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Abstract 
In the current age of coronavirus, monitoring and enforcing 
correct mask-wearing regulation in public spaces is of para-
mount importance. Specifically, there is a need to monitor 
whether people wear masks and whether they wear them cor-
rectly. However, there is a lack of automated systems to rec-
ognize correct mask-wearing compliance. In this paper, we 
propose a computer-vision-based solution to the problem of 
mask-wearing monitoring. In particular, we propose a convo-
lutional neural network to recognize images of people wear-
ing masks correctly, people wearing masks incorrectly, and 
people not wearing masks at all. Our proposed model is 
shown to predict correct mask-wearing practices with over 
98% accuracy. The model can be easily deployed as an auto-
mated system to screen people entering indoor spaces, and 
can replace current manual, time-consuming, temperature-
screening practices. Such applications can serve as an im-
portant tool to help reduce transmission rates during the cur-
rent pandemic.  

Introduction   
Because of the 2020 pandemic, throughout the US and 
around the world, mask-wearing is required in order to enter 
stores, restaurants, trains, places of work, and many other 
public venues. The CDC recommends that all people over 
the age of two wear masks in public spaces (“COVID-19: 
Considerations”, 20201). According to WebMD (Ellis 
2020), the risk of transmitting COVID-19 decreases by 65% 
when wearing a mask, and thus mask-wearing is considered 
one of the most effective tools to reduce the spread of 
COVID-19. Because of the significant impact of mask-
wearing in reducing transmission, incompliance with these 
requirements comes with high fines for the individuals vio-
lating the regulations and with store-closures for the venue 
owners. Yet,  many people, either intentionally or uninten-
tionally, fail to comply with the regulations and enter stores 
without wearing a mask correctly or wearing a mask at all. 
Thus, monitoring and enforcing mask-wearing regulations 
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is of paramount importance that has significant financial and 
global health implications. However, it is challenging to 
monitor the thousands of people entering a venue for com-
pliance.  
 Currently, businesses have human-workers stationed out-
side the stores or venues to remind people to wear a mask, 
or to fix their mask so that it sits on a person’s face correctly. 
However, this manual approach is costly, time-consuming, 
prone to human error and results in long waiting lines at the 
venue. For example, hiring and training human workers to 
monitor mask-wearing is both time consuming and costly 
for businesses. Moreover, given the high volume of people 
entering a venue at any given time, the monitoring process 
is typically slow, resulting in long waiting lines. Im-
portantly, the process runs the risk of human error, resulting 
to some individuals “fall-through-the-cracks”, entering the 
venue without a mask and potentially spreading the virus. 
Therefore, it is important to look into automated systems for 
monitoring and enforcing mask-wearing regulation compli-
ance.  
 Machine Learning approaches have been used in several 
application domains ranging for computer vision to natural-
language processing to neuroscience (Christoforou et al., 
2013; Christoforou et al. 2018) and neuro-technologies 
(Christoforou et al. 2010). Particularly in the Computer Vi-
sion domain, machine learning-based approaches have been 
proposed to automate several object recognitions tasks. For 
example, in (Fang et al. 2018), the authors aim to use object 
recognition to detect construction workers that are not wear-
ing hardhats in order to reduce workplace accidents. Simi-
larly, in (Mneymneh et al. 2019), the authors use object 
recognition in order to identify humans on construction sites 
in video, and then to determine whether or not the humans 
are wearing hardhats. Their goal is to replace the tedious 
safety monitoring process. 
 Besides safety on worksites, object recognition has also 
proven to be useful for public safety. In (Verma et al. 2017), 

1 https://www.cdc.gov/coronavirus/2019-ncov/prevent-getting-
sick/cloth-face-cover-guidance.html 
 



