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Abstract

The COVID-19 pandemic has wreaked havoc worldwide, on
both public health and the worldwide economy. While neces-
sary, quarantine and social distancing requirements have left
many companies unable to reopen their offices in a safe man-
ner. We present a model capable of identifying workspaces
at high risk for COVID-19 disease transmission and illustrate
how existing techniques for quantifying uncertainty in ma-
chine learning can be applied to assess the reliability of these
predictions. This model is developed using a dataset created
by leveraging historical sales data and detailed product infor-
mation, and it is in the process of being utilized to identify
customers to whom to reach out to facilitate the retrofitting of
workspaces to support a safe return to the office.

Introduction

The COVID-19 pandemic has resulted in a wide range of
challenges for our society. Beyond the serious, worldwide
health impacts, one of the most pressing issues has been the
effect of the pandemic and the resulting quarantine on the
corporate economy. The inability for employees to return to
the office has led to disruptions, inefficiencies, and commu-
nication challenges, increasing the financial impact on the
world economy. While working from home is one option, it
is not for everyone. Not all companies can manage it and not
all employees benefit from it.

There is substantial research that shows the power of the
office space to unlock creativity, productivity, collaboration,
and help mold an organization’s culture, e.g. (Nielsen 2016;
Hodari 2015). Over the last five years, it is estimated that
North American corporations have spent tens of billions of
dollars on their office spaces. These spaces, however, were
not designed to face the challenges of a pandemic.

To recover the advantages of working together in an of-
fice, organizations will need to retrofit their spaces in a way
that allows them to be able to bring their employees back
into the office in a safe and efficient manner. To under-
stand the current state of the North American office at scale,
we utilize new data sources such as digital drawings of of-
fice spaces, etc and predict which workspaces are most at
risk of COVID transmission. While some corporations may
have the ability to analyze their existing workspaces for dis-
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ease transmission, this is a difficult and potentially cumber-
some task that requires substantial effort, and many orga-
nizations may not do so or will need assistance retrofitting
their workspaces. Designers of office space and furniture
will need to support the identification and retrofitting of
workspaces at high risk for disease transmission, and they
are well-poised to do so with their extensive knowledge of
available products that can be used to adapt existing offices.
While these designers are well-equipped to assist with the
retrofitting of workspaces, many office furniture companies
have incomplete knowledge of the exact setup by a specific
client. In this paper, we demonstrate how a machine learn-
ing model can be used to detect high-risk workspaces, those
that are at high risk for disease transmission, from corpo-
rate sales records of office furniture products and product
information. This model is being deployed to identify clients
likely to have high-risk workplaces and help prioritize who
is reached out to first to enable organizations to welcome
their employees back to a safe work environment.

Although applications of machine learning to COVID
related risk detection are prevalent, e.g. (Pal et al. 2020;
Wang et al. 2020), the authors are unaware of any applica-
tion of machine learning to identify risk of furniture layout
in office spaces or any other space application. Thus, we be-
lieve this to be both an extremely novel and crucially rele-
vant COVID related machine learning application.

Data

To understand if a workspace is set-up in a way that presents
a risk to the worker, we need to understand more than just
product composition. The risk comes from particular details
of how the workstation is set-up in relation to others. For
this reason, it is critical to understand key metrics such as
distance between workers, height of division elements (such
as panels or screens), and relative orientation. To create the
dataset for supervised learning, we extract key information
from digital office floor plan designs, to process and classify
thousands of predefined workstations into high risk and low
risk based on their product composition, distance, division,
and orientation. This results in a dataset that has very de-
tailed product information and what this means in terms of
having a set-up that is considered a high risk for a typical
office worker, in terms of disease transmission.

The testing dataset is derived from product-level ship-
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Table 1: Application types and their risk classifications.

ment data containing client information, sale data, delivery
location, and installation location within the client’s office.
Since the shipment data is at a product-level granularity,
business logic and the specificity of location data was used
to group products into workstations. A unique identifier for
each workstation is constructed to allow the testing dataset
to be joined back with the client information after classifica-
tion. The specific product lines chosen for the training and
testing set are determined via business logic.

Each training and testing instance corresponds to a unique
workstation, and contains one feature per product line,
where each feature corresponds to the percent of the total
workstation sale amount attributed to that specific product
line. This data is sparse, since no single workstation con-
tained half of the product lines selected.

Model

The ultimate purpose of the model is to predict whether a
furniture application is high risk or low risk. To do this, the
different application types are identified and a risk class de-
termined for each, which can be seen in table 1.

