
Agile Tasking of Robotic Systems with Explicit Autonomy*†

Rafael C. Cardoso1, John L. Michaloski2, Craig Schlenoff2,
Angelo Ferrando3, Louise A. Dennis1, Michael Fisher1

1 The University of Manchester, Manchester M13 9PL, UK
{rafael.cardoso, louise.dennis, michael.fisher}@manchester.ac.uk

2 National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899, USA
{john.michaloski, craig.schlenoff}@nist.gov
3 University of Genova, Genova 16145, Italy

angelo.ferrando@dibris.unige.it

Abstract
Task agility is an increasingly desirable feature for
robots in application domains such as manufacturing.
The Canonical Robot Command Language (CRCL) is
a lightweight information model built for agile tasking
of robotic systems. CRCL replaces the underlying com-
plex proprietary robot programming interface with a
standard interface. In this paper, we exchange the auto-
mated planning component that CRCL used in the past
for a rational agent in the GWENDOLEN agent program-
ming language, thus providing greater possibilities for
formal verification and explicit autonomy. We evaluate
our approach by performing agile tasking in a kitting
case study.

Introduction
With the advent of Industry 4.0, new industrial standards
have emerged for distributed and intelligent systems. At the
same time, sensors and processing capability are gradually
becoming cheaper. These factors have contributed to a sig-
nificant growth in the adoption of robotic systems in do-
mains such as manufacturing (Antzoulatos et al. 2017). In
such systems, it is crucial for robots to be quickly tasked
to perform an operation. Task agility is not only limited
to the speed of tasking robots, but also includes other fea-
tures such as handling task failure, planning for new goals,
interchangeability of data and task plans between different
robots, and adapting to dynamic environments (Harrison,
Downs, and Schlenoff 2018).

To tackle the problem of agility performance across many
robotic systems, the Canonical Robot Command Language
(CRCL) (Proctor et al. 2016) was developed at the National

*Work supported by UK Research and Innovation, and
EPSRC Hubs for “Robotics and AI in Hazardous Environ-
ments”: EP/R026092 (FAIR-SPACE), EP/R026173 (ORCA), and
EP/R026084 (RAIN). Fisher’s work also supported by Royal
Academy of Engineering.

†Commercial equipment and software, many of which are ei-
ther registered or trademarked, are identified in order to adequately
specify certain procedures. In no case does such identification im-
ply recommendation or endorsement by the National Institute of
Standards and Technology, nor does it imply that the materials or
equipment identified are necessarily the best available for the pur-
pose.
Copyright © 2021by the authors. All rights reserved.

Institute of Standards and Technology (NIST) in the USA.
CRCL is a messaging specification that focuses on the do-
main of industrial robotics as a special case of an overall
ontology for automation (Fiorini et al. 2017) and was cho-
sen as the first test case to validate the concept of a core
ontology with domain-specific extensions. It works as an in-
formation model for tasks that uses XML Schema to abstract
semantic explanations of the behaviour of common robotic
commands and their execution status. These commands are
independent of the kinematics used by the robot and can be
reused in robots from different manufacturers.

Interoperability of data between robots is also explored
by middleware such as the Robot Operating System (ROS)1.
The main difference between CRCL and ROS is that CRCL
is a communication standard for both joint and Cartesian
control of industrial robots, while ROS, is a framework pro-
viding a joint message interface. It is also possible to use
CRCL with ROS using the packages available from the
ROS-Industrial Consortium, however, in this paper we fo-
cus on the interaction of CRCL with GWENDOLEN.

In the agility demonstration at NIST (Kootbally et al.
2018), CRCL has been implemented for a 7 DOF Motoman
SIA20D and a 6 DOF spherical wrist Fanuc LR Mate 200iD
industrial robots. CRCL is a lightweight, modular compo-
nent where messages provide robot motion and control with
grasping as an abstraction on top of the proprietary robot
controller interface. Significantly to manufacturing, these in-
dustrial robot controllers provide high-speed, smooth mo-
tion, and robust operation tuned to the proprietary robot ar-
chitecture while optimising cycle time for manufacturing ap-
plications. Research partners, such as Georgia Tech and the
University of Maryland in conjunction with the Advanced
Robotics Manufacturing Institute (ARM), as well as indus-
trial partners, such as Siemens, use or are exploring CRCL
for industrial robot applications.

