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Abstract 

To inform a proper diagnosis and understanding of 
Alzheimer’s Disease (AD), deep learning has emerged as an 
alternate approach for detecting physical brain changes 
within magnetic resonance imaging (MRI). The advancement 
of deep learning within biomedical imaging, particularly in 
MRI scans, has proven to be an efficient resource for 
abnormality detection while utilizing convolutional neural 
networks (CNN) to perform feature mapping within 
multilayer perceptrons. In this study, we aim to test the 
feasibility of using three-dimensional convolutional neural 
networks to identify neurophysiological degeneration in the 
entire-brain scans that differentiate between AD patients and 
controls. In particular, we propose and train a 3D-CNN model 
to classify between MRI scans of cognitively-healthy 
individuals and AD patients.  We validate our proposed 
model on a large dataset composed of more than seven 
hundred MRI scans (half AD). Our results show a validation 
accuracy of 79% which is at  par with the current state-of-the-
art. The benefits of our proposed 3D network are that it can 
assist in the exploration and detection of AD by mapping the 
complex heterogeneity of the brain, particularly in the limbic 
system and temporal lobe. The goal of this research is to 
measure the efficacy and predictability of 3D convolutional 
networks in detecting the progression of neurodegeneration 
within MRI brain scans of HC and AD patients.  

Introduction   
Alzheimer’s disease (AD) is a debilitating type of dementia 
that can affect a person’s memory and cognitive behavior 
in both mild and extreme cases such as the inability to 
remember, focus, or even understand who you are (Yang et 
al., 2019). AD is a common disease that has no cure and 
worsens over time, typically occurring in individuals of 65 
and older, making up 50-60% of all dementia cases (Yang 
et al., 2019). The ability to cure AD is not currently known 
while treatments such as prescription medication and 
therapy have not shown to slow degeneration within the 
brain. Changes in the brain allow AD to damage neurons 
throughout multiple compartments dealing with memory 
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and cognitive function, specifically in the limbic system, 
temporal lobe, hippocampus, and cerebral cortex. The 
damage of these neurons is not repairable and breaks the 
communication pathways that our brains use to create 
short-term memories and maintain continuous cognitive 
function. Although not being performed in this iteration of 
research, a common approach is the identification of mild 
cognitive impairment (MCI) in patients of early-stage AD 
(Pan et al., 2020). This is a critical stage of detection in 
which the disease can worsen and spread to other parts of 
the brain. Detection of AD in early stages (MCI) is an 
important task to develop treatment remedies and offer 
potential management to this overwhelming disease.  
      The most common method of tracking AD progression 
has been facilitated through magnetic resonance imaging 
(MRI) as a non-invasive tool for detecting changes in brain 
volumes throughout incremental scans. Machine Learning 
methods have been employed in the study of cognitive 
processes (Christoforou et al., 2010; Christoforou et al, 
2013,; Christoforou et al., 2018) and have offered an 
alternate form of MRI scans analysis by utilizing 
algorithms such as Support Machine Vector (SVM) and 
Random Forest (RF) to perform classification tasks 
through linear SVM classification and majority voting in 
RF. Other approaches such as Region Of Interest (ROI) 
patch detection, biomarkers, and cerebral spinal fluid 
(CSF) are alternative methods for  performing 
classification of AD. However, there has been recent 
knowledge to suggest a potential lack of information in 
ROI patches as well as being error-prone and labor-
intensive (Lin et al., 2018). For this reason, ROI was not 
considered for this study despite being popular in some 3D 
models where whole-brain volumes are used, following a 
3D patch for areas known to represent AD degeneration 
(Pan et al., 2020).  
      While under the same umbrella as machine learning, 
deep learning has initiated a more sophisticated approach 
by applying different methods such as convolutional neural 
networks (CNN), stacked auto-encoders (SAE), and deep  

 



belief networks (DBN) to extract low-level features within 
an image. For classification tasks, CNN’s have proved to 
be a valuable application for extracting learnable 
parameters as well as feature mapping within medical 
imaging (Kumar et al., 2017). Moreover, the CNN 
explicitly takes an image as direct input to measure spatial 
information within adjacent pixels to assist in weight-
sharing and backwards propagation. For this model, the 
CNN will be used to extract voxel information contained 
in MRI scans without the need for manual selection of 
image features typically done in ROI patches. However, to 
the best of our knowledge, most CNN approaches proposed 
in this domain, rely on 2D- convolutional layers that 
require MRI scans to be processed as 2D slices, thus 
ignoring the 3D spatial-structure of MRI brain scans.  
      Processing MRI images as a 3D volume, instead of 2D 
slices, could potentially provide additional information that 
differentiates between AD, MCI, and HC groups, but it also 
introduces additional computational complexity in the 
model. In this paper, we explore the feasibility of a 
processing MRI image as a 3D volume, a CNN that utilized 
3D convolutional layers.  We apply our model to detect 
degeneration between MRI scans of both HC and AD 
patients to yield a binary classification between two 
classes. 

