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Abstract

Neural network algorithms have proven successful for
accurate classifications in many domains such as image
recognition and semantic parsing. However, they have
long suffered from the lack of ability to measure causal-
ity, predict outliers effectively, or provide explainabil-
ity relevant to the application domain. In this paper
we introduce a method that measures causal scenarios
during outlier events using neural networks: Artificial
Intelligence Network Explanation of Trade (AINET).
AINET tailors AI techniques specifically for bilateral
trade modeling. Datasets with network-like structures
(such as global trade, social networks, or city traffic)
can benefit from Graph Neural Networks (GNNs) mod-
eling and structural power. These network-based mod-
els (i.e. GNNs) empower policy makers with an under-
standing of the fast-paced shifts in trade flows around
the world due to outlier events such as increased tariffs,
natural disasters, embargoes, pandemics, or trade wars.
Our work is at the intersection of GNNs’ optimization,
causality, and their proper application to trade. AINET
results are presented with an overall test mean absolute
percentage error (MAPE) of 28%, demonstrating the ef-
ficacy and potential of harnessing this method.

Introduction and Motivation
A key objective of quantitative economic analyses is to un-
cover relationships – e.g. supply, prices, or trade – for use in
making predictions or forecasts of future outcomes. Current
systems that generate forecasts for decision making tend to
use ad hoc, expert-driven, linear, and non-linear models or
Bayesian approaches. AI methods, however, provide solu-
tions to causality and relationships while mitigating imbal-
ance, bias, and outliers with ease.

Many sub-fields of economics are moving towards the use
of AI in behavioral modeling, e.g. (Ghoddusi, Creamer, and
Rafizadeh 2019) for energy economics. However, there is
limited work in the literature that shows tailored and opti-
mized neural network algorithms are effective for economic
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applications. Neural networks offer the ability to find con-
nections between variables or features that are difficult to
detect using econometrics (traditional methods). Even com-
pared to other machine learning methods, neural networks
can provide a better fit in the long term as found in (Gopinath
et al. 2021) for agricultural trade. The 2020 U.S. National
Artificial Intelligence Initiative Bill states: “Artificial intelli-
gence is a tool that has the potential to change and possibly
transform every sector of the U.S. economy” (S. 1558 - AIIA
2020). Given its obvious influence on the economy, the next
sector for AI to advance is international trade, and its causal
effects on production, consumption, and prices.

Understanding trade flows has historically been a chal-
lenge, particularly in the context of articulating projections.
Not only are trade flows influenced heavily by trade part-
ner policies, but also by exogenous factors and unanticipated
shocks. The global soybean market is a case in point, since
it is the largest agricultural commodity traded and com-
monly targeted during international disputes. The biggest
exporters of soybeans are Brazil and the U.S., while the
biggest importers are China and the European Union (E.U.),
with China importing ten times as much as the E.U.

The complexity of international trade naturally makes it
a network, thus, utilizing a network model lets us map re-
lationships and conduct experimental counterfactual scenar-
ios. In our work, modeling soybeans using GNNs illustrates
the need for tailoring and applying advanced AI algorithms
to study complex global commodity flows. Moreover, high-
lighting this crucial commodity provides a glimpse into the
global impact consequences of trade wars and pandemics on
agricultural goods.

Related Works in Neural Networks
Understanding, modeling, and predicting international trade
is a central domain in economics. Economists have imple-
mented the Gravity equation of trade to describe trade flows
(Anderson 1979). More recently, researchers across multi-
disciplinary fields have identified international trade as well
suited for network analysis by considering the breadth/value
of trade between countries as weighted edges, and coun-
tries as nodes (Bhattacharya, Mukherjee, and Manna 2007).
By harnessing machine learning methods, researchers have
been able to better predict agricultural exports trade patterns
using Gradient Tree Boosting, ARIMA, and XGBoosting



(Batarseh et al. 2019). Use of shallow neural networks also
improves international trade forecasting (Wohl and Kennedy
2018). Combining neural networks with network analysis
theory of international trade, (Panford-Quainoo, bose, and
Defferrard 2020) demonstrates the efficacy of country GDP
classification using a GNN for a single time period. Our con-
tribution to the literature is tuning GNNs in novel ways (with
time-varying network structures) to model trade flows for
predicting future patterns under unforeseen circumstances,
understanding causality of such events by remodeling the
outcomes in novel ways, and influencing public policy for
the greater good.