Classical task planning is an effective technique for gen-
erating plans to achieve a goal or a set of goals in com-
plex problems (Nau, Ghallab, and Traverso 2004). The Plan-
ning Domain Definition Language (PDDL) (McDermott et
al. 1998) is a well-known formalism for representing plan-
ning domains and problems and it is often the default input
language for many automated planners.

1https://www.ros.org/

CRCL has used a subset of PDDL in the past to perform
automated task planning (Proctor et al. 2016; Balakirsky
2015). In their work, the PDDL output plan is translated
into CRCL commands that are then sent for execution to the
robot controller. If something fails, then the current status of
the execution can be translated back in order to update the
problem definition and attempt to replan.

In this paper, we propose the use of the GWEN-
DOLEN (Dennis 2017) agent programming language to rea-
son about and execute tasks with CRCL, instead of the
PDDL component that was integrated previously. One ad-
vantage of using rational agents over classical planning with
PDDL is that failure handling is achieved at the execution
level. Assuming that the failure handling plans are correct,
then the agent should be able to adapt to the failure using its
current plans and without resorting to full replanning. Fur-
thermore, the explicit intentions in such agent languages and
the possibility of formal verification in GWENDOLEN both
provide benefits for future understanding and trust.

Related Work
The ROSPlan (Cashmore et al. 2015) framework brings clas-
sical task planning to ROS by embedding a PDDL task plan-
ner into robotic systems and linking it to existing ROS com-
ponents. Their framework is composed of five main ele-
ments: the knowledge base contains the PDDL domain spec-
ification; the problem interface can generate the PDDL prob-
lem and publish it to a ROS topic; the planner interface calls
the planner and publishes the solution to a topic; the pars-
ing interface converts PDDL plans into ROS messages; and
the plan dispatch sends the plan for execution. Even though
ROSPlan can cope with action failures by calling the plan-
ner again to replan, we can save time by using a rational
agent that can react to the failure by triggering the appropri-
ate plans for failure handling.

An interface between the GWENDOLEN agent program-
ming language and ROS has been developed to allow
GWENDOLEN agents to publish and subscribe to ROS top-
ics (Cardoso et al. 2020). Their interface is implemented in
Java, and communicates with ROS through the rosbridge li-
brary; a library that offers communication via JSON mes-
sages to external code. The main advantage in their approach
is twofold: first, publishing and subscribing to ROS nodes is
completely transparent to the agent, as everything is dealt
with at the interface level; and second, the agent code can be
used with any version of ROS that has rosbridge. If we were
to use CRCL with ROS, we would still need our GWEN-
DOLEN integration to send commands through CRCL.

There are also several approaches (de Silva, Sardina, and
Padgham 2009; Meneguzzi and Luck 2013; Colledanchise
and Ögren 2017; Cardoso and Bordini 2019; Patra et al.
2020) that aim to integrate automated planning with ratio-
nal agents. Such online planning can complement the reac-
tive behaviour obtained from using agents and could be used
to patch existing plans or create new plans at runtime. The
main issue in using these approaches in practice is that their
implementation is either domain specific or missing entirely.
Such approaches would also have an impact in the verifica-

tion of the agent programs, as new or modified plans can
potentially violate existing properties.

The Canonical Robot Command Language
CRCL contains separate XML information models related
to robot motion control and status reporting as well as un-
derlying data types such as poses, speeds, and units. CRCL
handles Cartesian and joint robot motion control, as well
as parallel and vacuum gripper control, which allows it to
target industrial robot applications. Because CRCL supports
Cartesian motion control it is well-suited to handle pick and
place robot tasks. CRCL requires an underlying robot con-
troller to handle real-time motion trajectory planning.

CRCL addresses the myriad of Cartesian and joint level
communication schemes inherent in proprietary commercial
off the shelf robots. CRCL is a standard focused on the com-
munication wire to the robot. The specification and soft-
ware tools for CRCL are available from the ROS-Industrial
Consortium. While CRCL is sufficient for many assembly
and kitting tasks, extensions are needed in order to handle a
wider variety of robot applications.