the author’s show that object recognition can be used for au-
tomated gun detection, possibly leading to applications that 
can help reduce crime. In a similar fashion, in (Gelana et al. 
2019), the authors state that gun detection is necessary in 
order to identify “active shooters,” and that human monitor-
ing cannot keep up with the amount of CCTV footage. 
Therefore, they demonstrate how guns can be detected using 
CV object recognition techniques. Public and worksite 
safety are just a few of many examples in which object 
recognition can be utilized in the real world. 
 Modern CV solutions rely on deep-convolutional neural 
network models to achieve high-performance recognition. 
For example, deep-neural networks have been proposed to 
identify plant and animal species recognition. In (Lasseck 
2017), the authors are able to use deep-convolutional neural 
networks in order to predict ten thousand plant species with 
ninety-six percent accuracy. Furthermore, in (Nguyen et al. 
2016), the authors use different deep neural networks to 
classify images of 967 flower species and achieve results of 
up to 90.82% accuracy. In fact, a couple of CV- based solu-
tions towards mask-wearing monitoring have been proposed 
in the literature which we review in the next couple of para-
graphs.   
 One approach towards automated mask-wearing monitor-
ing, was proposed in (Chavda et al. 2020). Their approach 
involved a multi-stage Convolutional Neural Network 
(CNN) architecture to detect face-masks in images. In par-
ticular, they first used a pre-trained model to detect faces in 
an image. Next, they designed a convolutional neural net-
work to predict if each face that is detected contains a mask 
or not. Their models report just over 99% accuracy in iden-
tifying faces with masks. However, their model does not dif-
ferentiate whether a mask is worn correctly or incorrectly, 
which is an important factor in the effectiveness of mask-
wearing. We decide to skip the multi-stage approach in our 
research, as face detection is already abundantly discussed 
in literature. 
 A second approach was proposed in (Hammoudi et al. 
2020), which attempts to differentiate between masks being 
worn correctly or incorrectly. There, the authors proposed a 
method that exploits Haar-like features to detect faces in an 
image as well as key features of the face (namely, eyes, 
mouth, nose and chin) from a camera-based acquisition of a 
mobile phone. They then used the presence or absence of 
those facial features to infer whether a person wears a mask 
correctly or incorrectly. If all of these features are detected, 
the application alerts that the user is wearing their mask in-
correctly, otherwise it notifies the user is wearing the mask 
correctly. There are several limitations associated with the 
proposed approach. First, it uses an ad-hoc decision-rule 
(i.e. presence or absence of facial features) that relies on the 
accuracy of the face-feature detection algorithm; failure to 
detect facial features results to a decision that the mask is 
worn correctly. Moreover, the proposed method is designed 

to take as input “selfie” image from mobile-phones  and can-
not be generalized to venue-entrance monitoring environ-
ments. Importantly, the performance of the proposed algo-
rithm is not validated on any real dataset, nor any quantifi-
cation of the algorithm’s accuracy is reported on the paper. 
 In an effort to differentiate between correctly vs incor-
rectly worn face masks, in this paper we propose a fully con-
volutional neural network architecture. The model perfor-
mance is validated on a large dataset and is shown to  
achieve high accuracy scores. Our results could lead to ap-
plications that could hopefully limit the spread of COVID-
19. 
 The rest of the paper is organized as in the following sec-
tions. In the methods section we introduce our proposed 
model, discuss the dataset used to validate our approaches 
and the procedure to evaluate our method. Next, we discuss 
some of the implementation details and report results on the 
assessment of our method. Finally, we conclude with the 
significance of our methods and discuss future work.  
 

Methods 
 
Face-mask Dataset creation and pre-processing 
In order to validate our proposed approach, the first step 
was to access many images of people wearing masks cor-
rectly, images of people wearing masks incorrectly, and 
images of people not wearing masks at all. In order to do 
this, we collected data from the MaskedFace-Net dataset, 
which stems from the paper MaskedFace-Net – A Dataset 
of Correctly/Incorrectly Masked Face Images in the Con-
text of COVID-19 (Cabani et al. 2020). This dataset com-
prises of 137,016 images of people wearing masks. Each 
image is 1024x1024 pixels, RGB, and in jpg format. These 
images come from the Flickr-Faces-HQ dataset (Karras et 
al. 2019), but are edited with masks pasted over the faces 
either correctly or incorrectly. About half of the 
MaskedFace-Net dataset contains images of people wear-
ing masks correctly, while the other half contains images 
of people wearing masks incorrectly. The incorrect mask 
wearing portion of the dataset consists of different ways to 
incorrectly wear masks. For example, in some of the im-
ages the person is not covering his nose. In other images, 
the person may not be covering his mouth or nose, with his 
mask around the chin. To generate the dataset, we gathered 
the first 5,000 images from the correctly worn mask por-
tion of the dataset, and then gathered the next 5,000 images 
from the incorrectly worn mask dataset. Finally, to obtain 
the no mask portion of the dataset, we sampled 5,000 of 
the images from the original Flickr-Faces-HQ dataset. 
Overall, the dataset comprised 15,000 images from the 
three categories.  
 To prepare the images as an input to our model, we per-
form the following pre-processing steps. First each image 
was normalized (i.e. in the range 0 to 1) and rescaled to 