While grappling with new methods and uncertainties, the
availability of big data and advances in software systems
pose new challenges to conventional approaches to forecast-
ing. These include dealing with the sheer volume of data, the
lengthy list of variables/features available to explain such
relationships (and associated collinearity issues), and the
need to move beyond failed static and linear models. Our
GNNs are offered as an alternative to address many of these
challenges in economic modeling (Mullainathan and Spiess
2017; Batarseh and Yang 2017).

Convolutional Neural Networks (CNNs) are popular for
many domains including textual analysis and computer vi-
sion (Kim 2014). CNNs apply a filter with shared weights
over input data and potentially pool the results to reduce di-
mensions, creating a local receptive field where information
is aggregated in the neighborhood of the surrounding words
or pixels (Yamaguchi et al. 1990; Lecun et al. 1998). Equa-
tion 1 shows maximum pooling, which reduces the dimen-
sion of the output tensor by grabbing the max value using
a kernel size k and an optional stride to skip pixels stride.
The resulting output of a series of the convolution and pool-
ing layers can then be an image classification or a binary
economic output:

out(Ni, Cj , h, w) = max
m=0,...,kH−1

max
n=0,...,kW−1

input(Ni, Cj , stride[0]× h+m,

stride[1]× w + n)

(1)

Conversely, Graph Convolutional Networks (GCNs) gen-
eralize the convolution process by aggregating information
among nodes rather than scanning over a grid of pixels, cre-
ating a neighborhood effect so that nodes with fewer degrees
of separation and stronger weighted edges tend to have more
common features. The Chebyshev filter size, K, determines
the sphere of influence between the node of interest and the
neighborhood of nodes when convolving and pooling infor-
mation for models (Defferrard, Bresson, and Vandergheynst
2017). A K of 1 would not include neighborhood effects,
while a K of 2 would take into account nodes with a direct
edge with the node of interest.

Recurrent Neural Networks (RNNs) take into account the
sequential connection of data records, which is heavily rele-
vant to trade flows, allowing for an observation at time t− 1
to influence predictions at time t (Elman 1990). Equation 2
is a simple RNN framework with Wih the weight matrix for
input data xt, two bias terms bih and bhh, and the weight ma-
trix Whh for the previous hidden state matrix output ht−1.
The sum then undergoes a non-linear transformation, such

as tanh, to create the hidden matrix output ht.

ht = tanh(Wihxt + bih +Whhht−1 + bhh) (2)

In the case of causality and outliers’ evaluation for trade
flows, we aim for the model to learn from all data regardless
of timestamps or geographies; while neural networks have
issues associated with learning from subtle events, Long-
Short Term Memory (LSTM) allows for the resolution of
that challenge (discussed further in the assurance section of
this paper). LSTMs include both a cell state ct−1 and hidden
state ht−1 to create logic gates which selectively pass infor-
mation over time (Hochreiter and Schmidhuber 1997). The
LSTM framework was extended to a fully-connected version
to enable long-term structural connections, and convolutions
were incorporated into LSTMs to allow for spatial-temporal
analysis (Graves 2014; Shi et al. 2015). Equation 3 shows a
convolutional LSTM cell.

i = σ(Wxi ∗ xt +Whi ∗ ht−1 + wci � ct−1 + bi)

f = σ(Wxf ∗ xt +Whf ∗ ht−1 + wcf � ct−1 + bf )

ct = ft � ct−1 + it � tanh(Wxc ∗ xt +Whc ∗ ht−1 + bc)

o = σ(Wxo ∗ xt +Who ∗ ht−1 + wco � ct−1 + bo)

ht = ot � tanh(ct)
(3)

This model has an input gate it, forget gate ft, cell gate ct,
and output gate o to yield the final ht output matrix (Shi et
al. 2015). Each gate includes convolutions of the input data.

Methods: AINET
AINET is a method for analyzing the time-varying struc-
ture of the network of bilateral country trade using GNNs.
AINET is based on a stateless recurrent network model with
underlying Chebyshev filtered convolutions. See Equation 5.

