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Abstract

Given the ongoing pandemic of Covid-19 which has
had a devastating impact on society and the economy,
and the explosive growth of biomedical literature, there
has been a growing need to find suitable medical treat-
ments and therapeutics in a short period of time. De-
veloping new treatments and therapeutics can be expen-
sive and a time consuming process. It can be practical
to re-purpose existing approved drugs and put them in
clinical trial. Hence we propose CovidBERT, a biomed-
ical relationship extraction model based on BERT that
extracts new relationships between various biomedical
entities, namely gene-disease and chemical-disease re-
lationships. We use the transformer architecture to train
on Covid-19 related literature and fine-tune it using
standard annotated datasets to show improvement in
performance from baseline models. This research uses
the transformer BERT model as its foundation and ex-
tracts relations from newly published biomedical pa-
pers.

Introduction
Over 10 million articles are available on PubMed, with at
least a million articles published every year. As a result, it
poses a tremendous challenge for researchers Davis et al.
to keep upto date with the latest knowledge. This problem
is severely acute during a Covid-19 pandemic or any other
public health emergency. The goal of biomedical relation
extraction is to gain information between different entities,
such as disease-gene association, protein-protein interaction
and chemical-disease interaction. This helps in re-purposing
existing drugs and develop therapeutics to combat symp-
toms related to Covid-19. The first step in finding relations is
biomedical name entity recognition, currently there are sev-
eral state of the art named entity annotation tools that rec-
ognize biomedical entities on corpora with high accuracy.
The second step is to identify if there exists a relationship
between entity pairs at a sentence level or document level.
We focus on two specific popular relationship types namely
chemical-disease and gene-disease associations. chemical-
disease is a binary classification problem which identifies
whether the entity pair has a semantic relationship or not,
whereas gene-disease is a multiclass classification problem
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which detects the semantic relationship between the entity
pair and classifies them into a specific type.

Literature Review
Statistical methods have been traditionally used for natural
language processing but since it suffers from the curse of
dimensionality in learning the joint functions of language
models. Hence representation learning has gained popular-
ity, which involves representing words or phrases in a low
dimensional space. Word embeddings operate on the princi-
ple that words with similar meaning tend to occur together. It
captures the semantic meaning of the neighbours of a word.
One of the main benefits of word embedding is that they
capture the similarity between words.

Bengio et al. proposed a neural model that learnt the joint
distributions of words. He contended by combining word
representations using sequence probability, sentence repre-
sentations can be learned which can be used to detect seman-
tically similar sentences. One of the most popular type of
word distributions was proposed by Mikolov et al. known as
the CBOW (Continuous bag of words model) and the skip-
gram model. The CBOW method models the conditional
probability of predicting a target word given its surrounding
context of a specific window size, whereas the skip-gram
does the opposite. It models the conditional probability of
predicting the context with a specified window given the tar-
get. The target word embedding is determined by the accu-
racy of the prediction. As the size of the target word embed-
ding increases, the accuracy increase up to a certain conver-
gence point. Some of the limitations of this method include
its inability to represent phrase as embeddings. Combining
embeddings of words do not necessarily represent the em-
bedding of the phrase.

BERT Devlin et al. is a contextualized word representa-
tion model that outperforms the global word representation
models that is based on a masked language model and pre-
trained using bidirectional transformers Vaswani et al.. It
achieves state of the art results on many NLP tasks, it uses
masked language modeling and next sentence prediction as
pre-training auxiliary objective functions.

Proposed Model
To further improve the classification power of BERT for
covid, we further pre-train the BioBERT Lee et al. model.



BioBERT improves over the base BERT Devlin et al. model
by pre-training BERT on a wide variety of biomedical cor-
pus. This included PubMed abstracts and PMC full-text ar-
ticles. We take the pre-trained Biobert model and train it on
additional Covid-19 related corpus mentioned below.

• The CORD-19 open research dataset from the Allen In-
stitute of AI. The dataset contains all COVID-19 and
coronavirus-related research (e.g. SARS, MERS, etc.)
from PubMed’s PMC open access corpus using the query
(COVID-19 and coronavirus research).Wang et al.

• iSearch COVID-19 Portfolio, Comprehensive, expert-
curated portfolio of COVID-19 publications and preprints
that includes peer-reviewed articles from PubMed and
preprints from medRxiv, bioRxiv, ChemRxiv, and arXiv.

• LitCovid, it is a curated literature hub for tracking up-to-
date scientific information about the Coronavirus Disease
2019 (COVID-19). Chen, Allot, and Lu.

• PubChem is part of the National Center for Biotechnol-
ogy Information. It contains papers on small molecule
compounds, bioactivity data, biological targets, bioas-
says, chemical substances, patents, and pathways based
on coronavirus.