Materials and Methods 

To evaluate the feasibility of our model, magnetic 
resonance imaging (MRI) scans were downloaded from the 
Alzheimer’s Disease Neuroimaging Initiative. Founded in 
2003 by lead investor Dr. Michael W. Weiner, ADNI has 
become a leader in the field of neuroscience research, with 
a focus on evaluating the progression of mild cognitive 
impairment (MCI) and Alzheimer’s disease (AD) through 
MRI and positron emission tomography (PET) scans, 
biomarkers, and neuropsychological evaluations. 

Dataset 
The ADNI 1.5T collection was downloaded because of its 
preprocessing pipeline including 3D gradwarp and B1 non-
uniformity correction to prepare the scans for further 
processing. Consisting of three-axis slices (axial, coronal, 
sagittal), a 3D image is created by combining all planes. A 
total of 750 three-dimensional scans were used and divided 
evenly between Alzheimer’s Disease patients and a 
cognitively normal control group, respectively (n = 750 

scans: AD = 375, HC = 375). Dataset statistics are shown 
in Table 1.  
The average age of participants was 75y, comprising of T1 
scans in the neuroimaging informatics technology initiative 
(NIFTI, .nii) format. T1 scans were used to brighten tissues 
with a high-fat content (white matter), allowing them to be 
more visible in the scan, while watery gray matter 
structures tend to appear darker (Pan, et al, 2018). The 
detection of degenerative brain tissue throughout multiple 
regions of interest (ROI) such as the hippocampus and 
cerebral cortex offers a prospective indication of AD. This 
is done by utilizing volumetric data to obtain full brain 
mapping within an MRI. This collection of data from 
ADNI is commonly used in AD research and can be seen 
in (Christian et al., 2015) to facilitate training.  
 
MRI Preprocessing 
Preprocessing of the MRI data was carried out using the 
CAT12 Toolkit pipeline with default settings. The pipeline 
includes spatial normalization, affine regularization, MNI 
space registration, image smoothing, white matter (WM) 
segmentation, and skull extraction on all images. Cat12 
maps the brain to yield a 3D voxel spaces representing a 
specific volume within the image of (X, Y, Z) dimensions 
according to height, width, and depth. This creates 
volumetric three-dimensional data in the same process as 
(Pan, D et al., 2020). After processing, each image had a 
new dimension of 121 x 145 x 121 voxels, with a spatial 
resolution of 1.5 x 1.5 x 1.5 mm3 for each voxel. Data 
normalization was performed through voxel intensity 
normalization which divides the original voxel value by the 
original maximum value to derive a new value between 0 
and 1. A sample pre-processed image is shown in figure 1.  
 

      Image segmentation was then performed through White 
Matter (WM) tissue probability maps to identify white 
matter in the brain. White matter houses nerve fibers, 
known as axons, which carry electrical signals to other 
neurons and can show degeneration linked to AD. The 
pipeline used in this research follows the same procedure 
as (Pan, D et al., 2020) for 3D brain segmentation through 

 AD HC 
N 375 375 

Gender M:F 162 : 213 225 : 150 
Age (Mean:Stdv) 74.6 : 7.75 76.5 : 5.39 

Table 1: Alzheimer’s disease (AD) and healthy control patients (HC) 
 

          Before                                      After pre-processing 

Figure 1: MRI image before (left) and after Cat12 WM segmentation, 
skull stripping and smoothing pre-processing with dimensions 121 x 
145 x 121(shown in coronal, axial and sagittal view ) 
 



the Cat12 toolkit. Lastly, data augmentation was performed 
to reduce the opportunity of overfitting in the model by 
flipping images to promote disparity within the training set. 
Data augmentation is a necessary step in mitigating 
overfitting, particularly when having large imbalances 
between datasets. Several other steps can be taken to add 
augmentation such as translation, random noise, and 
scaling.  
 
Convolutional Neural Networks 
The CNN has displayed tremendous success as an image 
recognition tool that specializes in feature detection and 
can outperform its predecessors such as feedback neural 
networks by detecting learnable features within an image. 
In recent studies, 3D image classification has shown 
promising performance of AD classification through 
generic feature segmentation while using a CNN to reduce 
complexity (Yang, et al, 2019). The ability to detect 
features and inform a proper diagnosis has become integral 
in medical imaging to detect abnormalities within 
radiology scans such as MRI and PET (Gupta et al., 2019). 
Efficient diagnosis can offer alternative treatment plans 
such as medications and therapy that are typically 
accompanied by early detection of cancerous cells and 
degenerative tissues. By discretely taking images as input, 
the CNN will pass the image through multiple 
convolutional layers including filtering layers, pooling 
layers, and connected layers to provide a probabilistic 
output between 0 and 1 using the sigmoid function. 

Figure 2: The above architecture shows how the CNN will take an image 
as input and map features throughout multiple convolutional.  
 
