based on the
maximin score.

For learning PFs and RPTs we developed algorithms us-
ing heuristic search techniques. We considered both genetic
algorithms and simulated annealing. We observed poorer
performance from the genetic algorithms and, consequently,
focused on simulated annealing. We chose to learn PFs and
RPTs which are built using disjunctive normal form (DNF)
boolean formulas. The use of a normal form to represent
boolean formulas is standard. The choice of DNF is moti-
vated by common linguistic patterns used to describe pref-
erences. For instance, preferred vacations are on the beach
in Italy (conjunction: on the beach and in Italy) or in the
mountains in Colorado (another conjunction).

Simulated annealing requires all objects (here, PFs and
(R)PTs) have the same size, which restricts their form. Each
DNF is specified by: i — the number of disjuncts in a for-
mula and j — the number of literals in each disjunct. We
also specify k, the number of formulas in a PF. For RPTs
we add b, the number of PFs per rank, and a, the number
of ranks. We specify the size (type) of PF using a triple



(i, j, k) and the size of an RPT using a 5-tuple (a, b, i, j, k).
A PF (x1 ∧ ¬x3, x2 ∧ x3) has type (1, 2, 2), and a PF
(¬x1 ∨ x4, x2 ∨ x3, x1 ∨ ¬x3) has type (2, 1, 3). Our algo-
rithm does not avoid duplication of literals, products, or for-
mulas. This guarantees that the class of PFs of type (i, j, k)
simulates all PFs of type (i′, j′, k′), where i′ ≤ i, j′ ≤ j
and k′ ≤ k. For example the product a ∧ a ∧ b is the same
semantically as the product a ∧ b.

For algorithms, we convert PFs into strings of literals.
Knowing the type allows us to recover the formula back.
Simulated annealing algorithms require a neighbor relation
in the search space. In our case, the search space is formed
by strings of literals (representations of PFs of a specified
type). For our algorithm, we define two PFs, of the same
type, as neighbors if their atom string representations dif-
fer in only one place. For instance, ab and ac, ab and a¬c,
and ab and ¬ab are three pairs of neighbors. This neighbor
relation easily extends to RPT atom strings.

Given an example set ε our algorithm randomly selects
a starting candidate solution and sets the initial tempera-
ture to 100. Each iteration we randomly select a neighbor. If
that neighbor satisfies more examples we replace our current
candidate solution with that neighbor. If not, we replace our
current solution with that neighbor with probability e

−∆
T ,

where ∆ is the difference in performance of the two neigh-
boring PFs and T is the current temperature. Each iteration
we cool the temperature by dividing it by 1.001 and iterate
until we reach a temperature of 10−7. After stopping we run
a naive hill climbing algorithm, that is, we take our candi-
date solution and test the performance of all its neighbors,
replacing the candidate solution with its best neighbor that
outperforms it until no improving neighbor exists.

In experiments, we built simple, linear, feed forward
ANNs using the Pytorch (Paszke et al. 2017) Python module
varying the number of hidden layers but keeping the num-
ber of nodes constant at 256. The number of hidden layers
is varied since that changes the functions that can be ap-
proximated by an ANN (Hornik 1991). Each node uses a
ReLU activation function and the output layer consists of six
classes�,�,≈,≺,�, ./ using a softmax function to decide
the output class. Each model is trained for 1000 epochs.

To build example sets, we generate a preference order (ei-
ther an LPM, PF, or CP-net). For PF and CP-nets we limit
their forms: PFs are labeled by their type and CP-nets are
labeled with a value i which is the maximum number of
conditioning attributes another attribute can have. These la-
bels are varied through the experiments. Except for CP-nets,
which are generated using a state of the art tool by Allen
et. al. (2016), models are built using straightforward random
generators.

Examples are built by selecting two different alternatives
α, β from C(V,D). If the alternatives have already been used
they are discarded and another pair is generated. The pair is
compared using the preference model and added to ε. In the
multiagent case this process is repeated for each agent and
allows pairs to show up in multiple example sets.

We use several default parameters in our experiments. Ex-
ample sets consist of 100 examples, derived from prefer-
ence orders over a domain of eight binary attributes, for each

agent. The multiagent case has 5 agents, thus 5 example sets.
We use 5-fold cross validation to test learned models on un-
seen examples. I.e. each time a learning algorithm is run a
fifth of the examples are set aside for validation. Each exper-
iment is run 25 times and results are averaged over the runs.
Data are reported as the proportion of examples satisfied.

