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Abstract 
We review a quartet of widely discussed probability puzzles 
– Monty Hall, the three prisoners, the two boys, and the two 
aces. Pearl explains why the Monty Hall problem is 
counterintuitive using a causal diagram. Glenn Shafer uses 
the puzzle of the two aces to justify reintroducing to 
probability theory protocols that specify how the information 
we condition on is obtained. Pearl, in one treatment of the 
three prisoners, adds to his representation random variables 
that distinguish actual events and observations. The puzzle of 
the two boys took a perplexing twist in 2010. We show the 
puzzles have similar features, and each can be made to give 
different answers to simple queries corresponding to different 
presentations of the word problem. We offer a unified 
treatment that explains this phenomenon in strictly technical 
terms, as opposed to cognitive or epistemic. 

Introduction  
In the Monty Hall Puzzle, there are three doors. Behind one 
is a brand-new car, and behind the other two are goats. After 
the contestant selects one door at random, the host opens one 
of the other two, revealing a goat. The host gives the 
contestant the opportunity to “switch or stay”. What should 
the contestant do? 
 As Pearl and Mackenzie recently (2018) document, this 
generated an unexpected controversy when it appeared in a 
puzzle column by Marilyn vos Savant (1990), who argued 
that switching doors doubles the contestant’s chances of 
winning. She illustrated her solution with a small table like 
that shown in Table 1.  
 

Door 1 Door 2 Door 3 
Door 

Opened 

Outcome 
if You 
Switch 

Outcome 
if You 
Stay 

auto goat goat 2 or 3 lose win 
goat auto goat 3 win lose 
goat goat auto 2 win lose 

Table 1. Outcomes for switching and staying 
 
 Vos Savant’s solution was widely and hotly disputed 
(Burns & Wieth, 2004; vos Savant, 1997), most arguing that 
once the host opened a door, the prize was equally likely to 
be behind the original door and the unopened door.  
 The AI community remains interested in this puzzle, 
partly because it raises questions about human cognitive 
processes and intuitions. Pearl and MacKenzie explain why 
this problem rubs intuition the wrong way using the causal 
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graph below. Those familiar with causal graphs (a.k.a Bayes 
Nets) understand that variables YourDoor and 
LocationOfCar are probabilistically independent by 
construction, but also independent common causes of 
DoorOpened. 
 
 
 
 
 
 It is also well known in Bayes net lore that because of the 
colliders (head-to-head arrows) at DoorOpened, observing 
DoorOpened creates a probabilistic association between two 
independent causes resulting in a clash of intuitions. 
 Falk (2011) looks at the two-boys puzzle from the 
perspective of cognitive science. It may be posed as follows: 
in a world where all families have exactly two children, Ms. 
Jones has at least one boy. What is the probability Ms. 
Jones’s other child is a boy (Gardner, 1961)? 
 Many argue the answer is 1/2, because the gender of an 
individual is independent of the gender of any other. Yet 
others (Bellos, 2019); Gardner, 1961; vos Savant in 
Stansfield & Carlton, 2009) argue the answer is 1/3: Bellos 
and vos Savant also conducted surveys to support their 
arguments. Letting M indicate male and F female gives us 
represent four equally likely two-child families: FF, FM, 
MF, MM, (letter order represents birth order). Knowing Ms. 
Jones has a boy rules out FF, leaving three equally likely 
possible families, just one of which has a second boy.  
 Bellos (2019) offers several intriguing variations on this 
latter methodology. If Ms. Jones’s eldest is a boy, the 
probability of two boys becomes ½. But if she has a boy 
born on a Tuesday, the probability of two boys is 13/27 – 
almost, but not quite 1/2. Falk (2011) pursues this in detail, 
giving a remarkable formula showing that the more 
improbable the feature observed (e.g., the second of birth), 
the closer the probability of two boys gets to 1/2, writing  
“individuality is characterised mathematically by an 
extremely narrow specification whose probability is 
infinitesimal. Such a unique specification of a boy turns out 
to be equivalent to observing him in person… Learning [that 
the boy was born on a Tuesday] lent some uniqueness to that 
son.” For those in artificial intelligence this raises the 
question whether automated solutions to word problems 
ensconced in real-world settings need cognitive or epistemic 
to deducing such features from natural language 
descriptions. Russell (2019), for example, suggests that a 
prerequisite for superintelligent machines is the ability to 

 

Door Opened 

Your door Location of Car 



learn technical material quickly by reading books. If so, does 
a computer need to pass the Turing Test first (Neufeld and 
Finnestad, 2020a, 2020b) to solve questions like this? It 
seems counterintuitive that the more irrelevant observations 
we make, the closer we get the intuitively correct answer. 