GCNs rely on capturing the dynamics of a static graph of
data, though changing the adjacency matrix of the network
reduces the effectiveness of the model. Spatial-temporal
methods of prediction using recurrent GNNs combine the
graph-modified convolution and the flexibility of a model
that can adapt to changes over time. Combining elements of
RNNs and GNNs specifically for our trade deployment in-
creases the effective model capacity in graph convolutional
LSTM models (GC-LSTM), as shown in Equation 4. The xt
and ht−1 convolutions are replaced by graph convolutions,
which harness Chebyshev filtering. A notion that could be
critical to the success of neural networks in other domains
as well.
i = σ(Wxi ∗G xt +Whi ∗G ht−1 + wci � ct−1 + bi)

f = σ(Wxf ∗G xt +Whf ∗G ht−1 + wcf � ct−1 + bf )

ct = ft � ct−1 + it � tanh(Wxc ∗G xt +Whc ∗G ht−1 + bc)

o = σ(Wxo ∗G xt +Who ∗G ht−1 + wco � ct−1 + bo)

ht = ot � tanh(ct)
(4)

Due to the changing nature of the graph adjacency net-
work and the limitations of training across multiple time
periods, the stateless graph convolutional LSTM model (S-
GC-LSTM) is harnessed, as shown in Equation 5.



i = σ(Wxi ∗G xt)
f = σ(Wxf ∗G xt)
ct = it � tanh(Wxc ∗G xt + bc)

o = σ(Wxo ∗G xt + bo)

ht = ot � tanh(ct)

(5)

This modified GC-LSTM takes in a single time point
graph with an initial cell and hidden state set to 0, thus re-
moving much of the complexity from a typical GC-LSTM
model.

Experimental Study: Causality using GNNs
This section presents the deployment of AINET to the trade
dataset, and explores its results and efficacy.

Data Setup
The data used in this manuscript are from the United Nations
Commodity Trade Statistics Database (UN Comtrade), and
consists of monthly international trade data on soybeans;
specifically the harmonized system (HS) code 1201 - ”soya
beans; whether or not broken” (UN Comtrade 2021). Vari-
ables include trade value in dollars and net weight in kilo-
grams imported or exported for bilateral trade around the
world. Data are downloaded using UN Comtrade’s API and
processed using Pandas. First, the data are filtered to only
include trade data with at least a net weight of 50 kg and
a trade value of $70,000. Due to limitations of trade data
availability for important countries, export data for soybean
trade from country A to country B is denoted as import trade
to country B from country A. This ensures that country B’s
lack of reporting does not significantly affect the structure
of the graph. In cases that both converted export data and
import data were available for a single node n at time t, the
average of the two is taken. The final modeling dataset con-
sists of 70 months of data starting in October 2014 extending
to July 2020 for 50 countries.

Figure 1 shows the structure of the trade network for soy-
beans in October 2017 (before any relevant outlier event)
with a strong connection between the U.S. and China.
Nodes, in red, are sized based on the net weight of soybeans
imported at time t, the transparency and width of directed
edges show the trade value of soybeans exported from a
country such as Brazil and imported to a country like China.

Graph modeling data is then prepared with a node dictio-
nary containing two features: the net weight at time t and
the soybean trade unit value (TUV ) at time t+1. As shown
in Equation 6, TUVn,t is calculated by taking the sum of
all partner trade value imports (TV I) for node n at time t.
Trading partners for each node are filtered to the 10 largest
trading partners by trade value.

TUV n,t =

P∑
p=1

(TV In,p,t) (6)

The trade value at time t are added to a directed-weighted
adjacency list as a tuple (importer index, exporter index,
trade value). This procedure was repeated for all 70 months
of available data.

Figure 1: Soybean trade flows in Oct. 2017

Experimental Setup
GNN modeling was conducted using the PyTorch Geomet-
ric Temporal (Benedek and Paul 2020) package. A variety
of neural networks model structures were considered includ-
ing GCN, GC-LSTM, and the S-GC-LSTM. Networks with
multiple layers of connected cells were considered along
with single cells. Outputs from graph layer(s) are com-
bined in a linear layer for trade prediction. The network was
optimized using the stochastic gradient descent algorithm
ADAM with adjustments for the learning rate (1, 0.1, 0.01)
and weight decay (0.05, 0.01, 0.00) (Kingma and Ba 2017).
Stochastic gradient descent is generally used in signal pro-
cessing applications to distinguish ”signal” from ”noise”; a
notion we deemed relevant to trade values (i.e. identifying
major trade partners for clearer cause-effect outcomes).