224x224 pixels. The dataset was then split into separate 
folders; one folder included 70% of the images to be used  
for training, and 30% of the images to be used for model 
validation. To facilitate dynamic image loading during 
model training, the image data was stored in labeled fold-
ers. Specifically, two folders were created to store training 
and validation images. Within each of these folders, three 
subfolders were created, each storing images for the three 
categories (i.e. unmasked images; masked images worn 
correctly; masked images worn incorrectly). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Example Images from Dataset 
 
Model Architecture  
 
To recognize images into the three classes, we designed a 
convolutional neural network. The model is organized as 
follows. The first block of the model consisted of a convo-
lution layer with thirty-two kernels of size five by five. 
These kernels operate at strides of four by four in order in-
crease the speed of training. Padding is also included to re-
turn an image of the same dimensions. Next, a batch nor-
malization layer is included to normalize the convolution 
and reduce the chance of overfitting. This convolution 

layer is then activated using a relu activation function. A 
two by two max pooling layer is then used to downsize the 
feature maps. Finally, a dropout layer set at .5 is included 
in order to prevent overfitting.  
 After this first convolution block, the model next con-
tains a flatten layer, followed by a dense block. The dense 
layer in the block has 32 neurons and is activated by a relu 
function. Again, overfitting is prevented by utilizing batch 
normalization and a dropout layer is set at .2 in this block. 
Finally, the model ends with a dense layer activated by a 
softmax activation function in order for the model to ap-
propriately make predictions on the three classes: correct 
mask, incorrect mask, or no mask. The model architecture 
is outlined figure 2. 
 
Model Training, regularization and evaluation  
To train the model architecture described above , we uti-
lized a categorical cross entropy as a loss function and the 
adam optimizer as implemented in tensorflow. The perfor-
mance metrics was set to accuracy score; the batch size 
was set to 32 observations and the maximum epochs was 
set to ten, with early stopping callback on the validation 
score set to 0.001 and patience of 5 epochs. Checkpoint 
callbacks were employed to monitor the best performing 
model weights. 
 Image augmentation was employed as a regularization 
mechanism during training.  In particular, input data im-
ages were augmented by random transformations including 
(zooming, horizontally flipping, and changing shear). The 
ImageDataGenerator module from Tensorflow library was 
used to provide the augmented training dataset during 
training. Data and validation batches were generated dy-
namically during the training process using the ‘from_di-
rectory’ method of the ImageDataGenerator object. To as-
sess our proposed model, we report validation accuracy 
during training of the model. Moreover, we report on the 
training speed of the model.  
 

Results 
Training Time Metrics 
The training went on for eight out of the ten epochs, so early 
stopping was utilized during training. Epochs had to go 

Figure 2: Model Architecture. 



through 323 steps due to a batch size of 32, and each step 
ended up taking around two seconds for the model to fit the 
batch and update weights. Each epoch took a total of about 
six hundred seconds, so the training process took around a 
total of an hour and a half.  
 
Training Process 
Training loss and accuracy were monitored and displayed 
throughout the training process. Training loss steadily de-
creased as the training went through each epoch. It is also 
notable that training accuracy went up as the epochs ran.  
Validation accuracy and loss were also monitored and dis-
played during training. Validation accuracy started out high 
after the first epoch at 94%, and the validation loss started 
out low at .25. At the eighth and final epoch, the validation 
accuracy was at its highest point of 98.4% with a loss of 
.069. We save the weights from this final epoch, as it 
achieved the highest validation accuracy score. The loss and 
accuracy curves during training can be visualized in figure 
3 below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
It can be seen from figure 3 that validation accuracy and 
validation loss match training accuracy and training loss 
very closely. This means that the model was successful at 
preventing overfitting, as the model does well in predicting 
both training data and validation data. This can be at-
tributed to including image augmentation, bath normaliza-
tion layers, max pooling layers, and dropout layers. Our 
model of choice that is saved uses the weights that perform 
the best on predicting validation data. This means that we 
use the model weights from the eighth epoch, which was 
able to predict the validation images at 98.4% accuracy. 
This is the model that is necessary to evaluate and see 
where it failed. 
 