A formal look at the two boys  puzzle  
Bar-Hillel and Falk (1982) first explored this puzzle using a 
sample space of two-child family kinds {FF, FM, MF, 
MM}, each with probability 1/4.1  
 To obtain a solution of 1/3 we imagine a knowledge-
seeker who has “come to know” the event atLeastOneBoy = 
{FM, MF, MM}, logically and probabilistically equivalent 
to ~FF. By construction, the probability of FF is 1/4, so 
p(~FF) is 3/4.  
 The probability of two boys given at least one boy is 
p(MM|~FF)=p(~FF|MM) p(MM)/p(~FF)=1*1/4/(3/4)= 1/3, 
by Bayes’ Rule. Bar-Hillel and Falk (1982) suggest once the 
outcome FF is eliminated from the sample space, and the 
remaining outcomes are equiprobable at 1/3. Falk relates the 
convincing example of meeting parents of members of a boy 
scout troop as “coming to know ~FF’. This is  Solution 1. 
 Solution 2 uses a balls and urns metaphor to obtain an 
answer of 1/2. Consider FF, FM, MF, MM as urns, each 
containing one family kind, the children represented by 
balls. First the knowledge-seeker draws an urn (family), 
then draws a ball (child). Let m1 denote that this first child 
drawn is a boy. The prior of m1 is 
 p(m1) = p(m1|FF)p(FF) + p(m1|FM)p(FM) +  
  p(m1|MF)p(MF) + p(m1|MM) p(MM) 
  = 0 + 1/2 * 1/4 + 1/2 * 1/4 + 1 * 1/4 = 1/2. 
 Next, the knowledge-seeker computes the probability that 
the remaining child in the drawn urn is a male given m1, 
which is equivalent to the urn being MM, so our target 
probability is: 
 p(MM|m1 ) = p(m1|MM) p(MM) / p(m1) 
   = 1 * 1/4 / (1/2), = ½ 
a different value for the vague linguistic expression “the 
probability of two boys given at least one boy”.  
 In Solution 2, birth order is immaterial, as in Solution 1 – 
it lets us create four equiprobable sample space elements. 
 Birth order plays a role if we observe the eldest child’s 
gender. Using the method of Solution 1, this amounts to 
observing the event {MF, MM} and the probability of two 
boys is clearly 1/2. Here birth order is important. 
 The method of Solution 2 also yields 1/2, but by a 
different route. First, the knowledge-seeker draws a family, 
then observes the eldest in that family. If the eldest is a boy, 
the knowledge-seeker computes the probability of em1, that 
the remaining child is a boy: 
 p(em1) = p(em1|FF)p(FF) + p(em1|FM)p(FM) +  
  p(em1|MF)p(MF) + p(em1|MM) p(MM) 

 
1 Questions of gender and sex are complex and highly contested. 
However, Falk further states that the model is close to certain empirical 
distributions, and also has pedagogical merit. 