A variety of hyperparameters were tuned including the fil-
ter size K (2, 3, and 5), dropout (0, 0.1, 0.25, 0.5), model
layers (1, 3, 5), and activation function for hidden layers
(tanh, leaky ReLU , ReLU , and sigmoid). These model
options were trained to 100 epochs, and the performance
compared to determine the optimal set of parameters for
longer training. Given the ”time-series” nature of the dataset,
train-test splits were analyzed at the final month, 6 months,
and 24 months. The 6 month model is used going forward.

To contrast using traditional tools, we also developed
forecasts using ARIMA models. Economic forecasting typ-
ically uses auto regressive models as a baseline for predic-
tion performance (Carriero, Galvão, and Kapetanios 2019).
Univariate auto regressive models highlight the relationship
of previous time periods and its influence on forecasting
t + 1. Since the predictive power of ARIMA is strong for
forecasting commodity goods, as highlighted in (Batarseh
et al. 2019), the model selected was ARIMA(0,1,1): with
one first difference, and one moving average for every coun-
try. ARIMA models were trained and then forecasted on 1
month, 6 months, and 24 months forward. ARIMA models
could be adjusted to accommodate the data for each country
time series, however, it was decided to use the most common
lag, difference, and moving average terms across models for
this exercise to avoid any bias. Additional details of our data
and model setup can be found in our AINET repository 1.

1https://github.com/AndersonMonken/AINET-GNN-Trade21



Experimental Results
The modified S-GC-LSTM model was determined to be the
strongest GNN. Though model tuning yielded similar re-
sults, the best hyperparameters for the S-GC-LSTM model
were learning rate at 0.1 with no weight decay, dropout rate
of 0.1, a tanh activation function of hidden layers, filter size
K of 3 for graph convolutions, and five layers in the model.
The first layer in the model takes in the single feature input
for each node and outputs a 16 channel tensor, the second
layer transformation 16 → 32, the third layer 32 → 64, the
fourth layer 64→ 32, and the fifth graph layer 32→ 16. The
16 channels are then inputs to a linear regression prediction.
The training epoch graph in Figure 2 shows the consistent
improvement in performance with increasing training time.

Figure 3 plots the TUV for China, France, the U.S., and
for the global aggregate for soybean trade. There are lines
for the actual TUV (red), the training prediction (blue), and
the testing prediction (green). The results of the global ag-
gregate TUV can be interpreted as the potential identifica-
tion of the TUV common factor. The predicted TUV for
the U.S. indicates mostly a stable trend during 2017-2019,
barring a few spikes coincidental with failed attempts to rec-
oncile U.S.-China trade relations. Common factors are typ-
ically identified with dynamic factor models, such as how
(Luciani 2020) identified a less volatile measure of U.S. core
inflation. The AINET framework is predicting a common
factor series that captures the true overall trend of global
soybean TUV over time and reduces the series volatility.
Price and value of commodity goods is historically a volatile
series that is difficult to accurately forecast. However, the
AINET framework is able to reveal the direction of soybean
TUV discounting idiosyncratic shocks.

The results from the baseline ARIMA models showed
greater forecasting accuracy when compared to GNN mod-
els, as expected, however they don’t represent the network
of flows, address causality, account for outliers, or present
support for public policy making. ARIMA and parametric
Ordinary Least Squares (OLS) models are part of the ini-
tial stages of understanding trade trend-lines, however, they
don’t provide any support beyond that.

The relationship analysis of the economic process re-
quires understanding of theoretical macroeconomics and
trade concepts; and so to improve predictions and analyze
causality for soybean TUV , a form of one of these models is
used. However, the extensive parametric knowledge neces-
sary to understand trade using traditional economic methods
can make the conversation of international trade more ex-
clusive to the field of economics. However, AINET provides
insight into trade that pair up AI scientists to economists.