Results and Discussion
Learning the preferences of a single agent, see Table 1,
yielded two broad results. First, training accuracy is max-
imized when the model being learned matches the model
producing the examples. We see this with LPMs, but a 2,2,7
PF is just as effective at learning 1,1,3 PF preferences as
1,1,3 PFs. This is due to 2,2,7 PFs reproducing 1,1,3 PFs
since 2,2,7 PFs can contain duplicate atoms.

LPM 1,1,3 PF 2,2,3 PF 0 Layer NN
LPM 1.00 0.66 0.92 0.93

1,1,3 PF 0.64 1.00 1.00 0.89
2,2,7 PF 0.61 0.73 0.99 0.84
0 CP-net 0.19 0.16 0.21 0.94
7 CP-net 0.73 0.54 0.75 0.86

3 Layer NN 3,3,2,2,7 RPT 1,3,1,1,3 RPT
LPM 0.83 0.97 0.75

1,1,3 PF 0.78 0.72 0.85
2,2,7 PF 0.73 0.70 0.66
0 CP-net 0.92 0.96 0.80
7 CP-net 0.76 0.94 0.75

Table 1: Learning accuracy in single agent cases.

Secondly, both ANNs and PTs learn highly accurate pref-
erence models across the different representations, that is,
ANNs and RPTs show a potential for “universality”. This
is theoretically supported for PTs 2 and also expected for
ANNs, which are powerful learning models.

Training accuracy is a metric of how well the models fit
the training exmaples, but it is also important that we test the
predictive power of our learned models. For this we perform
cross validation. The results are shown in Table 2.

LPM 1,1,3 PF 2,2,3 PF 0 Layer NN
LPM 0.98 0.60 0.75 0.85

1,1,3 PF 0.62 1.00 0.98 0.80
2,2,7 PF 0.55 0.68 0.94 0.59
0 CP-net 0.18 0.10 0.13 0.79
7 CP-net 0.65 0.49 0.63 0.63

3 Layer NN 3,3,2,2,7 RPT 1,3,1,1,3 RPT
LPM 0.76 0.80 0.61

1,1,3 PF 0.71 0.62 0.84
2,2,7 PF 0.52 0.54 0.58
0 CP-net 0.79 0.69 0.63
7 CP-net 0.56 0.71 0.63

Table 2: Validation accuracy in single agent cases.

As expected, accuracy drops when applying learned mod-
els to unseen examples. This decrease is less than 0.2, with
many models performing better. The observed ability to gen-
eralize means that our algorithms are learning models cap-



turing well the original preference orders, not simply satisfy-
ing examples in the example set. Note that non-ANN models
performed better in terms of difference between training and
validation accuracy. This might be due to the added structure
which is inherent in LPMs, PFs, and PTs.

These results show the viability of learning preferences
using both traditional models and ANNs. Learning LPMs
and PFs to approximate CP-net defined orders, is less ef-
fective than learning ANNs and RPTs. We conjecture this
is due to the presence of incomparabilities in CP-net orders
that cannot be reproduced by LPMs and PFs.

The next question is how well these learning processes
perform when we are trying to learn the preferences of mul-
tiple agents. We start with the case of learning under the
utilitarian fairness criterion.

LPM 1,1,3 PF 2,2,7 PF 0 Layer NN
LPM 0.67 0.45 0.63 0.76

1,1,3 PF 0.46 0.56 0.59 0.68
2,2,7 PF 0.46 0.49 0.58 0.66
0 CP-net 0.17 0.10 0.15 0.89
7 CP-net 0.51 0.37 0.51 0.70

3 Layer NN 3,3,2,2,7 RPT 1,3,1,1,3 RPT
LPM 0.79 0.69 0.49

1,1,3 PF 0.67 0.51 0.51
2,2,7 PF 0.66 0.51 0.46
0 CP-net 0.90 0.85 0.70
7 CP-net 0.69 0.60 0.48

Table 3: Utilitarian joint preference learning accuracy.

Table 3 shows that training accuracy decreases in a multi-
agent senario, as expected. This is most likely due to incon-
sistencies introduced since agents may disagree. Comparing
Table 3 to Table 4 we see that in the multiagent case differ-
ences between training and validation accuracy are similar to
the single agent case. When dealing with utilitarian aggrega-
tion we are attempting to satisfy as many examples as pos-
sible, with no regard to the preferences of individual agents,
thus it is not surprising that we see similar performance as
in the single agent case. The phenomenon of PTs and ANNs
being the most general holds for utilitarian aggregation.

