
Performance Metrics for State-Based Imitation Learning

Mohamed Zalat, Babak Esfandiari
Carleton University

1125 Colonel By Drive, Ottawa, ON
Canada, K1S 5B6

Abstract

We propose five new domain-independent metrics for evalu-
ating and comparing performance at imitating a state-based
expert. We use two agents in the RoboCup environment to
compare the performance metrics: an agent based on a Multi-
Layer Perceptron (MLP) and an agent based on a Long Short-
Term Memory (LSTM) neural network.

1 Introduction
Motivation
In imitation learning, it is not uncommon to use domain
specific metrics for evaluating the performance of an agent
at imitating an expert (Ross, Gordon, and Bagnell 2011;
Abbeel, Coates, and Ng 2010). When this metric is simply
a score of the imitation learning agent in its application do-
main as in (Ross, Gordon, and Bagnell 2011), we are mak-
ing the assumption that the expert’s goal is to maximize or
minimize that specific metric in its domain. However, such
metrics are evaluating how well the agent is performing in
the domain, as opposed to how well the agent is imitating the
expert. An example of a domain specific metric that would
fail to capture how well an agent is imitating an expert is
the number of goals an agent scores in a soccer simulation.
In this example, an agent may not be imitating the expert
properly and score more goals than the expert, making the
metric inadequate in capturing how well the agent imitates
the expert.

In other cases where the domain of the expert contains
no such metric for evaluating the performance of the agent,
it is common to resort to metrics such as the F1-score or
the accuracy of the agent with respect to the expert (Gu-
naratne, Esfandiari, and Fawaz 2018; Tı̂rnăucă et al. 2016;
Ontanón, Montaña, and Gonzalez 2013; Floyd and Esfandi-
ari 2011). One main issue with those metrics, despite them
adequately measuring how well an agent imitates a reactive
expert (an expert that only relies on the most recent environ-
ment state to take a decision), is that they do not take into
account that the prediction problem is a sequential problem

Copyright © 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

when the expert is state-based (i.e. relies on previous en-
vironment states and actions in addition to the most recent
environment state). Moreover, if a test set of pre-collected
trajectories of the expert is used for testing, those metrics
do not give information on how well the agent imitates the
expert in practice, as the agent will visit a much different
environment state distribution once it takes an action the ex-
pert would not take. This is because slightly deviating from
the expert’s behavior may result in the learner visiting states
the expert rarely/never visits and further deviating from the
expert’s behavior as a result. To address this problem, we
propose new metrics to compare the agent’s trajectory to the
expert’s trajectory in the test set instead of measuring the
accuracy of the agent.

A metric for measuring the deviation between two tra-
jectories was proposed in (Tı̂rnăucă et al. 2016). However,
this distance metric was used to compute the distance be-
tween a learning model’s input and output pair with the cor-
responding pairs in the expert’s trajectory. Their use of this
distance metric was model-centric as opposed to being cen-
tered on the trajectories. Therefore, in models that take the
current environment state as their input, this metric would
only measure the distance between the reactive component
of the agent’s and the expert’s behavior. Hence, its value
will not reflect whether the agent is taking actions based on
the same reasons the expert took those actions (which may
be from past environment states). This points to the lack of
state-based imitation learning metrics that are model and do-
main independent. Ideally, those metrics should be based on
the following 2 components: the trajectory before the agent
or expert took the action, and the action the agent or expert
took as a result.

Contributions
The domain we use to compare our proposed metrics to ex-
isting metrics is the RoboCup 2D virtual soccer simulation
environment (Itsuki 1995). The RoboCup environment pro-
vides each agent with angle and distance information of each
object in its field of view. We explain the RoboCup environ-
ment in more detail in Section 5. We propose five metrics
that use the chi-squared statistic to measure the deviation
between different distributions of the agent and the expert

derived from their trajectory. Traditionally, it is used to test
the independence of a pair of random variables based on ob-
servations of the pair. This makes it suitable for measuring
the distance between two distributions.