Due to the imbalance of the training data, with only 9.26%
of the training observations being high risk, stratified sam-
pling is necessary. Based on the generally superior perfor-
mance of random forests in initial model exploration, fur-
ther exploration is limited to random forests. With stratified
sampling, an ensemble model of individually high perform-
ing models is trialed. Stage 1 of this model directly predicts
risk class. Stage 2 predicts application type from which risk
class is derived. In Stage 3 an ensemble vote biased towards
high risk is undertaken. The voting rules are:

 If models agree — take model vote
* If models disagree — take high risk vote

This leads to 3 options for high risk and 1 for low risk,
creating a 3:1 bias in voting.

Hyperparameter Optimization

To ensure high-risk workspaces are detected, we seek to cre-
ate a biased model that prioritizes the sensitivity score of
“high risk” application types instead of overall model ac-
curacy. This is explored through the optimization of class
weights, which penalize the model’s misclassification of
“high risk™ application types more heavily than misclassi-
fication of other application types.

Our final multi-stage ensemble model consists of several
constituent random forest models. The individual random
forest models are divided into two types of classification:

the classification of the seven application types and the bi-
nary classification of the derived “high risk” and “low risk”
classes. For all constituent random forest models, the pro-
cess is as follows:

1. The entire training data set is divided into a stratified
80/20 train/test split.

2. A grid search is performed over each class-weight combi-
nation. An integer weight range of [1,10] is used, except
for non-high-risk application types which are fixed at 1.

3. For each class-weight combination, 5-fold cross valida-
tion is performed and the class of interest’s mean cross-
validation sensitivity score is stored. The class of inter-
est for the derived risk class classifiers is the “high risk”
class. For the application type classifiers, the classes of
interest are ILO, F2F, and a combination of ILO and F2F
(for which the sensitivity score is simply the sum of the
individual sensitivity scores).

4. The ten models with the highest mean cross-validation
sensitivity scores are trained on the entire training split
and compared using the testing split. For derived risk class
classifiers, the model with the highest high-risk sensitivity
score and low-risk sensitivity score above 90% is chosen.
For application type classifiers, the model with the highest
sensitivity score on the class of interest is chosen.

5. Two additional models are trained with class weights cor-
responding to inverse proportion of class frequency in
the training split and tested using the testing split. The
class weight values are calculated using Scikit-learn’s
built-in “balanced” and “balanced_subsample” options for
“class_weight” hyperparameter.

6. The performances of the models from steps 4 and 5 are
compared, and the class weights corresponding to the
model whose class of interest sensitivity score is highest
on the testing split are chosen as the optimal class weights.

The choice to use an 80/20 train/test split for additional
verification is made to prevent overfitting due to the rela-
tively small training dataset (n ~ 21, 000). The final weights
selected are:

e Optimize High Risk: “low risk” : “high risk” relative
weighting of 1:6

 Optimize F2F and ILO (Balanced): {“120”:1, F2F: 3,
ILO: 6, other: 1, meeting: 1, private: 1, workspace: 1}

* Optimize F2F: {1201, F2F: 7, ILO: 2, other: 1, meet-
ing: 1, private: 1, workspace: 1}

* Optimize ILO: {“120”:1, F2F: 3, ILO: 7, other: 1 , meet-
ing: 1, private: 1, workspace: 1}

For each set of optimal weights, a forest of forests is
generated to identify which attributes of the training data
are most important for predicting results with the specified
weightings, producing an ordered list of attributes for each
optimization approach.

To identify the best depth, 10-fold cross-validated random
forest model is produced for depths 1:25 for each subset of



. Optimal Best
Weight Set AttI:'ibutes Depth
Optimize High Risk 55 11
Optimize F2F and ILO (Balanced) 20 24
Optimize F2F 34 23
Optimize ILO 77 24

Table 2: Optimal attributes and depth for each possible
weight set (may be different across weight sets).

attributes in priority order, i.e. for n = 1...82 priority at-
tributes. The best high-risk sensitivity result from this pro-
cess is selected to use as the number of priority attributes and
random forest depth for the final model, detailed in table 2.

To identify the overall best performing model, a vari-
ety of standalone and ensemble approaches are considered
with 100 iterations of each model undertaken with different
train/test split samples to generate different random forests
and results averaged to produce final sensitivities. The high-
risk and low-risk sensitivity scores for a selected subset of
the considered models are shown in table 3.

The ensemble of Stage 1 (Risk Class) and Stage 2 Bal-
anced & In-line/Opposing produces the overall best results
and is therefore selected as the final model. The overall ar-
chitecture of the model is illustrated in fig. 1. The model
incorporates voting at two stages, both with 3:1 bias:

» Stage 2: assigning final stage 2 risk class using inputs
from stage 1B and stage 1C

* Stage 3: assigning final risk class using inputs from stage
1A and stage 2

Option (all weighted) ILow RiskHigh Risk
Stage 1 92.04% | 83.29%
Stage 1 & Ensemble Balanced, F2F & ILO| 94.59% | 91.31%

3-way ensemble vote for stage 2

2-way ensemble vote for stages 1 and 2
Stage 1 & Ensemble F2F/ILO

2-way ensemble vote for stage 2

2-way ensemble vote for stages 1 and 2
Stage 1 & Ensemble Balanced & F2F
Stage 1 & Ensemble Balanced & ILO

93.65% | 93.21%

93.73% | 93.19%
93.86% | 93.29%

Table 3: Sensitivity results for subset of considered models.