The standard CRCL interface insures software modular-
ity between the application task software and the physical
robot. The CRCL modularity should allow different com-
mercial robots to be interchanged as long as a CRCL adap-
tor is available to communicate to the new robot and the
new robots’ functional specification is equivalent to the ex-
isting robot, such as for work volume, payload, etc. Al-
though CRCL implementations are not pervasive yet, a sin-
gle point of standardisation greatly assists in achieving mod-
ularity and avoiding the silo architecture common in indus-
trial robotic applications.

Figure 1: Example kitting models reported by CRCL.

Currently, CRCL does not include any sensor model re-

porting. For our purposes, we extend CRCL status XSD to
include reporting of logical model information, similar to
what would be returned by a camera. The augmented CRCL
status model now reports all scene models name and pose.
Such data can then be sent to the agent at runtime in order
for it to maintain correct and up-to-date information about
the environment. We further augment CRCL status by in-
cluding properties that can be reported about each model.
Using the CRCL status model properties, we are able to re-
port inferences about the given scene. Figure 1 shows a plan-
ning scene that can be reported by a CRCL model status. In
Figure 1 the model name is the type name appended with a
numeric identifier within the scene.

Rational Agent Programming in GWENDOLEN

The GWENDOLEN agent programming language (Den-
nis 2017) is based on the Belief-Desire-Intention (BDI)
model (Rao and Georgeff 1995): beliefs represent the knowl-
edge that the agent has about the world, including itself and
other agents; desires are the goals that the agent wants to
achieve; and intentions are courses of action that can lead to
the achievement of goals. For example, consider the GWEN-
DOLEN syntax of a plan for sending a grasping command to
grab an item with a robotic arm as shown in Listing 1.

+! t a k e p a r t (Size) : { ∼B gr ipper grasped () }
← t a k e p a r t (Size) ;

Listing 1: GWENDOLEN Example Plan.

The plan will be triggered upon the addition (+) of the
goal (!) take part (Size). Size represents the size of the item
to be grabbed and can be either a free variable or a unified
term (following Prolog conventions, variables start with cap-
ital letters). After the colon and in between the curly brackets
we have the guard of the plan. The plan will only be selected
for execution if the guard is satisfied. In this case, there must
not (∼) be a belief called gripper grasped (), where in-
dicates variables which may match any value. Finally, the
body of the plan is preceded by the left arrow and contains
a sequence of steps (actions, belief operations, goal oper-
ations, etc.). In this example, the body includes the action
take part (Size) that will be sent to the robot. The semi-
colon at the end indicates the end of the body of the plan.

Verification of autonomous robots can contribute to the
trustworthiness of the system and can be vital in applica-
tion domains such as safety-critical scenarios (Farrell, Luck-
cuck, and Fisher 2018). What makes GWENDOLEN different
from other agent programming languages is that it was built
from the ground up with formal verification in mind. The
language comes equipped with the Agent Java PathFinder
(AJPF) (Dennis et al. 2012) model checker. Model check-
ing (Clarke et al. 2018) is a formal technique that verifies
properties (usually specified using some form of temporal
logic) of a system by exhaustively exploring the state space
from a model (an abstraction of the implementation that can
be represented, for example, as finite-state machine). AJPF
verifies the agent program directly, instead of relying in an
abstract model.

GWENDOLEN-CRCL Integration
In our integration, the GWENDOLEN agent selects plans for
execution that are then decomposed into CRCL commands
to be given to the robot. The agent is a CRCL client that
can send messages to the CRCL servers’ front-end, which
in our case is a robot, and then monitors execution sta-
tus until a program step has completed. Any failure is re-
ported to the client, which can then trigger failure handling
plans in the agent and result in a modified course of action.
Figure 2 illustrates the relationship between a Gwendolen
Agent and CRCL communication to command and control
either a real or virtual instance of the NIST Agility Labora-
tory (Piliptchak et al. 2019).

Figure 2: GWENDOLEN agent with CRCL communication
to real/virtual world.