To test the validity of the proposed metrics, we use two
experts: a reactive expert and a state-based expert; and two
agents: a Multi-Layer Perceptron (MLP) agent that is only
capable of learning reactive behavior and a Long Short-Term
Memory (LSTM) (Hochreiter and Schmidhuber 1997) agent
that is capable of learning state-based behavior.

We also compare our proposed metrics with commonly
used metrics and assess the behavior of the agents qualita-
tively. We argue that some of our proposed metrics are better
at comparing the performance of imitation learning agents
when they are imitating state-based behavior than common
metrics. In addition, our metrics have a stronger statistical
ground that enables us to use them in a chi-squared test to
reject or fail to reject the hypothesis stating that the agent’s
and expert’s distributions are the same.

Structure
The formal definition of an agent, its trajectory, and im-
itation learning are presented in Section 2. In Section 3,
we briefly discuss the state of the art metrics that measure
how well an agent learns state-based behavior. Section 4
introduces our proposed metrics based on the chi-squared
statistic between the agent and the expert. We describe the
RoboCup environment and action space, the behavior of our
two experts, the architecture of our learning agents and the
size of the data set used for each agent in Section 5. In Sec-
tion 6, we discuss our results and compare our performance
metrics in the cases of imitating reactive behavior and state-
based behavior.

2 Background
Imitation Learning
Imitation learning is the process of learning an expert’s be-
havior using example trajectories of the expert, and possibly
the expert’s feedback during the execution of the learning
agent (Argall et al. 2009). The environment of an agent can
be defined by a discrete set of environment states S; where
an agent selects an action a from the set of actions A the
agent can perform (Wooldridge 2009).

Trajectories
A trajectory of an agent’s run is simply a sequence of en-
vironment state and action pairs. For the rest of this pa-
per we will use the words run and trajectory interchange-
ably. (Wooldridge 2009) represents a run using the following
notation:

r : s0
a1−→ s1

a2−→ ...
an−−→ sn

Where the run r starts at the perception of environment
state s0 ∈ S, followed by its action a1 ∈ A, followed by
the perception of s1, etc. (Wooldridge 2009) defines R as
the set of all finite trajectories. Similarly, we define RS as
the subset of finite trajectories that end with an environment
state andRA as the subset of finite trajectories that end with
an action.

Agents
An agent can be described as a function that selects an ac-
tion based on its trajectory ending with the last observed
state. (Wooldridge 2009) describes an agent as the follow-
ing function:

Ag : RS → A

We can also simplify the definition of an agent that re-
quires past environment states by representing the informa-
tion from the past using an internal state i ∈ I . Agents that
depend on information from the past are referred to as state-
based agents. The following function simplifies the formal
definition of an agent:

Ag : S × I → A× I

Where I is the finite set of internal states the agent
may occupy. This internal state captures the information
from past environment states and actions that a state-based
agent requires to select an action. However, there are cases
where the agent does not need any past information and se-
lects an action purely based on the current environmental
state. In those cases, an agent is said to be a reactive agent
since it is reacting to the latest observation of its environ-
ment. (Wooldridge 2009) defines a reactive agent as the fol-
lowing function:

Ag : S → A

3 State of the Art
It is common to use domain specific metrics, F1-score and
accuracy as mentioned previously to estimate how well the
agent is imitating the expert (Ross, Gordon, and Bagnell
2011; Abbeel, Coates, and Ng 2010; Gunaratne, Esfandiari,
and Fawaz 2018; Tı̂rnăucă et al. 2016; Ontanón, Montaña,
and Gonzalez 2013; Floyd and Esfandiari 2011). However,
using domain specific metrics may not necessarily indicate
the agent is properly imitating the behavior of the expert.
For example, using the number of times a car falls off from
a racing course does not necessarily prove that the agent is
completely imitating the behavior of the expert driver. On
the other hand, F1-score and accuracy are good metrics for
indicating how well the agent imitates the expert correctly
given we use the expert as an oracle in a test run; how-
ever, in cases where a testing set consists of pre-collected ex-
pert trajectories, those metrics will show better results than
reality. This is because the testing set tests the learner on
the expert’s environment state distribution as opposed to the
learner’s environment state distribution. Therefore, it is im-
portant to compute the F1-score and accuracy of the agent
on its own trajectory, with the expert providing the action it
would take in the situations the agent visits. In cases where
this is not possible, F1-score and accuracy will not indicate
how well the agent imitates the expert when it is deployed in
the environment.