Assurance of GNN
AI assurance is a process that is applied at all stages of the
AI engineering lifecycle ensuring that any intelligent system
is producing outcomes that are valid, verified, data-driven,
trustworthy, and explainable to a layman, ethical in the con-
text of its deployment, and unbiased in its learning. Validat-
ing and verifying AI algorithms is a critical component in
any AI deployment. In this section, we discuss measures we

Figure 2: Model training loss curve on train and test datasets

Figure 3: TUV predictions for selected countries

took to verify the algorithms.
Neural networks, including GNNs, have learning draw-

backs, such as gradient vanishing and exploding. For in-
stance, neural networks cannot process very long sequences
if using certain activation functions such as the rectified lin-
ear unit. Accordingly, we opted to using LSTMs, as they
are a modified version of neural networks that make it eas-
ier to remember past data in memory, for the following rea-
sons: (1) To avoid learning bias issues with the GNN, and (2)
To allow the GNN to learn causality beyond a limited time
frame. For verification of learning quality and optimal selec-
tion of hyperparameters, multiple measures were collected:
1. Root Mean Square Error (RMSE), 2. Mean Absolute Per-
cent Error (MAPE), and 3. Mean Absolute Error (MAE).

RMSE is the loss metric used to train AINET, Equation
7, where ŷn,t is the prediction of node n at time t and yn,t
is the actual value. The difference is aggregated and divided
by total time periods T and total number of nodes N .

RMSE =

√√√√∑T
t=1

(∑N
n=1(ŷn,t − yn,t)2

)
NT

(7)

All three measures are captured in two dimensions: by
year, and by country. Both aspects consistently reported
lower training error rates than testing error rates, which pro-
vides statistical confidence in the predictions presented. Per-
forming assurance measures that are relevant to trade were
also crucial. For instance, cases of irrelevant outlier trade
events were removed such as the removal of Belarus and Es-



tonia due to unusually high or low TUV . Similarly, China
stopped reporting its official imports of soybeans to the na-
tional community in year 2017, which lead to estimating
China’s imports through exports from other countries. More-
over, as it is stated in (Gopinath, Batarseh, and Beckman
2020), using major world traders for predictions and evalu-
ating causality proved better than using all countries. Minor
world traders of soybeans deviate the model from learning
accurately, for instance, the trade of Lithuania is not as in-
fluential to causality such as Brazil or Japan. A summary of
top soybean traders’ RMSE and MAPE values is shown in
Table 1.

Country Training MAPE Test MAPE Train RMSE Test RMSE
U.S. 0.106 0.246 0.085 0.249
Australia 0.276 0.231 0.438 0.259
Brazil 0.648 0.850 0.220 0.257
Canada 0.277 0.315 0.126 0.162
China 0.100 0.202 0.045 0.073
France 0.147 0.342 0.084 0.212
Germany 0.072 0.111 0.034 0.044
India 0.289 0.237 0.159 0.140
Indonesia 0.196 0.395 0.125 0.155
Italy 0.089 0.156 0.042 0.058
Japan 0.075 0.041 0.053 0.024
UK 0.134 0.137 0.088 0.057

Table 1: Model Performance from AINET.

In the next section, we explore GNNs usage for public
policy before/during/after two major outlier events: the U.S.-
China trade war as well as Covid-19.

Policy Relevance of AINET
Efficient and nimble agriculture and food industries are vital
to human survival. In the past three years, global agricul-
ture has been buffeted by many shocks. Such unprecedented
uncertainties have affected the range of decisions starting
at the farm and culminating at the consuming household or
ports (exports/imports). Decisions to plant, maintain crop
progress, harvest, and market in the near-term and to invest
in farm assets in the medium-term have all been impacted by
serious supply-side disruptions (e.g. flooding or drought),
significant uncertainty in demand (e.g. U.S.-China, China-
Australia trade wars) and sudden collapse of both supply of
inputs and demand for output (e.g. Covid-19). Considering
that the global economy was in an equilibrium with trade
flows minimizing any arbitrage opportunities, these disrup-
tions have the potential to either shut down an edge or make
a node smaller than before. The GNNs offer the opportunity
to visualize, measure, and understand the alternative routes
for trade in search of new opportunities. Of particular inter-
est would be the trade diversion effects (e.g. transiting prod-
ucts through Vietnam during U.S.-China trade war) as well
as the price (TUV ) adjustment to reach a new equilibrium.