The version of BioBert used for training was BioBERT-
Base v1.0 (+ PubMed 200K + PMC 270K) which is based
on BERT-base-Cased, therefore it has the same vocabulary.
The resulting pre-trained model is named as Covid-BERT. It
has the same architecture style as the BERT base model. An
encoder with 12 transformer blocks , 12 self-attention heads
and the hidden size of 768. It takes an input sequence of no
longer than 512 tokens and outputs the representation of a
sequence. Each training sequence in BERT has two types
of special tokens known as [CLS] which indicates the start
of a token and contains the special classification embedding
and the [SEP] token is used for separating segments within a
training instance. In text classification, BERT takes the final
hidden state [CLS] of the first token as a representation of
the entire sequence. A dense layer with a softmax classifier
is added on top of Covid-BERT to predict the probability of
label k.

p(k|h) = softmax(Wh) (1)

where W is the task specific parameter matrix. During fine
tuning, only the parameters of the dense layer are jointly
trained by maximizing the log probability of predicting the
correct label.

Parameters Values

Training steps 500000
Warmup steps 50000

Max sequence length 128
Max predictions per seq 20

Masked lm prob 0.15
Batch size 32

Learning rate 2e−5

Table 1: Parameters used to train Covid-BERT

The Covid-BERT pretraining hyper-parameters are given
in Table 1. and the corresponding losses given in Table 2.
The pre-training was done using the T-4 GPU for 40 hours.
After the pretraining process, named entity recognition is ap-
plied on the experimental datasets using the state of the art
hunflair tagger Weber et al.. After the entity tagging process,
the input text is fed into Covid-BERT to generate contextual-
ized word embeddings. The base BERT architecture encoder
block has 12 layers. Each layer captures different features of
the input text. To improve performance during fine-tuning
We experimented accuracy rate by extracting embeddings
with different layers.

Parameters Values

Loss 0.868987
Masked lm accuracy 0.7952974

Masked lm loss 0.8541765
Next sentence accuracy 0.99625

Next sentence loss 0.015645374

Table 2: Training loss for Covid-BERT

Experiments
Experiments were run for two different relationship types
by fine-tuning on standard annotated datasets. During fine-
tuning, the pretrained layers were frozen and after fine-
tuning on those standard datasets, the trained model was
applied on unlabeled corpus to extract new relationships.
Name entity recognition on the unlabeled corpus was done
using the hunflair tagger Weber et al.. The model was evalu-
ated using precison, recall and F-1 score.The baseline mod-
els for comparison were BioBERT Lee et al.and Kernel-
SVMAlam et al. by selecting the best kernel function.

Chemical-Disease Model
Relations between chemicals and diseases (Chemical-
Disease Relations or CDRs) play critical roles in drug dis-
covery, biocuration, drug safety, etc. Although some well-
known manual curation efforts like the Comparative Tox-
icogenomics Database (CTD) project Davis et al. have al-
ready curated thousands of documents for CDRs, the manual
curation from literature into structured knowledge databases
is time-consuming and insufficient to keep up to date.
Hence, we use the BioCreative V (BC5) annotated dataset
Li et al. to fine-tune the model. Unlike traditional biomedi-
cal relation extraction datasets where the annotations are at
sentence level for example in disease-gene association, here
the annotations are at document level where relationships
could be described across multiple sentences.

To indicate if a sentence expresses a relationship, the
chemical/disease entity mentions in the sentence are com-
pared with the annotation provided by the experts. If a sen-
tence contains the entity pair that matches with the given
annotation, the sentence is given a label of 1 indicating a
relationship , similarly a label of 0 is given if it doesn’t
contain any matches. After processing all the 500 document



instances, 1424 positive relations were generated and 2039
negative relations were generated.

Hyperparameters Values

batch size 128
learning rate 0.001

validation split 0.3
Number of layers 7

Table 3: Hyperparamters for CDR Dense Layers

The dataset was split into training and test set using a
70/30 split. The deep learning model was implemented us-
ing Keras using the Adam Optimizer. The hyperparameters
of the dense layer were fine tuned and the best values are
shown in Table 3. To further investigate the model, word em-
beddings were extracted from different layers of the trans-
former model as shown in Table 4.

Layer F-1

Layer 8 0.86
Layer 9 0.88

Layer 10 0.89
Layer 11 0.89
Layer 12 0.91

Table 4: Fine-tuning using different layers

As seen from Table 4, embeddings from the last layer gave
the best performance. In table 5, the performance of Covid-
BERT was compared with Bio-BERT keeping the hyper-
paramters constant and using the last layer for extracting the
word embeddings. On average Covid-BERT performs better
than Bio-BERT both in terms of recall and precision.