Vapnik’s risk is a metric that measures the inverse likeli-
hood of a trajectory of an agent to be produced by a par-
ticular Probabilistic Finite Automata (PFA). It was used
in (Tı̂rnăucă et al. 2016) with the purpose of behavioral

recognition. They also proposed the Monte Carlo distance
metric that does not require a PFA and aims to measure
the deviation between the agent’s and the expert’s trajectory.
The Monte Carlo distance is the normalized log of the count
of state-action pairs that are identical in trajectories T and
T ′:

H(T, T ′) = − 1

n

n∑
i=1

log[

∑m
j=1 Π{o′j}(oi) + 1

m+ |S| × |A|
]

Where oi = (si, ai) is an observation and action pair in
the trained agent’s trace T , n is the length of the agent’s
trace, o′j = (sj , aj) is an observation and action pair in the
expert’s trace T ′, m is the length of the expert’s trace, and
Π{o′j} is the indicator function of set {o′j}. We include this
metric in Section 6, to compare it to our metrics. The obser-
vation component was dependent on the model they used.
Hence, sj and si consists of both the current and previous
environment state in a model that takes the current and previ-
ous environment state as input. They used this metric based
on three models: a model that takes the current environment
state as input; a model that takes the current and previous en-
vironment state as input; and a model that takes the current
environment state, past environment state and the previous
action as input. They perform behavioral cloning (a special
case of imitation learning where no feedback from the ex-
pert is used) using traditional machine learning models in
addition to PFA in a 2D Vacuum cleaner domain.

4 Metrics
Currently all the cross-domain performance metrics used in
the field of imitation learning involve measuring the distance
between the agent’s and expert’s P (A|S). For example, the
accuracy metric measures the percentage of time the agent
selects the correct action at each environment state, and the
Monte Carlo distance involves counting the number of iden-
tical state-action pairs in the agent’s that are present in the
expert’s trajectory (assuming the model only takes the cur-
rent environment state as input). However, recall from Sec-
tion 2 that, unless the agent is reactive, an agent maps an
entire trajectory ending with a state to an action. Hence, we
can see that all the cross-domain metrics we currently use
measure the reactive component of how well an agent imi-
tates an expert. In order to test how well an agent imitates
an expert that may be state-based, we need to use metrics
that measure the performance of an agent over its P (A|RS)
distribution (the distribution of actions given its trajectory).
Unfortunately, RS is a very large set making it impossi-
ble to measure the agent’s imitation performance over its
P (A|RS) distribution directly. Also, this probability distri-
bution is likely to be very sparse and sensitive to small vari-
ations. However, we can measure it indirectly by using se-
lective sub-sequences from a trajectory.

We propose using P (S), P (St|St−1) , P (A),
P (At|At−1) and P (A|S) as estimations of the trajec-
tory of the agent and the expert. We can easily extract those
distributions from the trajectory of the agent and the expert
and compare them to each other. We use the χ2 statistic

to measure the distance between the two distributions
because it is not computationally expensive to compute
unlike the Monte Carlo distance. In addition, it allows us
to test the indistinguishability of the agent’s distribution
from the expert’s distribution at a chosen confidence level.
The χ2 statistic is calculated using the expected frequency
mi of each possible value of the random variable in the
distribution, its observed frequency xi, and the number
of possible values the random variable can take k, using
Equation (1). We calculate the χ2 statistic under the null
hypothesis that the agent’s distribution and the expert’s
distribution are independent. In the following subsections,
we provide the intuition behind the use of each distribution
as an imitation learning metric and how each metric is
calculated.