U.S. - China Trade War 2018
Soybean farmers in 2018 were experiencing tremendous
challenges due to the escalating trade war between the U.S.
and China. In 2017, 57% of all U.S. soybean exports went

to China for a value of $12.2 billion dollars (UN Comtrade
2021). The U.S. soybean industry suffered greatly in 2018,
with exports to China declining to $3.1 billion dollars, but
the damage could have been far greater if a trade deal had
not been reached in 2019. As shown in Figure 4b for October
2018, there is significantly lower trade between the U.S. and
China (highlighted in red where we would expect that edge)
compared to Figure 4a from a year prior. Using AINET, we
consider the following question: What would the effect have
been if soybean trade had been cut off entirely between the
U.S. and China in 2019?

Using AINET, we drop all soybean trade between the U.S.
and China for the year 2019 to demonstrate the counterfac-
tual capabilities of the S-GC-LSTM method. The TUV is
modeled for all nodes to determine the effect to the U.S. and
the rest of the global soybean industry. We find from AINET
that the impact to the U.S. if trade in soybeans had ended in
China for 2019 would have resulted in a stable TUV for
China, a spike and return to the long-term trend of TUV
for Brazil, lower TUV for the U.S., and mixed effects for
the rest of the world. The stability of TUV for China along
with falling TUV for U.S. likely created arbitrage opportu-
nities for countries such as Canada (shown in Figure 4a) and
Vietnam. Note the Chinese edge originating from Canada
significantly thickened in Figure 4a relative to that in Fig-
ure 1. While Vietnam was expected to transship soybean
to China with its actual imports doubling during the trade
war months, Canada’s near tripling of soybean imports from
U.S. was less noticed. The Brazilian spike in TUV and re-
turn towards the long-term trend are likely due to Yuan’s
appreciation relative to the Brazilian Real during the trade
war months. The use of AINET uncovered that U.S. soy-
bean exports have diversified significantly due to the trade
war, which is an advantage in terms of economic indepen-
dence and stability for the American farmer.

Trade During Covid-19
The pandemic has had varying effects on trade flows of soy-
beans. Figure 4c shows that the spread of Covid-19 had
thinned the edges especially with U.S. and European coun-
tries, which were shut down in early 2020. However, with
China recovering faster from Covid-19 and Brazil remaining
open despite the pandemic, the former returned to importing
a significant level of Brazilian soybeans. The rapid devalu-
ation of the Brazilian Real and lack of national lockdowns
across Brazil during this time period likely influenced Brazil
becoming the preferred trading partner in the soybean sector,
as analyzed in (Ustinova 2020). Additionally, Brazil’s soy-
bean production is usually challenged with seasonal harvest
rain, however, in 2020, that usual challenge was not evident.
Meanwhile the U.S. was in the midst of lockdowns that im-
pacted commodity supply chains in April which resulted re-
duced soybean trade, and eventually harmed American soy-
bean farmers and producers.

Figure 4c depicts the interaction described between China
and Brazil. The red dot for China shows the spike in soybean
imports during April compared to imports in 2017 shown in
Figure 1. Likewise, India’s TUV fell as a result of its lower
tariffs during the COVID-19 surge, coinciding with a seven-



(a) October 2018 (b) January 2020 (c) April 2020
Figure 4: Soybean trade flows for major countries in soybeans global trade

fold increase in soybean imports relative to the period before
the pandemic. In this case, the increased trade resulted in an
overall considerable increase in soybean trade value between
China and Brazil as well as India and US. AINET recognizes
this causal phenomenon with a decrease in TUV for overall
soybean trade (Figure 3).

Conclusion
In this paper we presented the AINET method to study in-
ternational trade flows for causal analysis. AINET is based
on GNNs; however, we have modified multiple parts of the
conventional GNN process to capture data shifts, provide AI
explainability though network graphs, increase algorithmic
accuracy, reduce bias, and measure the effects of interna-
tional outlier events on data. Our learned graph model can
capture fast-paced changes in global markets to aid public
policy making and eventually lead to lower disruptions to
international trade flows.
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