LPM 1,1,3 PF 2,2,7 PF 0 Layer NN
LPM 0.63 0.42 0.51 0.56

1,1,3 PF 0.42 0.53 0.51 0.44
2,2,7 PF 0.43 0.46 0.48 0.40
0 CP-net 0.15 0.08 0.10 0.78
7 CP-net 0.47 0.34 0.42 0.43

3 Layer NN 3,3,2,2,7 RPT 1,3,1,1,3 RPT
LPM 0.57 0.58 0.43

1,1,3 PF 0.42 0.41 0.49
2,2,7 PF 0.41 0.40 0.42
0 CP-net 0.79 0.73 0.66
7 CP-net 0.43 0.44 0.39

Table 4: Utilitarian joint preference validation accuracy.

Modifying simulated annealing and the greedy LPM al-
gorithms for maximin training is relatively easy, but it is not

a trivial change for ANNs. Such a modification is beyond the
scope of this work and we leave it for furture work. Instead
we use the ANNs learned with the utilitarian goal function
as an approximation for the maximin aggregation.

LPM 1,1,3 PF 2,2,7 PF 0 Layer NN
LPM 0.51 0.36 0.53 0.67

1,1,3 PF 0.33 0.39 0.48 0.60
2,2,7 PF 0.35 0.39 0.49 0.59
0 CP-net 0.11 0.03 0.09 0.85
7 CP-net 0.36 0.23 0.38 0.61

3 Layer NN 3,3,2,2,7 RPT 1,3,1,1,3 RPT
LPM 0.71 0.59 0.47

1,1,3 PF 0.59 0.41 0.45
2,2,7 PF 0.57 0.42 0.43
0 CP-net 0.86 0.80 0.68
7 CP-net 0.60 0.50 0.43

Table 5: Maximin joint preference training accuracy.

Applying our methods to maximin aggregation decreases
performance when compared to the utilitarian aggregation,
see Table 5. Another measure of fairness is the concept of
proportionality. An allocation is proportional if each agent
(of n total agents) gets at least 1

n of their total possible utility.
Naively applying proportionality to our problems, a method
is proportional if it satisfies at least 0.20 of an agent’s exam-
ples, since we have 5 agents. This means our average max-
imin aggregations are proportional, in fact, they significantly
exceed the threshold. Another difference between utilitarian
and maximin aggregations is the greater difference between
training and validation, see Table 6. LPM, PF, and PT learn-
ing strategies drop by as much as 0.14, while ANNs may
lose up to 0.35 in accuracy. In other words, generalizing
for maximin aggregation is worse than for utilitarian aggre-
gation, however using non-ANN models generalizes better
than using an ANN.

LPM 1,1,3 PF 2,2,7 PF 0 Layer NN
LPM 0.42 0.24 0.35 0.40

1,1,3 PF 0.24 0.26 0.30 0.28
2,2,7 PF 0.27 0.28 0.30 0.25
0 CP-net 0.06 0.01 0.02 0.66
7 CP-net 0.29 0.17 0.25 0.27

3 Layer NN 3,3,2,2,7 RPT 1,3,1,1,3 RPT
LPM 0.41 0.51 0.43

1,1,3 PF 0.28 0.35 0.41
2,2,7 PF 0.25 0.35 0.41
0 CP-net 0.67 0.72 0.65
7 CP-net 0.28 0.39 0.36

Table 6: Maximin joint preference validation accuracy.

Some general trends emerge from the data. Larger PTs
tend to have a problem with overfitting in the single agent
case, as we can see by the larger disparity between train-
ing and validation accuracy for 3, 3, 2, 2, 7 RPTs than with
1, 3, 1, 1, 3 RPTs. Second, in the single agent setting it is
best to learn a model which aligns with that agent, although
RPTs and ANNs are general enough that acceptable repre-



sentations can still be learned. Third, ANNs work well in
training, but have a tendency to overfit more, as indicated by
a larger disparity between training and validation accuracies
than for the other models.

An ANN classifier has deficits beyond its inability to
generalize well. Most importantly the learned relation may
not be a preorder. In several cases, the relations learned by
ANNs did not satisfy the fundamental property of transitiv-
ity, thus an alternative could be strictly better than itself.

Additionally, it is computationally infeasible to compute
optimal alternatives. It is also impossible to extract key un-
derlying characteristics of the original preference order such
as which attributes are more important when comparing al-
ternatives. Unlike learned LPMs, PFs, and RPTs that allow
us to extract which properties are desirable, there is no prac-
tical way to get this information from an ANN.

Conclusion
We studied learning of preference models to represent pref-
erence orders represented by examples. When the examples
come from a group of agents, the learned models can be be
used as aggregated preference order.

We established the complexity of learning PFs and
(R)PTs, and we obtained the results on the ability of PFs and
(R)PTs to express arbitrary (total) preorders. We designed
and studied algorithms learning PFs, (R)PTs and ANNs as
representations of preference orders.