χ2 =

k∑
i=1

(xi −mi)
2

mi
(1)

χ2
P(S)

We compute this metric by recording the frequency of each
unique state visited by the learning agent and the expert in its
respective trajectory, then calculating the Chi-squared (χ2)
statistic using the frequency table constructed. Hence, this
metric measures the difference between the distribution of
states visited by the learning agent in its trajectory with that
visited by the expert. This metric should be useful in com-
paring agents that are imitating state-based behavior, since
an agent should be visiting the same environment state dis-
tribution of the expert if it is properly imitating the expert
regardless of the expert’s type. However, it may not neces-
sarily prove that the agent is imitating the expert correctly if
there are multiple behaviors that can produce identical P (S)
distributions.

χ2
P(A)

This metric compares the distribution of actions taken in the
learning agent’s trajectory to that of the expert’s trajectory.
As opposed to χ2

P (S), this metric does not guarantee that
two agents have the same reward function and as such, it
does not guarantee that the agent converged to the expert’s
behavior. This is because if an agent stochastically selects
actions based on the action distribution of the expert without
regard of its environment state, it will have the same P (A) as
the expert. However, it lets us know at a high level whether
the agent is at least imitating the distribution of actions of
the expert.

χ2
P(A|S)

This metric compares the distribution of actions taken at
each unique environment state of the agent with that of the
expert. This metric is analogous to the accuracy and the F1
score, however, it measures deviation and as such, maximiz-
ing accuracy is the same as minimizing χ2

P (A|S). It is also
obvious that this metric is analogous to the concept of the

Monte Carlo distance metric with a model that takes the cur-
rent environment state as input. As the agent approaches per-
fect imitation of the expert, the χ2

P (A|S) metric approaches 0.
Again, it may not be ideal to measure how well an agent im-
itates an expert using this metric if the expert is state-based,
since it may have an identical P (A|S) to the expert but does
not perform them based on the correct conditions that are
required from past states.

χ2
P(St|St−1)

This metric compares the distribution of environment states
visited conditioned on the previous environment state of the
agent’s trajectory with the expert’s trajectory. For this met-
ric, we record the frequency of each possible and unique
state-to-state transition in the table used to compute the χ2

statistic. The goal of χ2
P (St|St−1)

is to measure how well the
agent imitates the state transition distribution of the expert.
As opposed to P(S), this metric can prove that the behavior
of the agent converged to the expert’s behavior if the envi-
ronment’s state transitions depend on the action taken. This
is because the agent needs to select the same actions as the
expert at the correct states to match the expert’s P (St|St−1).
Therefore, it can be thought of as a stricter version of χ2

P (S),
since it requires the agent to not only visit the same dis-
tribution of states as the expert but also to maximize the
chance of transitioning to the correct next state (which is
achieved by selecting the correct action). Hence, we can say
that χ2

P (St|St−1)
≥ χ2

P (S).

χ2
P(At|At−1)

This metric compares the distribution of actions conditioned
on the previous action of the agent’s trajectory with the ex-
pert’s trajectory. This makes it useful to compare imitation
learning agents when the expert’s behavior is state-based
as opposed to χ2

P (A), as the previous action of the agent
depends on the previous environment state of the agent.
χ2
P (At|At−1)

requires the agent to select the correct action
in the current environment state which requires correctly se-
lecting the previous action that was selected based on the
previous environment state. In cases where the expert is
state-based, it will be useful to find out if an agent is not
selecting the actions using the same reasoning as the expert
or if the agent’s model is incapable of capturing the expert’s
reasoning and instead it is selecting the action randomly.

5 Experiments
In this section, we start by describing the RoboCup domain
used to test our metrics followed by the experts we use to
train the agents. Lastly, we define the neural networks used
for our imitation learning agents, the hyper-parameters of
each agent, and the data set used to train each agent on each
expert.

RoboCup Environment Space
RoboCup is a virtual soccer simulation environment that
provides each agent with details about its environment in

a string format. The environment consists of the ball in the
soccer field, the two goals, and the other agents in the field
(enemy team and friendly team). However, the agents do not
have full information about the environment as they are lim-
ited by their field of view and as such the environment is par-
tially observable. This poses a challenge in creating a vector
that models the perception of an agent, as some information
may not be available. Moreover, the RoboCup environment
is dynamic and non-deterministic, meaning that the environ-
ment may change before the agent takes an action and that
its next state is not solely determined by its action and the
state it took the action upon.