  = 0 + 0 + 1/2 * 1/4 + 1/2 * 1/4 = 1/4. 
 Then, using Bayes’ rule,  
 p(MM|em1 ) = p(em1|MM) p(MM) / p(em1) 
   = 1/2 * 1/4 / (1/4) = 1/2. 
 Both approaches give the same answer. Now consider the 
problem of a boy born on a Tuesday.  
 Falk (2011) presents the Tuesday boy as a curious 
extension of Solution 1. Assuming a child is equally likely 
to be born on any day2 independently of gender, a 
straightforward but tedious approach is to create a sample 
space with 196 elements, each representing one of all the 
possible combinations of the first and second child’s gender 
and day of birth. If we collapse all females into a single kind, 
and all boys not born on a Tuesday to a single kind, we end 
up with the following count of family kinds: 
  FMT  7  MTMT 1  M~TMT 6 
  MTF  7  MTM~T 6  REST 169 
 FMT indicates a family whose eldest is F and whose 
youngest is a Tuesday male; m~T  is “a male not born on a 
Tuesday”. (This simple enumeration gives an early warning 
that the answer cannot be ½ as the number of families with 
a Tuesday boy is odd.) 
 Using the method of Solution 1, the knowledge-seeker 
observes boyBornOnATuesday, the subset containing the 
first five family kinds in the sample space. Summing up, this 
event has probability 27/196. We then compute the 
probability of “two boys” {MTMT, MTM~T, M~TMT}, which 
is 13/196, which yields 13/27 as the probability of two boys, 
given (at least) one boy born on a Tuesday. 
 The result is troubling because, as Falk says, we could 
derive 13/27 for each day of the week, and then use “proof 
by cases” to argue that if one child is a boy, it must be born 
on some day, and thus the other child is a boy with 
probability 13/27 rather than 1/3 or 1/2 – even more 
troubling. Intuitions suggests day of birth is irrelevant to 
gender. The sample space was constructed based on that 
assumption. Falk then shows that as increasingly rare 
features (hour or second of birth) are chosen, the probability 
tends to 1/2. 
 Now consider Solution 2. The knowledge-seeker draws a 
family, then draws a child that happens to be a Tuesday boy. 
If the reader follows the method of Solution 2 meticulously. 
they will find the probability of two boys is exactly 1/2.3 Not 
only is this answer intuitive, it also is consistent with day of 
birth and gender being independent’ 
 Butt what of the surveys of Bellos and vos Savant 
mentioned earlier that seem to empirically support Solution 
1? The distribution of the surveys was constructed in such a 
way that it reflects the design of the sample space. We 
believe our Solution 2 derivations give evidence that 
Solution 1 is not well-suited to this particular domain. It’s 
not wrong, however the next section considers a domain 
where Solution 1 may be more natural.   

2 Gelman (2010) points out that, empirically, days of birth are not equally 
likely. Regardless, a natural assumption would be that the two variables 
are independent. 
3 Request the full paper for a proof 



The two aces 
Shafer’s (1985) mentions this problem in making a case for 
the reintroduction of protocols to probability. A four-card 
deck consists of the ace and deuce of hearts and the ace and 
deuce of spades. The dealer shuffles, then deals two cards to 
a colleague. 
 The dealer asks, “do you have an ace?” The colleague 
replies, “yes.” The dealer’s belief that the colleague has two 
aces changes from 1/6 (all hands are equally likely) to 1/5 
(all hands excluding the two-deuce hand).  
 If the dealer initially asks, “do you have the ace of 
hearts?” and the colleague answers, “yes”, the colleague 
holds one of only three hands, and the dealer’s belief that 
the colleague holds two aces becomes 1/3. 
 But consider Falk’s reasoning about the Tuesday boy – 
that the boy first picked must be born on some day – in this 
setting. If the colleague answers “Yes” to the first question, 
the colleague must be holding either the ace of hearts or the 
ace of spades, that is, some ace, again suggesting a “proof 
by cases” the correct answer is 1/3.  
 To make our two solution approaches realistic in this 
setting, we use two different physical models. For Solution 
1, the dealer prepares six slips of paper, each displaying one 
of six possible hands. Instead of two cards, the dealer gives 
the colleague one slip of paper – after a good shuffle, of 
course. If the colleague replies “yes” when asked whether 
the colleague holds an ace, five possibilities clearly remain 
and the probability of at least one ace is 5/6 at this point. 
This “coming to know” at least one ace parallels Solution 1 
in the two boys puzzle. The probability of two aces becomes 
1/5. (Notice that if you multiply these two numbers together, 
the result is 1/6, which provides a check on the reasoning.) 
A similar argument can be made for the scenario where the 
dealer asks “Do you have the ace of hearts?”  
 For Solution 2, cards are dealt one at a time, face down 
on the table. The dealer asks the colleague to draw one card, 
and asks if it is an ace. 
 Like Solution 2 to the two boys puzzle, Solution 2 
involves two draws: first of the hand, then from the hand. If 
the answer to the question is ‘yes’, the probability of two 
aces becomes 1/3.  
 In this domain the approach of Solution 1 may be more 
intuitively satisfying. 
 A completely new problem: Shafer (1985) asks, suppose 
in Solution 1, the dealer asks if colleague has an ace, and the 
colleague replies, “Yes”, then adds, “in fact, I have the ace 
of hearts,” while smiling, showing another way probabilities 
changes when unasked-for information is received’ 

The three prisoners 
Three prisoners A, B, and C discover a monarch will grant 
clemency to exactly one of them. The probability of 
clemency is 1/3 for each. The prison guard knows who will 
be freed but is under strict instructions not to give any 
prisoner information that reveals that prisoner’s fate.  