      CNN’s have two main functions including feature 
detection and feature mapping to obtain learnable 
parameters by calculating adjacent spatial dimensions 
within an image (Yang, et al, 2019). Learnable filters (i.e., 
weights) are applied through feature extraction where each 
neuron is connected through receptive neurons of the 
previous layer to extract low-level features within an image 
(Yang, et al, 2019). Feature mapping is then performed by 
applying these filters as input to create a feature map. 
Down sampling along the spatial dimensions (X, Y, Z) 
allow for max-pooling and fully connected layers to be 
used, combining all neurons into a single dense output of 

1. This process allows the CNN to effectively reduce the 
number of parameters in the network as well as the 
reduction of feature maps.  
 
Network Architecture 
Our proposed 3D-CNN architecture consists of four 
sequential layers of conv3D (with Relu activation 
function), max pooling, and  batch normalization layers. 
Sequential convolutional filters of 32, 64, 128, and 256 
were used to extract learnable parameters within MRI 
scans to capture spatial and positional relationships 
throughout the brain. Each iteration of conv3D applies 3-
dimensional filtering (X, Y, Z) among the axial, coronal, 
and sagittal planes. Following is both max pooling, which 
down-samples the feature map to iteratively reduce the 
image size, and batch normalization to stabilize image 
weights and standardize inputs. The rectified linear unit 
(ReLU) activation function was used to apply a linear 
identity to our input by returning 0 representing a negative 
input and 1 as a positive output. Below is the network 
architecture:  
 

Figure 3: The CNN architecture used, consisting of four sequential 
layers of conv3D, max pool, and batch normalization. 
      

 Following the four sequential layers, global average 
pooling is used to calculate the average output for the 
feature maps of previous layers, concluding with a fully 
connected dense layer of 512 to flatten all neurons in the 
network. Lastly, a dense layer of 1 is used to combine all 
neurons into a final connected output of 1. For the loss 
function, binary cross-entropy is used to yield a binary 
classification between two classes of HC and AD. Lastly, 
the sigmoid function is applied to find the probabilistic 
output of the model between 0 and 1 through binary 
classification. Dropout was used after the first and third 
convolutional layers as well as before and after the fully 
connected layers to reduce the risk of overfitting by 
randomly setting neurons in the previous layer to 0 after 
each iteration. Experiments were performed on a single 
node RTX 2060 Super GPU. Model performance was 
tested for 200 epochs with an average epoch computation 
time of 132 seconds, for a total runtime of eight hours. 
 
Classification Experiment 
A classification experiment between two classes, 
Alzheimer’s disease (AD) patients and a healthy cognitive 
control group (HC) was performed to classify MRI scans 



as either HC or AD through binary classification. 
Consisting of 750 scans, an 80-20 train-test split was 
performed to utilize a training set for the model to learn 
features and a test dataset to perform validation against the 
train set. To avoid data leakage and promote image 
disparity, there was no overlap in scans between train and 
test classes. Binary classification was then performed 
between HC and AD, yielding an accuracy of 79%. Results 
of classification between HC and AD have shown to be at 
par or comparable to leading papers in this research such 
as (Pan et al. 2020), with an accuracy of .84 ± .03 within a 
2D CNN accompanied by ensemble learning (EL). 

 

Performance Comparison 
The goal of this research was to show the efficacy of 3D 
convolutional networks in classification tasks while taking 
advantage of volumetric data to detect abnormalities. The 
results achieved offer insight into 3D models compared to 
other techniques such as support vector machine (SVM), 
random forest (RF), and principal component analysis 
(PCA) for classification tasks. The current results of our 
model show an accuracy that slightly outperforms the 
following study (Christian et al., 2015) when using SVM 
and PCA for classification tasks in MRI scans for AD 
detection (76% acc). To save time and computing costs, 2D 
models are also popular in classification tasks that take 2D 
images of either the axial, coronal, or sagittal planes to 
detect abnormalities within the angle of each plane. While 
being a simpler approach, 2D networks lack in extracting 
spatial information in non-volumetric data that is needed to 
efficiently map degeneration (Singh et al., 2020).  
 

Conclusion 
To inform a proper diagnosis and develop an understanding 
of Alzheimer’s Disease progression, deep learning was 
used within a 3D convolutional architecture to provide an 
alternate approach for abnormality detection in MRI image 
data. The research provided offers attention to the efficacy 
and predictive power when detecting the progression of 
neurodegeneration within brain scans. The use of a 
volumetric data proves to yield classification accuracies 
comparable or better to other studies that ignore the third 
spatial dimension during training.  

      Alzheimer’s disease continues to cause progressive 
issues within our society by overwhelming the physical and 
cognitive aspects of brain function that diminish a total 
sense of self. Although there is currently no cure, research 
in this field continues to grow and will hopefully facilitate 
future discoveries as well as the early detection of AD in 
MCI patients. Further research needs to be done to analyze 
the effectiveness of CNN’s within medical imaging and 
neuroscience research, including the application between 
3D architectures assisted by deep learning algorithms in its  
domain. 
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