The environment in agent languages provides a bridge
between the agent and the world. In an environment, the
developer can implement the details of the agent’s actions
(either simulating or sending them to another node for ex-
ecution) as well as implementing perceptions (either simu-
lated or originated from another source) that will be sent to
the agent. In this paper, the CRCL client is implemented as
a GWENDOLEN environment. Communicating with CRCL
is straightforward since GWENDOLEN environments are im-
plemented in Java and there is a Java version of CRCL.

Information about the environment, such as sensor data
and action results, is sent by the CRCL server to the CRCL
client (in this case, a GWENDOLEN environment) in the form
of CRCL status messages. By default, all data sent to the
GWENDOLEN client is converted into perceptions and sent

to the agent. It is also possible to customise this function to
revise the information coming in, for example, by applying a
filter to send only information that is deemed relevant to the
agent. Such customisation is domain dependent and should
be added manually if the application requires it.

The high-level decision making of the robot is performed
by the GWENDOLEN agent. This involves reasoning about
events from the environment using a plan library containing
pre-built plans for achieving tasks in a particular domain.
Once the agent has decided upon the next course of action,
the action is sent to the GWENDOLEN environment to be
translated into a CRCL command and then sent to the CRCL
server. Upon reception of the message containing an action
to be executed, CRCL translates the action into a low-level
command ready to be executed by the robot.

After the agent sends an action for execution, it waits
for the result of that action before continuing with its cur-
rent plan. This is achieved in GWENDOLEN by adding *ac-
tion result(Result) to the step in the plan after said action,
where * represents wait until action result(Result) is true
before continuing, and Result is a Boolean value indicating
success (true) or failure (false). The wait in GWENDOLEN
effectively suspends the intention related to the plan that it
is a part of until its condition is satisfied. This information
comes in from the CRCL server, which monitors the exe-
cution status of commands and reports it back to the agent.
In case of an action failure, the appropriate failure handling
plan for the action is triggered, which by default can be as
simple as trying to execute the action again until it even-
tually succeeds, or more intricate to contain domain-specific
information (such as attempting a different course of action).

Case Study: Kitting
Kit building or kitting is a common manufacturing process
in which individually separate but related items are grouped,
packaged, and supplied together as one unit (kit). It provides
an industrial application for autonomous robots with plan-
ning, control and sensing challenges necessary to achieve
task correctness as well as agility in dealing with errors.

Kitting is instructed in terms of task-level goals, such as
“grasp part A and place it inside kit B” (Lozano-Perez et
al. 1989). In our case study, different size gears (i.e., small,
medium and large) are supplied in a supply vessel tray and
empty kit trays arrive with open slots to be filled by a com-
bination of sized gears. To perform kitting, either a small,
medium or large gear is first grasped and then placed into a
corresponding open slot of that size in a kit.

Planning involves studying relationship of the gears and
trays where both kitting and supply tray models provide the
occupancy of the contained slots. Tasks in this case study
require filling a kit with the variety of gear sizes from the
supply trays by tracking the tray slots state as either occu-
pied by a gear or open with no gear.

For advanced reasoning, the necessary physical definition
of all the types of objects is assumed to be provided. For ex-
ample, Figure 3 shows the physical relationships exhibited
by a kitting tray and gears. For kitting, we assume these def-
initions for the different size gears, each supply or kitting
tray, as well as all slots within the trays have been provided.

Figure 3: Kit tray and gears.

For each kit, supply vessel, and gear, the CRCL server
produces knowledge inferences by studying the relationship
of the gears and trays in the scene. For example, an in-
ference could be established based on whether a tray slot
is “open” or contains a gear with a model name (e.g.,
“sku medium gear 19”). This inference is based on the
proximity of a gear to the position of a slot with a tray. If
no gear in the scene is found in close proximity to the slot,
it is “open”.

With augmented CRCL model status reporting, the
GWENDOLEN agent can reason about which decision to
make using up-to-date information about the world. The ba-
sic kitting strategy used by the agent is as follows:

1. Find an open slot in a kit tray;
2. Search its belief base for a matching free gear of the same

size as the open slot;
3. Move the arm to a position that would allow the gripper

to grasp the gear;
4. Grasp the gear;
5. Move the arm to the open slot;
6. Release the grasp.