Heuristic search algorithms for learning PFs and RPTs
perform well. For example, 2, 2, 7 PFs averaged an accuracy
of 0.74 in single agent training. Learning simpler RPTs pro-
duced an average training accuracy of 0.77. ANNs provide
a promising way of learning a variety of qualitative pref-
erences. ANNs, along with RPTs, are shown to be flexible
enough to learn several different types of preference well
which means they are the most universal of the preference
formalisms we study. RPTs and ANNs both average above
0.70 in the single agent case and above 0.50 in terms of util-
itarian aggregation. We also show that learning a consensus
preference in the egalitarian (maximin) setting is a viable
method of preference aggregation, with our learned models
producing proportional results on average.

There remains several open questions which are the di-
rect result of this work. Can a maximin method of learn-
ing ANNs be constructed, and how well does it perform?
Are there better hyperparameter settings for learning pref-
erences? Do they change based on the representation being
learned? Finally, can heuristic search be applied to more for-
malisms than just PFs and RPTs while achieving good re-
sults? These questions will require further work.

Acknowledgements
This work was partially funded by the NSF under the grant
number IIS-1618783.

References
Alanazi, E.; Mouhoub, M.; and Zilles, S. 2016. The complexity
of learning acyclic CP-nets. In IJCAI, 1361–1367.

Allen, T. E.; Goldsmith, J.; Justice, H. E.; Mattei, N.; and
Raines, K. 2016. Generating CP-nets uniformly at random.
In Thirtieth AAAI Conference on Artificial Intelligence.
Blum, A., and Rivest, R. L. 1989. Training a 3-node neural
network is NP-complete. In Advances in Neural Information
Processing Systems, 494–501.
Boutilier, C.; Brafman, R. I.; Domshlak, C.; Hoos, H. H.; and
Poole, D. 2004. CP-nets: A tool for representing and reasoning
with conditional ceteris paribus preference statements. Journal
of Artificial Intelligence Research 21:135–191.
Bräuning, M.; Hüllermeier, E.; Keller, T.; and Glaum, M. 2017.
Lexicographic preferences for predictive modeling of human
decision making: A new machine learning method with an ap-
plication in accounting. European Journal of Operational Re-
search 258(1):295–306.
Brewka, G.; Niemelä, I.; and Truszczynski, M. 2003. Answer
set optimization. In IJCAI, volume 3, 867–872.
Dombi, J.; Imreh, C.; and Vincze, N. 2007. Learning lexi-
cographic orders. European Journal of Operational Research
183(2):748–756.
Elman, J. L. 1990. Finding structure in time. Cognitive science
14(2):179–211.
Fishburn, P. C. 1974. Lexicographic orders, utilities and deci-
sion rules: A survey. Management science 20(11):1442–1471.
Hopfield, J. J. 1982. Neural networks and physical systems
with emergent collective computational abilities. Proceedings
of the national academy of sciences 79(8):2554–2558.
Hornik, K. 1991. Approximation capabilities of multilayer
feedforward networks. Neural networks 4(2):251–257.
Kaci, S. 2011. Working with Preferences: Less is More.
Springer.
Kohli, R., and Jedidi, K. 2007. Representation and inference of
lexicographic preference models and their variants. Marketing
Science 26(3):380–399.
Lang, J., and Mengin, J. 2009. The complexity of learning sepa-
rable ceteris paribus preferences. In Twenty-First International
Joint Conference on Artificial Intelligence.
Paszke, A.; Gross, S.; Chintala, S.; Chanan, G.; Yang, E.; De-
Vito, Z.; Lin, Z.; Desmaison, A.; Antiga, L.; and Lerer, A. 2017.
Automatic differentiation in pytorch.
Rosenblatt, F. 1958. The perceptron: a probabilistic model for
information storage and organization in the brain. Psychologi-
cal review 65(6):386.
Rumelhart, D. E.; Hinton, G. E.; and Williams, R. J. 1986.
Learning representations by back-propagating errors. nature
323(6088):533–536.
Schmitt, M., and Martignon, L. 2006. On the complexity of
learning lexicographic strategies. Journal of Machine Learning
Research 7(Jan):55–83.
Yaman, F.; Walsh, T. J.; Littman, M. L.; and Desjardins, M.
2008. Democratic approximation of lexicographic preference
models. In Proceedings of the 25th International Conference
on Machine Learning, 1200–1207. ACM.
Yaman, F.; Walsh, T. J.; Littman, M. L.; and desJardins, M.
2010. Learning lexicographic preference models. In Prefer-
ence learning. Springer. 251–272.