In order to deal with objects such as the ball and players
that may not be in the field of vision of the agent, the envi-
ronment vector contains a binary field stating if an object is
visible or invisible and 2 fields containing the direction and
distance information for every possible object in the simu-
lation. When objects are no longer in the field of view, their
visibility field is set to 0 and the direction and distance infor-
mation from the previous vector are used. As we are omit-
ting the position of other agents in the field, the environment
vector consists of 9 fields that pertain information about the
ball, the enemy goal and the agent’s own goal. We do not
add other players in the environment vector as we assume
all our experts do not use information about other players in
the field when making decisions.

RoboCup Action Space
The action space of the agent is discretized to contain only
the actions that are performed by the expert that the agent
is querying to learn. There are 5 actions the agent can take:
dash, turn to the right, turn to the left, turn to the ball, and
kick to the goal. The action parameters are pre-defined, yet
the agent still has to select the correct action, as the main
focus of this paper is to evaluate and validate our metrics.

Experts
To evaluate our metrics we use 2 experts to train each neu-
ral network defined in the next section: a reactive expert
(Krislet) and a state-based expert (State-Based).

Krislet The expert turns till it finds the ball and runs to-
wards the ball once it finds it. Once it reaches the ball, it
locates the enemy goal and tries to kick the ball to the en-
emy’s goal. The expert’s name Krislet is after the name of
its original code author: Krzysztof Langner.

State-Based Same as the Krislet expert, however, each
time it kicks the ball it changes its internal state causing it to
turn in the opposite direction when the ball is not in vision
(initially it turns in the positive direction when the ball is not
in vision, refer to Figure 1).

Neural Networks
To evaluate our metrics we used 2 agents based on different
neural networks, one is a simple fully connected MLP and
the other is a LSTM. Both neural networks were trained for
200 epochs using the dataset the agents collected at the end
of Data Aggregation (DAgger): an imitation learning tech-
nique that uses feedback data from the expert during the

A B

BALL KICKABLE AND CAN SEE GOAL | KICK

BALL INVISIBLE | TURN+

BALL KICKABLE AND CAN SEE GOAL | KICK

BALL INVISIBLE | TURN-

Figure 1: State-Based Expert State Machine: this automaton
only contains arrows of environment states that have altered
actions when the internal state changes

learning agent’s run to maximize its accuracy over its own
environment state distribution (Ross, Gordon, and Bagnell
2011). All our neural networks’ architectures and training
set sizes were selected empirically as the primary goal of our
experiments is to test the validity of our metrics. The number
of time steps were selected to make the MLP network imi-
tate the reactive expert better than the LSTM network, and
to make the LSTM network imitate the behavior of the state-
based expert better than the MLP network qualitatively. This
is because it was important to qualitatively evaluate how
well each neural network imitated each expert in different
criteria: to verify that each metric reflects the corresponding
difference. The architecture of each neural network and its
training procedure are described in the following repository:
github.com/MohamedZalat/robocup-soccer.

6 Results
We discretized the environment space of RoboCup to be
the set of relevant cases the experts consider when decid-
ing which action to take (excluding information about their
internal state) to calculate the Monte Carlo distance and the
metrics we are proposing. The cases are mutually exclusive
and can be extracted directly from the environment feature
vector. For example, one environment state is the agent can
see the ball and is in line with the ball, and another environ-
ment state is the agent can see the ball but is not in line with
the ball. The results of the experiments are presented in Ta-
ble 1 and Table 2. The goal of our experiments is to test if
different sample distributions of a trajectory can be used to
learn about the nature of the deviation between the agent’s
and the expert’s behavior, and to validate that our χ2 met-
rics are as good of a distance measure as the Monte Carlo
distance at comparing the performance of two agents.