Now we discuss the tools used to implement this case
study in a 3D simulation2. We use the Fanuc LR Mate 200iD
robotic arm to perform kitting operations. This model has 6
axis, a reach of 717 mm, and load capacity of 7 kg. Gazebo
with Open Dynamics Engine (ODE) physics engine pro-
vides the simulation tool for physics-based interaction of
robots, kitting, and environment. Wire mesh models and
physical properties of the NIST agility lab robots and kitting
objects were incorporated into the Gazebo world. Modelling
the physical properties of kitting elements in a physics en-
gine can be challenging. For example, in order to properly
use the simulated physics engine functionality, the weight,
size and inertia of robot and kitting objects must be properly
specified. The benefit is that when robots or kitting objects
collide with each other, the object interaction is observable
and if unintentional, adverse consequences are apparent.

At the top level, the agent is implemented in the GWEN-
DOLEN agent programming language. The CRCL client is

2https://github.com/autonomy-and-verification/
gwendolen-crcl-kitting

written as a GWENDOLEN environment (i.e., Java) and acts
as a bridge between the agent and the robot. The Java version
of the CRCL server is used to convert actions that are sent
by the agent into CRCL commands that are communicated
to the robot via a CRCL adaptor module.

The CRCL adaptor module uses CodeSynthesis3 and the
Xerces XML DOM parser4 for translating CRCL XML mes-
sages into a C++ representation. Given a C++ representa-
tion, conversion to ROS or other robot platforms can be
generated. The lower level software architecture relies on
Gazebo for 3D physics-based simulation.

The GWENDOLEN agent uses the following beliefs that
are updated by CRCL to match the current state of the world:

• gear tray(IdGearTray, Size, [Slot1, . . . , Slotn)]:
IdGearTray is the identifier name for the tray, Size is
either “small”, “medium” or “large”, and for each slot
in the list of slots [Slot1, . . . , Slotn] the value is assigned
to either the identifier name for the gear in that slot or
“empty”;

• kit tray(IdKitTray, [slot(Id1, Size1, Pos1), . . . , slot
(Idn, Sizen, Posn)]): IdKitTray is the identifier name for
the tray, and each slot predicate from the list of slots con-
tains the identifier name for the slot in the first parameter
(required for the agent to know where to move the arm),
the size of the slot in the second parameter, and the iden-
tifier name for the gear in that slot or “empty” in the third
parameter;

• gripper(State): State represents the current grasping
mode of the gripper, either “open” or “closed”;

• grasped(Object): Object is the identifier name of the
gear that is currently grasped by the gripper.

In Table 1, we show the high-level actions that the agent
can decide to do, and their translation into low-level CRCL
commands. Actions open gripper and close gripper are
straightforward to translate. The agent should not have to
worry about low-level path planning or pose information; it
sends actions to move the arm to a particular location, which
can be a kit tray, a gear tray, a particular gear in a gear tray, or
a particular slot in a kit tray. The translation into low-level
requires prior mapping of the coordinates of each possible
location. While some of these positions may change at run-
time (e.g., a gear is moved), we rely on CRCL to keep track
of the new coordinates.

GWENDOLEN action CRCL command
open gripper setGripper(1.0)
close gripper setGripper(0.0)
move(Location) moveTo(Pose)

Table 1: Actions in GWENDOLEN and their respective coun-
terparts in CRCL commands.

The main plan for performing a kitting operation is shown
in Listing 2. This plan is triggered upon the detection that

3www.codesynthesis.com/products/xsd
4xerces.apache.org/xerces-c

there is a kit tray IdKitTray with an empty slot Id for gears
of size Size. The guard of the plan checks that the gripper is
not currently grasping an object, and then consults the belief
base for a gear tray with gears of Size. The first step in the
body of the plan is an internal action that looks through a list
of slots in the gear tray and then adds a perception contain-
ing the first non-empty position5. Next, the agent adds the
relevant goals for each of the main steps in kitting. Each of
these goal additions will trigger another plan, with its own
guard and body.

+! k i t t i n g (Id , Size) :
{ ∼B grasped () , B gea r t r ay (IdGearTray , Size , S lo ts) }
← f i n d g e a r (S lo ts) , * gear (Gear) , + !move(Gear) ,

+ ! c l ose g r i ppe r , + !move(Id) , + ! open gr ipper ;

Listing 2: GWENDOLEN agent plan for kitting.