Business Insights from Uncertainty
Quantification

To maximize the benefit of actionable conclusions, we also
explore how the uncertainty of the model can be quanti-
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Figure 2: Standard deviation vs mean over 1000 models
on bootstrapped datasets. Shading and annotations indicate
count and accuracy of training records falling in shaded area.

fied, visualized and communicated to the representatives re-
sponsible for reaching out and to the customers themselves.
As the purpose of this model is to identify COVID-unsafe
workplaces, it is essential that outreach to prospective unsafe
workspaces be supported by a robust understanding of how
uncertain the model is with regard to each specific record
(ie. workplace being classified). To evaluate this, we adopt a
modified version of the uncertainty quantification approach
presented by (Stracuzzi et al. 2018), where an ensemble of
decision trees was trained (each on bootstrapped datasets)
and then the mean and standard deviation of all of the deci-
sion trees’ predictions on a single record were used by the
authors as a proxy for the uncertainty of the prediction for
that record. Our multi-stage model is more complex than
a single decision tree, but we replicate the same approach
with our already effectively trained model by creating 1000
separate versions of the multi-stage model on different boot-
strapped datasets and, for each record, run all 1000 and com-
pute the mean and standard deviation of the prediction prob-
ability. In order to do this, the model is modified to carry the
probabilities through the different stages, rather than sim-
ply the predicted classes. The resulting mean and standard
deviation for all records are illustrated in fig. 2, where we
adopt the same visualization technique as in (Stracuzzi et al.
2018) and display the overall accuracy of all records in each
horizontal colored area in the annotation on the right edge.

A more detailed visualization of high and low risk classes
and correct and incorrect results is shown in fig. 3, illustrat-
ing that significantly more records predicted correctly have
lower standard deviations compared to records predicted in-
correctly. A t-test shows a statistically significant difference
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Figure 1: Chosen model architecture. Sensitivities shown are those produced by a single iteration on unknown data.
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Figure 3: Standard deviation vs mean over 1000 models on bootstrapped datasets for each training record, separated by correct

(left) and incorrect (right) predictions.

in standard deviation of correct and incorrect classifications
of records predicted as high risk (with p < 0.001), indicat-
ing the standard deviation is a proxy for the reliability of a
prediction.

Considering only the records with high risk classifica-
tion, an even more clear pattern emerges with distinct sec-
tions of the plot. As illustrated in fig. 4, for high risk pre-
dictions, the results can be split into four quadrants with
varying degrees of reliability of the predictions. Records in
the lower right quadrant are extremely reliable (93.97% cor-
rect), lower left quadrant are more variable (21.58% correct),
upper left quadrant are highly unreliable (6.43% correct),
and upper right quadrant are extremely unreliable (all incor-
rect). This approach allows each individual observation to
be assessed for the reliability of its prediction.

Performing the same process on a far larger set of “real
world data” (data with unknown true classes), shows the
same data spread pattern holds for the records predicted as
high risk, indicating the quadrant analysis is generalizable.
This is crucial, as it allows prioritizing which customers to
reach out to first and provides an explainable understanding
of the confidence that they have a high-risk workspace.
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P(incorrect) = 93.57%

Q2: Extremely Unreliable
ol P(correct) = ---
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Figure 4: Standard deviation vs mean for training records
classified as high risk. Squares and triangles represent cor-
rectly and incorrectly classified records, respectively.

Conclusions

We have presented a multi-stage model capable of detect-
ing workplaces at high risk for COVID-19 transmission
by leveraging historical sales data and product informa-
tion. The model is effective at classifying high- and low-
risk workspaces, with a high high-risk sensitivity, ensuring
that the vast majority of high-risk workspaces are detected.
We have illustrated how existing approaches to uncertainty
quantification in machine learning can be applied to create
actionable, prioritized insights from the results for which the
confidence in the prediction can be relatively easily articu-
lated and understood.

This work will soon be deployed to identify and reach out
to customers to facilitate a safe return to the office, and the
leads generated from this analysis will be critical to priori-
tize “who to reach out to”. Results from the current model
have led to the identification of close to 1.9 billion USD in
office space investment that needs to be retrofitted in order
to make it safe for organizations to re-enter the workspace.
This work is expected to lead to millions of dollars in incre-
mental revenue for the organization, but most importantly, it
is expected to be a direct contributor in supporting organiza-
tions to reopen their office spaces safely.
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