Evaluation 
Using the prediction generator method from tensorflow, we 
were able to evaluate the completed model on the valida-
tion set and save predictions for each image on the valida-
tion set. The final model was able to predict the validation 

classes with 98.5% accuracy. This means that the model 
classified images of people wearing masks correctly, incor-
rectly, or not at all with only 1.5% error. Obviously, the 
predictions were not perfect, but the model predicted the 
classes well. However, it was still necessary to investigate 
as to why the model could not classify the images with one 
hundred percent accuracy. 
 In order to do this, I created a pandas dataframe to store 
the filename, along with the actual labels of the image and 
the predicted labels of the image. The first part of the data-
frame can be seen in figure 4.  
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 We can use this dataframe to discover where our model 
incorrectly predicted the class of an image by getting the 
filenames where the predictions column does not match the 
actual column. This showed me that the model only mis-
classified 65 out of 4,434 images, confirming the high ac-
curacy of the model. Using this dataframe, we can also cre-
ate a confusion matrix to see how the model performed rel-
ative to each class. The confusion matrix can be seen in 
figure 5. 
 

Predicted 
Actual 

Mask  
Correct 

Mask     
Incorrect 

Mask 
None 

Mask  
Correct 

1432 6 0 

Mask     
Incorrect 

18 1448 30 

Mask None 0 11 1489 

 

Figure 3: Training and Validation loss (left) and accuracy (right)  

Figure 4: Pandas Dataframe Storage 
 

Figure 5: Confusion Matrix (4,434 validation images) 
 



 From the confusion matrix, we can determine that the 
model correctly predicted that people were wearing masks 
the right way 99.6% of the time, that people were wearing 
masks the wrong way 96.8% of the time, and that people 
were not wearing masks at all 99.3% of the time. 
 The next thing to do was to load some of the images to 
see what went wrong with these examples. We visually in-
spected  the image examples where the classifier made  
wrong predictions, and three representative examples are 
shown of the error types are shown figure 6. 

 
 
 
 
 
 
 
 
 
 

 
 
 For the input image in figure 6.a, the model predicted 
that the baby was wearing his mask correctly. However, 
according to the dataset, he was wearing his mask incor-
rectly. This obviously could be up for debate, as his nose, 
mouth, and chin all seem to be covered up by his mask. It’s 
possible that the image could have been mislabeled, and 
that the model actually predicted the image correctly as 
someone wearing a mask correctly. The error by the model 
stems from this image being a difficult example. 
  In the  second image example in figure 6.b we observe 
similar situation. The model predicted that the baby dis-
played in figure 6.b was wearing her mask incorrectly, but 
the image is labeled as not wearing a mask at all. This is 
another image that is a difficult example, as the baby has a 
binky over her face, that the model most likely mistakenly 
classifies as an incorrect wearing of a mask. 
 When the image in in figure 6.c is used as an input, the 
model predicts this person is incorrectly wearing a mask, 
while the image is labeled as correct wearing of a mask. 
This is another difficult example, as the person’s nose and 
mouth are not covered at all. This example is clearly an er-
ror within the dataset and the model was correct when pre-
dicting that this person was not wearing her mask cor-
rectly. 
 After examining these images, we came to the conclu-
sion that most of the incorrect predictions came from diffi-
cult examples that could just be errors within the dataset. 
Therefore, we did not find it necessary to go back and 
change the model any further, as we were content with the 
high accuracy rate of 98.5%. 
 

Discussion 
Overall, the model did a great job in predicting if people 
are wearing masks correctly, incorrectly, or not wearing 

masks at all. It was able to predict the validation set with 
98.5% accuracy. The examples that were mis-classified 
were difficult examples that could have potentially been 
mislabeled. There have been implementations on classify-
ing incorrect and correct wearing of masks, and wearing or 
not wearing masks, but I have not seen any implementa-
tions on all three categories. 
 The extensions to this kind of classification are endless. 
People could be monitored while entering places of work 
to make sure they are wearing masks properly, and they 
could also be monitored at work if this is applied to video. 
Hopefully, an application such as this could have tremen-
dous impacts on society and help slow down the pandemic, 
which is now picking up faster than ever before. Computer 
vision can also be useful for the pandemic in other ways, 
such as social distancing violations, occupancy counting, 
and even detecting COVID-19 patients through chest x-ray 
imaging. This is just one of many examples in which com-
puter vision would be useful for the pandemic. 
 