As an example of action failure in this scenario, let us con-
sider the failure of the action to open the gripper’s grasp. In
this setting, a failure is detected by CRCL if it receives an ac-
tion to open the gripper while it is currently grasping a gear
and the target position for releasing the grasp is either not an
empty position of a kit tray or the size of the empty position
does not match the size of the gear currently grasped.

For brevity, we only show the plan for handling the failure
of trying to place a gear into an open slot of different size,
shown in Listing 3. Since there are other plans that handle
failures of the open grip action, we need to ensure that the
agent will select the correct plan. This is done by testing if
the sizes (received from CRCL) do not match in the guard of
the plan. To solve this failure, first the agent looks through
its updated belief base for a new open slot of the appropriate
size, moves to it, and then releases the grasp.

+! a c t i o n r e s u l t (Size , Gear , SizeGear , f a l s e) :
{ ∼ (Size == SizeGear) }
← +! f i n d o p e n s l o t (SizeGear) ,

* new target (NewIdKitTray , NewId) , + !move(NewId) ,
+ ! open gr ipper ;

Listing 3: One of the plans in GWENDOLEN for handling
failure in the open gripper action.

Another example of an error scenario is the mishandling
and dropping of a free gear during the pick and place of
the gear in an open kitting slot. Such a case could occur if
the gear was not grasped properly as it was askew in the
supply tray and undetected, or by sliding out of the supply
tray if the gear is misoriented in the tray and falls out of
a moving conveyor. Quality control deems dropped parts no
longer to specification. In such a scenario, if the robot is able
to pick up the gear then it should place it in the recycle bin. It
can be difficult for PDDL planners to cope with this type of
error scenario, since they can not achieve the same level of
reactivity as in rational agents without constantly recalling
the planner to perform replanning.

5For brevity, we omit the plans that deal with the case where all
positions in the tray are empty.

Conclusions
Our integration of rational agents, developed in the GWEN-
DOLEN agent programming language, with the CRCL infor-
mation model allows robotic solutions to be developed and
deployed for application domains that require agile tasking
of robots. We have demonstrated the applicability of our ap-
proach in a case study of a robotic arm autonomously as-
sembling kits. The reactivity of rational agents makes them
a suitable approach for handling action failures without hav-
ing to resort to full replanning. Even though its effectiveness
in responding to failures depends on pre-existing and well
made plans, these plans can be formally verified to provide
assurances that they will behave as expected.

For future work, we want to extend our integration to in-
corporate a number of ontologies that have been designed
for robotics and automation (Fiorini et al. 2017). These on-
tologies could be used to standardise the information being
exchanged between GWENDOLEN agents and CRCL. This
would make our approach more general and easier to apply
in different application domains. We also plan to experiment
with more complex case studies, possibly involving multi-
ple robots/agents, and explore the use of formal verification
to provide assurances about existing plans, in particular the
plans for failure handling.

References
Antzoulatos, N.; Castro, E.; de Silva, L.; Rocha, A. D.;
Ratchev, S.; and Barata, J. 2017. A multi-agent frame-
work for capability-based reconfiguration of industrial as-
sembly systems. International Journal of Production Re-
search 55(10):2950–2960.
Balakirsky, S. 2015. Ontology based action planning
and verification for agile manufacturing. Robotics and
Computer-Integrated Manufacturing 33:21 – 28. Special Is-
sue on Knowledge Driven Robotics and Manufacturing.
Cardoso, R. C., and Bordini, R. H. 2019. Decentralised plan-
ning for multi-agent programming platforms. In Proceed-
ings of the 18th International Conference on Autonomous
Agents and MultiAgent Systems, AAMAS ’19, 799–807.
Cardoso, R. C.; Ferrando, A.; Dennis, L. A.; and Fisher, M.
2020. An interface for programming verifiable autonomous
agents in ROS. In European Conference on Multi-Agent Sys-
tems (EUMAS).
Cashmore, M.; Fox, M.; Long, D.; Magazzeni, D.; Ridder,
B.; Carreraa, A.; Palomeras, N.; Hurtós, N.; and Carrerasa,
M. 2015. ROSPlan: Planning in the robot operating sys-
tem. In Proceedings of the 25th International Conference
on International Conference on Automated Planning and
Scheduling, ICAPS’15, 333–341. AAAI Press.
Clarke, E. M.; Grumberg, O.; Kroening, D.; Peled, D.; and
Veith, H. 2018. Model checking. MIT press.
Colledanchise, M., and Ögren, P. 2017. How behavior trees
modularize hybrid control systems and generalize sequential
behavior compositions, the subsumption architecture, and
decision trees. IEEE Transactions on Robotics 33(2):372–
389.