Krislet Expert
Looking at the results in Table 1, we can see that the differ-
ences within each of our metrics at imitating the Krislet ex-
pert are mostly consistent between the MLP and the LSTM
agent. The LSTM agent was not able to imitate the behav-
ior of the Krislet expert correctly. Instead, it turns towards
the ball once and continuously dashes even if the ball is not
perfectly aligned. This is because the expert frequently per-
forms consecutive dashes without requiring to re-align with
the ball and the LSTM was able to learn this pattern instead
of learning the reason behind performing a dash. Despite this
difference in behavior, the LSTM agent consistently defeats
the expert. On the other hand, the MLP agent was able to
imitate the Krislet expert almost perfectly.

The results of χ2
P (A), were much lower than all the other

metrics for both agents. This is because P (A) is not a diffi-
cult distribution to learn from the expert, as the agent could
simply be randomly performing actions and would achieve
a good χ2

P (A) score. On the other hand, χ2
P (S) provides us

with meaningful information about the performance of the
agents because the agent requires selecting the proper ac-
tions at the proper environment states to visit the same en-
vironment state distribution (assuming the next environment
state depends on the previous action and the previous envi-
ronment state). Hence, it is larger than χ2

P (A).
The metrics χ2

P (At|At−1)
and χ2

P (St|St−1)
can be consid-

ered as ’stricter’ metrics than χ2
P (A) and χ2

P (S). The theo-
retical reason behind this conclusion is that the agent needs
to select the correct action that maximizes the probability of
the agent to transition from a state si to the next state si+1;
likewise, the agent requires to set itself up for the next cor-
rect ai+1 with the previous ai. This was also confirmed by
our results χ2

P (At|At−1)
≥ χ2

P (A) and χ2
P (St|St−1)

≥ χ2
P (S).

Our results also conclude that it is easier to imitate a reactive
expert’s P (At|At−1) than it is to imitate its P (St|St−1).

Lastly, the χ2
P (A|S) metric was the metric that showed the

largest deviation between both agents and the expert. This is
due to the sensitivity of the χ2

P (A|S) metric; any cases where
the expert would never do what the agent did greatly influ-
ence this metric.

State-Based Expert
The results in Table 2 show the same differences within each
of our metrics that we have seen previously in the case of the
LSTM agent but this is not the case for the MLP agent. This
time the LSTM agent successfully imitated the state-based
behavior of the expert and the MLP agent was not able to
do so. The MLP agent randomly turns right and left when
it can not see the ball instead of consistently turning in one
direction. This is how we expected the MLP agent to behave
as it is incapable of imitating state-based behavior. Since the
LSTM agent results are in line with the same conclusions
from the previous section, we will only be discussing the
results of the MLP agent.

This time χ2
P (S) was the lowest metric when using the

MLP agent. This is because the MLP agent can still visit a
similar environment state distribution to the expert if it is
incorrectly selecting the turn direction.
χ2
P (At|At−1)

was larger than χ2
P (St|St−1)

for the MLP
agent, in contrast to its performance with the Krislet expert
and the LSTM. When a state-based expert transitions its in-
visible internal state, it will exhibit the same ’reactive’ be-
havior until it transitions its internal state again. The fact
a state-based expert stays in an internal state for a dura-
tion of time implies that some P (at|at−1) will be much less
than others if the agent is properly imitating the expert (i.e.
properly transitioning its invisible internal states and prop-
erly staying in those internal states). This results in some
P (at|at−1) that can only occur at internal state transitions,
and hence, they are much less likely. In this case, the MLP
agent would turn right then left, and the expert never per-
forms this. We may be able to infer that an expert is state-

Agent Macro F1 Weighted
F1

Monte
Carlo
Distance

χ2
P (S) χ2

P (A) χ2
P (St|St−1)

χ2
P (At|At−1)

χ2
P (A|S)

MLP 0.92 0.96 0.987 14.0 9.24 39.2 33.0 94.7

LSTM 0.5 0.31 6.07 2370 156 3410 478 3700

Table 1: Performance Metrics of Imitating the Krislet Expert

Agent Macro F1 Weighted
F1

Monte
Carlo
Distance

χ2
P (S) χ2

P (A) χ2
P (St|St−1)

χ2
P (At|At−1)

χ2
P (A|S)

MLP 0.58 0.78 2.50 276 336 366 739 816

LSTM 0.77 0.93 1.39 152 103 205 150 289

Table 2: Performance Metrics of Imitating the State-Based Expert

based by comparing χ2
P (At|At−1)

with χ2
P (St|St−1)

in agents
that are incapable of learning state-based behavior but this
requires more experimentation.