Reference 
Cabani, A.; Hammoudi, K.; Benhabiles, H.; and Melkemi, M. 
2020. MaskedFace-Net - A dataset of correctly/incorrectly 
masked face images in the context of COVID-19, Smart Health, 
Elsevier  
Chavda, A.;  Dsouza, J.; Badgujar, S.; and Damani, A. 2020. 
Multi-Stage CNN Architecture for Face Mask Detection. 
arXiv:2009.07627 
Christoforou, C.; Constantinidou, F.; Shoshilou, P.; and Simos, P. 
(2013). Single-trial linear correlation analysis: application to 
characterization of stimulus modality effects. Frontiers in Compu-
tational Neuroscience 7, 15 
Christoforou, C.; Haralick, R.M.; Sajda, P.; Parra, L.C. 2010. The 
bilinear brain: towards subject-invariant analysis, In 2010 4th In-
ternational Symposium on Communications, Control and Signal 
Processing (ISCCSP), pp. 1–6. IEEE, 2010. 
Christoforou, C.; Hatzipanayioti, A.; and Avraamides, M. 2018 
Perspective Taking vs Mental Rotation: CSP-based single-trial 
analysis for cognitive process disambiguation. In Wang, S., Yama-
moto, V., Jianzhong S., Yang Y., Jones, E., Iasemidis, L., Mitchell, 
T., (Eds.) Proceedings of International Conference, Brain Infor-
matics (pp. 109-199). Arlington, TX, USA 
Ellis, R. 2020. Face Masks Reduce COVID Infection Risk by 
65%. Retrieved November 15, 2020, from 
https://www.webmd.com/lung/news/20200710/face-masks-re-
duce-covid-risk-by-65-percent 
Fang, Qi;Li, H.; Luo, X.; Ding, L.; Luo, H.; Rose, T.; and An,W. 
2018. Detecting non-hardhat-use by a deep learning method from 
far-field surveillance videos. Automation in Construction. 85. 1-9. 
10.1016/j.autcon.2017.09.018 
Germa, G.; and Dhillon, A. 2017. A Handheld Gun Detection us-
ing Faster R-CNN Deep Learning. Proceedings of the 7th Interna-
tional Conference on Computer Vision and Communications 
Technology—ICCCT2017) 84-88. 10.1145/3154979.3154988 
Gelana, F.; and Yadav, A. 2019. Firearm Detection from Surveil-
lance Cameras Using Image Processing and Machine Learning 
Techniques: Proceedings of ICSICCS-2018. 10.1007/978-981-13-
2414-7_3 
Hammoudi, K., Cabani, A.; Benhabiles, H.; and Melkemi, M. 
2020. Validating the correct wearing of protection mask by taking 

(a) (b) (c) 

Figure 6: Visual inspection of incorrectly predicted images 
 



a selfie: design of a mobile application "CheckYourMask" to 
limit the spread of COVID-19, CMES-Computer Modeling in En-
gineering & Sciences, Vol.124, No.3, pp. 1049-1059, 2020, 
DOI:10.32604/cmes.2020.011663 
Karras, T.; Laine, S.; and Aila, T. 2019. A Style-Based Generator 
Architecture for Generative Adversarial Networks. IEEE/CVF 
Conference on Computer Vision and Pattern Recognition (CVPR-
2019), Long Beach, CA, USA, 2019, pp. 4396-4405, doi: 
10.1109/CVPR.2019.00453. 
Lasseck, M. 2017. Image-based Plant Species Identification with 
Deep Convolutional Neural Networks. CLEF. 
Mneymneh, B. E.; Abbas, M.; and  Khoury, H. 2019. Vision-
Based Framework for Intelligent Monitoring of Hardhat Wearing 
on Construction Sites. Journal of Computing in Civil Engineer-
ing. 33. 10.1061/(ASCE)CP.1943-5487.0000813 
Nguyen, N.; Le, V.; Le, T.; Hai, V.; Pantuwong, N.; and Yagi, Y. 
2016. Flower species identification using deep convolutional neu-
ral networks. Regional Conference on Computer and Information 
Engieering (RCCIE-2016). 
 
 