de Silva, L.; Sardina, S.; and Padgham, L. 2009. First prin-
ciples planning in BDI systems. In Proceedings of The 8th
International Conference on Autonomous Agents and Multi-
agent Systems - Volume 2, AAMAS ’09, 1105–1112.
Dennis, L. A.; Fisher, M.; Webster, M. P.; and Bordini, R. H.
2012. Model checking agent programming languages. Au-
tomated Software Engineering 19(1):5–63.
Dennis, L. A. 2017. Gwendolen semantics: 2017. Technical
Report ULCS-17-001, University of Liverpool, Department
of Computer Science.
Farrell, M.; Luckcuck, M.; and Fisher, M. 2018. Robotics
and integrated formal methods: Necessity meets opportu-
nity. In Integrated Formal Methods, volume 11023 of LNCS,
161–171. Springer.
Fiorini, S. R.; Bermejo-Alonso, J.; Gonçalves, P.; de Freitas,
E. P.; Alarcos, A. O.; Olszewska, J. I.; Prestes, E.; Schlenoff,
C.; Ragavan, S. V.; Redfield, S.; et al. 2017. A suite of
ontologies for robotics and automation [industrial activities].
IEEE Robotics & Automation Magazine 24(1):8–11.
Harrison, W.; Downs, A.; and Schlenoff, C. 2018. The ag-
ile robotics for industrial automation competition. AI Mag.
39(4):73–76.
Kootbally, Z.; Schlenoff, C.; Antonishek, B.; Proctor, F.;
Kramer, T.; Harrison, W.; Downs, A.; and Gupta, S. 2018.
Enabling robot agility in manufacturing kitting applications.
Integrated Computer-Aided Engineering 25(2):193–212.
Lozano-Perez, T.; Jones, J. L.; Mazer, E.; and O’Donnell,
P. A. 1989. Task-level planning of pick-and-place robot
motions. Computer 22(3):21–29.
McDermott, D.; Ghallab, M.; Howe, A.; Knoblock, C.; Ram,
A.; Veloso, M.; Weld, D.; and Wilkins, D. 1998. PDDL - the
planning domain definition language. Technical Report TR-
98-003, Yale Center for Computational Vision and Control.
Meneguzzi, F., and Luck, M. 2013. Declarative planning in
procedural agent architectures. Expert Systems with Appli-
cations 40(16):6508 – 6520.
Nau, D.; Ghallab, M.; and Traverso, P. 2004. Automated
Planning: Theory & Practice. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc.
Patra, S.; Mason, J.; Kumar, A.; Ghallab, M.; Traverso, P.;
and Nau, D. 2020. Integrating acting, planning, and learning
in hierarchical operational models. In Proceedings of the
30th International Conference on Automated Planning and
Scheduling (ICAPS), 478–487. AAAI Press.
Piliptchak, P.; Aksu, M.; Proctor, F. M.; and Michaloski,
J. L. 2019. Physics-based simulation of agile robotic
systems. In ASME International Mechanical Engineering
Congress and Exposition, volume 59384, V02BT02A011.
American Society of Mechanical Engineers.
Proctor, F.; Balakirsky, S.; Kootbally, Z.; Kramer, T.;
Schlenoff, C.; and Shackleford, W. 2016. The canonical
robot command language (CRCL). Industrial Robot: An In-
ternational Journal 43:495–502.
Rao, A. S., and Georgeff, M. P. 1995. BDI agents: From
theory to practice. In Proceedings of the first International
Conference on Multi-Agent Systems, 312–319.