 Prisoner A imagines that the guard might be convinced 
that naming B or C as one who will not be freed doesn’t 
violate the instructions, as A would not be able to deduce 
A’s own fate with certainty. However, the additional 
information may be useful. 
 Letting FA mean “Prisoner A will be freed” and ~FB mean 
“Prisoner B will not.” Then 
 p(FA|~FB)=p(~FB|FA) p(FA)/p(~FB)=1*(1/3)/(2/3) = ½, 
momentarily cheering the prisoner. But contemplating 
further, A realizes that A’s probability of freedom, should 
the guard reveal C will not go free, is also 1/2. Just by 
thinking about the problem, A finds a “proof by cases” that 
A’s probability of freedom is now 1/2 instead of 1/3.  
 The technical problem is that p(~FB|FA) shouldn’t enter 
this calculation. If FA, the guard may choose either ~FB or 
~FC, but p(~FB|FA)=1. Pearl (1988) instead conditions on 
actual observations and not their implications, using a 
distinct variable that reports an observation; e.g.,  ~FB′	is the 
new proposition that the guard reports that B will not go free, 
and isn’t implied by FA. The equation now becomes 
  p(FA|~FB′)=p(~FB′|FA)p(FA)/p(~FB′)=1/2*(1/3)/(1/2)= 1/3. 
 Hearing the guard’s answer is analogous to seeing the 
door open in the Monty Hall problem and 2/3 of the time, 
the prisoner not mentioned by the guard (and excluding A) 
is the one who will go free.  
 This distinction between observations and actual events 
makes an appearance in all the preceding puzzles.  
Revisiting the two boys 
A commonality between the two boys and the three 
prisoners is in the way information is received. We have 
already remarked it is difficult to imagine ways a real-life 
knowledge-seeker discovers only ~FF without discovering 
something about one of the children: perhaps we could label 
the FF urn with its name, and label the other three ~FF. If 
an urn labelled ~FF is drawn and the probability of MM is 
1/3. But if the knowledge-seeker then draws from the urn 
and observes a boy, the probability of MM is now 1/2 
because the draw of a child might produce a girl, (just as the 
guard might give two different answers) yielding a very 
different distribution: MM would be 0, FM and MF would 
both be 1/2).  
 This unifies the two boys, the three prisoners and Monty 
Hall. 
Revisiting the two aces 
Shafer illustrates his puzzle with “yes/no” questions but note 
that the other problems share the feature that no information 
is obtained by asking “yes/no” questions. Prisoner A’s 
circumstances force the contrivance of an indirect question 
that neither confirms or denies that the prisoner A will be set 
free. Our introduction of an initial draw of ~FF to the two 
boys puzzle is also a contrivance that provides a way for the 
knowledge-seeker to learn ~FF and no more. 

Shafer then gives the example of the dealer asking if the 
colleague holds an ace, to which the colleague replies “yes”, 
and adds with a smile, “in fact, I hold the ace of hearts.” 



Suppose the knowledge-seeker in the two boys puzzle 
asks “is there at least one boy?” and a mischievous oracle 
(corresponding to the smiling colleague) answers “Yes”, 
then adds “as a matter of fact, the eldest is a boy.” what then 
is the correct answer? 

Shafer argues that this shows the need for protocols that 
consider all possible answers to all possible questions, 
including volunteered information, tones, and tells. 
 Space does not permit lengthier discussion, but we 
remark it links Shafer’s protocols with Pearl and 
MacKenzie’s (2018) refer to as the “data-generating 
process.” 

Conclusions and Future Work 
The present work began with a rhetorical question: how 
should an AI resolve ambiguities inherent in word problems, 
in particular about probability. It arose from a look at the 
work of Falk (2011) on the Tuesday boy problem, and 
attempts to find a purely technical solution that did not need 
to make understand cognitive or epistemic matters. 
Although we produced a technical solution to the “Tuesday 
boy” problem that though our solution to the Tuesday boy 
problem that did not rely on cognitive or epistemic notions 
of “individuality’, solutions may vary depending on minor 
details of setting and the “obvious” answer may rely on an 
understanding of the different scenarios. Space didn’t allow 
us to expand on the issue of probabilistic “proof by cases”. 
 Despite the artificiality of these puzzles, the solution to 
real problems are inevitably far more complex, and depend 
on asking questions that guide agents toward good answers, 
appropriately evaluating those answers, or understanding 
how we came to know certain information (Kyburg, 1984).  
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