When using the weighted F1-score or the Monte-Carlo
distance of the MLP agent to evaluate its ability to repli-
cate the behavior of the State-Based expert, one may be
convinced that the agent succeeded at learning the behavior
of the expert. However, if one were to use the χ2

P (At|At−1)

score, they would be able to see that the variance between
the P (At|At−1) distribution of the expert’s and the agent’s
trajectories is too large for the agent to be capable of learning
the behavior of the State-Based expert. More concretely, it
highlights the fact that the MLP agent is not properly switch-
ing its turning direction based on its internal state. Instead,
the agent is turning in random directions.

7 Conclusion
In this paper, we introduced five new metrics that measure
the deviation between an imitation learning agent’s trajec-
tory and an expert’s trajectory, by using distributions ex-
tracted from the trajectories instead of relying on the ex-
pert as an oracle during testing. We were able to show how
χ2
P (St|St−1)

and χ2
P (At|At−1)

metrics can be used to pro-
vide us with more qualitative information about how well
an agent is able to imitate state-based behavior compared to
traditional metrics. Our results also highlighted the impor-
tance of measuring the deviation using the distribution that is
characteristic to the state-based expert being imitated, such
as the P (At|At−1) in the context of the State-Based expert
(as it will never turn right and then turn left). This provides
us with a more reliable metric to evaluate or track whether
an agent is learning the behavior of an expert compared to
the F1-score.

An area where future work can be done is evaluating our
metrics on a state-based expert that has more internal states,
to see how the metrics we proposed compare to standard
metrics. Another area is how well our metrics fare in a χ2

test to test the indistinguishability of a selected distribution
between two trajectories.

References
Abbeel, P.; Coates, A.; and Ng, A. Y. 2010. Autonomous
helicopter aerobatics through apprenticeship learning. The
International Journal of Robotics Research 29(13):1608–
1639.
Argall, B. D.; Chernova, S.; Veloso, M.; and Browning,
B. 2009. A survey of robot learning from demonstration.
Robotics and autonomous systems 57(5):469–483.
Floyd, M. W., and Esfandiari, B. 2011. Learning state-based
behaviour using temporally related cases. In Nineteenth UK
Workshop on Case-Based Reasoning, Cambridge, UK, vol-
ume 9.
Gunaratne, A. S. E.; Esfandiari, B.; and Fawaz, A. 2018.
A case-based reasoning approach to learning state-based be-
havior. In Brawner, K., and Rus, V., eds., Proceedings of
the Thirty-First International Florida Artificial Intelligence
Research Society Conference, FLAIRS 2018, Melbourne,
Florida, USA. May 21-23 2018, 377–382. AAAI Press.
Hochreiter, S., and Schmidhuber, J. 1997. Long short-term
memory. Neural computation 9(8):1735–1780.
Itsuki, N. 1995. Soccer server: a simulator for robocup. In
JSAI AI-Symposium 95: Special Session on RoboCup. Cite-
seer.
Ontanón, S.; Montaña, J. L.; and Gonzalez, A. J. 2013. A
dynamic bayesian network framework for learning from ob-
servation. In Conference of the Spanish Association for Ar-
tificial Intelligence, 373–382. Springer.
Ross, S.; Gordon, G. J.; and Bagnell, J. A. 2011. No-regret
reductions for imitation learning and structured prediction.
In In AISTATS. Citeseer.
Tı̂rnăucă, C.; Montaña, J. L.; Ontañón, S.; González, A. J.;
and Pardo, L. M. 2016. Behavioral modeling based on
probabilistic finite automata: An empirical study. Sensors
16(7):958.
Wooldridge, M. 2009. An introduction to multiagent sys-
tems. John Wiley & Sons.