Model Precision Recall F-1

Bio-BERT 0.87 0.88 0.874
Covid-BERT 0.91 0.91 0.91

K-SVM 0.83 0.81 0.82

Table 5: Performance Comparison

New Relations: To extract new relationships from unla-
beled corpus, we applied the model on newly published
abstracts in CORD-19 Wang et al. from 12/01/2020 to
12/31/2020. Before applying the trained model, new text
was passed through the hunflair tagger to do name-entity
recognition. Below are some examples of newly extracted
relations with the smallest frequency or relations that are
rare, along with the sample text.
Example 1:This article presents a case of calciphylaxis in-
duced by warfarin in a COVID-19 patient. Disease: calci-
phylaxis Chemical: warfarin

Gene-Disease Classification
Extracting Gene Disease relationships is crucial for various
biomedical applications such as drug re-purposing. It helps

understanding disease etiology in order to prevent manifes-
tation and further spread of the disease. The dataset used
to train gene disease relationships is provided by DisGeNet
database. The DisGeNET database integrates information
of human gene-disease associations (GDAs) and variant-
disease associations (VDAs) from various repositories in-
cluding Mendelian, complex and environmental diseases.
The integration is performed by means of gene and disease
vocabulary mapping and by using the DisGeNET associa-
tion type ontology.Piñero et al..

The dataset contains the variable ”score” which ranges
from 0 to 1, and takes into account the number of sources,
and the number of publications supporting the association.
1 indicating strong confidence and 0 indicating weak confi-
dence. The distribution of score by quantiles is shown in Ta-
ble 6. The problem is converted to a multilabel classification
problem, by assigning labels according to the distribution
of score as shown in Table 7. Hence, a total of 3 labels are
created based on the continuous variable ’score’. Since this
is a multilabel classification problem, we take the weighed
average of precision , recall and F-1 score of the individual
classes. Its weighted by the number of samples.

Quantile Score

0.15 0.01
0.25 0.02
0.50 0.10
0.75 0.20
0.85 0.40
0.90 0.60
0.95 0.75
0.98 1.00

Table 6: Quantiles of the variable Score

Score Label

0 - 0.10 1
0.10 - 0.40 2
0.40 - 1.00 3

Table 7: Multiclass Labels

The dataset with 2580 instances was split into training and
test set using a 70/30 split. Keras with an Adam optimizer
was used for implementation. The hyperparameters of the
dense layer were fine tuned and the best values are shown
in Table 8. To further investigate the model, word embed-
dings were extracted from different layers of the transformer
model as shown in Table 9.

As seen from Table 9, embeddings from the last layer gave
the best performance. In table 10, the performance of Covid-
BERT was compared with Bio-BERT keeping the hyper-
paramters constant and using the last layer for extracting the
word embeddings. On average Covid-BERT performs better
than Bio-BERT both in terms of recall and precision.



Hyperparameters Values

batch size 64
learning rate 0.0001

validation split 0.2
Number of layers 5

Table 8: Hyperparamters for GDA Dense Layers

Layer weighted F-1

Layer 8 0.57
Layer 9 0.59
Layer 10 0.59
Layer 11 0.60
Layer 12 0.61

Table 9: Fine-tuning using different layers

Model wt.Precision wt.Recall wt.F-1

Bio-BERT 0.59 0.60 0.59
Covid-BERT 0.59 0.63 0.61

K-SVM 0.52 0.55 0.53

Table 10: Performance Comparison

New Relations: Similar to disease-chemical example, we
extract relationships from newly published papers from
12/01/2020 to 12/31/2020 available in in CORD-19 Wang et
al.. Since this is a multi-class problem, we classify relations
into three categories namely strong,mild and weak relations

Strong Relation: As more data accumulate about the im-
mune responses and the kinetics of neutralizing antibody
( nAb ) production in SARS- CoV-2 infected individuals ,
new applications are forecasted for serological assays such
as nAb activity prediction in convalescent plasma from re-
covered patients. Disease: SARS Gene: nAb

Mild Relation:The expression of mce operons depends
on many factors , such as the growth phase , the culture
medium , and the localization of M. tuberculosis tubercu-
losis infection. Disease: tuberculosis infection Gene: mce
operons

Weak Relation:Our findings from juxtaposing IgG and
PCR tests thus reveal that some SARS - CoV-2-positive pa-
tients are non - hospitalized and seropositive , yet actively
shed viral RNA ( 14 of 90 patients ). Disease: SARS Gene:
IgG

Conclusion
In our paper, we propose an improved way of detecting
biomedical relationships in the context of Covid-19 pan-
demic. We develop CovidBERT which is a transformer
based model trained on large amounts of covid-19 related
text and corpus. After fine-tuning we demonstrate the im-
provement in performance over baseline BioBERT, as well
as newly extracted gene-disease and chemical-disease re-
lationships from newly published papers. All these exper-

iments are performed on manually curated datasets anno-
tated by experts. After fine-tuning the model, we illustrate
examples of relationships extracted from newly published
biomedical papers.
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