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Abstract 
It is of great importance to detect users’ confusion in a variety 
of situations such as orientation, reasoning, learning, and 
memorization. Confusion affects our ability to make deci-
sions and can lower our cognitive ability. This study exam-
ines whether a confusion recognition model based on EEG 
features, recorded on cognitive ability tests, can be used to 
detect three levels (low, medium, high) of confusion. This 
study also addresses the extraction of additional features rel-
evant to classification. We compare the performance of the 
K-nearest neighbors (KNN), support vector memory (SVM), 
and long short-term memory (LSTM) models. Results sug-
gest that confusion can be efficiently recognized with EEG 
signals (78.6% accuracy in detecting a confused/unconfused 
state and 68.0% accuracy in predicting the level of confu-
sion). Implications for educational situations are discussed. 

Introduction   
Confusion is a state where an individual does not understand 
what is going on, what they should be doing, what some-
thing means, who is someone, or something. People may ex-
perience confusion in various contexts, notably in learning 
(D’Mello et al. 2014). During the learning process, confu-
sion often occurs when students do not understand new 
knowledge. Learners’ emotions influence their learning ex-
perience. For example, when they are confused, it can lead 
to erroneous decision-making and affect their performance, 
engagement, and cognitive load. In learning, confusion may 
help increase engagement and deepen knowledge, or it may 
lead to frustration and boredom if there is no understanding 
after a certain amount of time. The intensity and duration of 
the confusion appear to be factors of frustration or boredom 
(Arguel et al. 2017). Confusion is a condition that is also 
very present in people with dementia (Berry 2014) because 
of the decline in their cognitive abilities. Early detection of 
this state may help better understand a person’s behavior in 
a given situation and thus treat or help them more effec-
tively. Confusion can have an immediate negative impact on 
all of us, as in the case of confused drivers who crash 
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(Beanland et al. 2013). Therefore, detecting confusion offers 
many benefits. 
 Emotion detection techniques based on brain activity are 
becoming increasingly popular. Electroencephalography 
(EEG), for example, can detect emotions using electrodes 
placed on the scalp. The electrodes record the brain’s elec-
trical activity that comes from the excitation of neurons that 
receive and transmit information. We hypothesize that we 
can create an effective model to detect three levels of con-
fusion (low, medium, high confusion) with EEG signals. 
 There are a variety of cognitive exercises that generate 
confusion (Zhou et al. 2018). Therefore, we decided to con-
duct an experiment with cognitive ability tests to generate 
confusion and record it. We recorded the EEG signals of ten 
participants when they solved five series of different cogni-
tive exercises. We preprocessed the EEG signals using 
MATLAB and EEGLAB. We extracted the power spectra 
from these cleaned EEG signals and used them as input to 
train our models. We used the levels of confusion self-re-
ported by participants as outputs from our learning models. 
 The paper is organized as follows. We introduce the liter-
ature review of confusion recognition. Then we describe the 
research methodology of our experiment. In the next sec-
tion, we present the dataset. Then we introduce the models 
and metrics we used, and we show the results. Finally, we 
discuss the results and conclude our study.  

Confusion recognition 

Literature review 
Several experiments used EEG signals to detect two-level 
confusion (confused/unconfused). In recent years, studies 
have mainly focused on recognizing confusion to improve 
learning. In 2018, the brain activity of sixteen participants 
solving Raven’s progressive matrices (Raven 2000) was 
recorded (Zhou et al. 2018). The best model was a 

 



Convolutional Neural Network that achieved 71.36% accu-
racy. In the same year, a Bidirectional Long Short-Term 
Memory reached 75% accuracy in detecting confusion in ten 
adults watching massive open online course videos (Wang, 
Wu, and Xing 2018). Confusion is also associated with elec-
troencephalography in the medical field. Mental confusion 
in 174 patients was detected using Convolutional and Re-
current Neural networks (Sun et al. 2019). The findings 
showed that it was possible to continuously track mental 
confusion in the intensive care unit, despite the model’s ac-
curacy not being reported. In 2020, one study investigated 
whether it was possible to find COVID-19-specific patterns 
from EEG signals of 23 confused patients (Petrescu, 
Taussig, and Bouilleret 2020). This study found EEG alter-
ations in less than half of the participants. The detection of 
confusion is also possible by combining EEG signals with 
other sources. By mixing EEG signals with video features, 
the Sedmid model achieved 87.8% accuracy (Yang et al. 
2016). 

Our contribution 
In this study, we performed multinomial classification to de-
tect several levels of confusion. We did not only predict 
whether an individual is confused or not but also how con-
fused they are. 

Research methodology 

Equipment 
Emotiv Epoc 
The Emotiv Epoc is a portable neuroheadset device with 16 
electrodes (14 channels and 2 references behind the ears). 
The electrodes are positioned at AF3, F7, F3, FC5, T7, P7, 
O1, O2, P8, T8, FC6, F4, F8, AF4. The EEG signals are in 
µ𝑉 with a sampling rate of 128 samples/s and frequencies’ 
range between 0.2-43 Hz. 
Emotiv Xavier Testbench 
Emotiv Testbench is a software that receives the EEG sig-
nals collected by Emotiv Epoc. It displays the EEG signals 
in µ𝑉 in real-time and has an option to save them. It also 
shows the quality of the sensors’ contact on the scalp: green 
for good connection, orange for medium connection, and red 
for poor connection. 

Experimental protocol 
We recruited ten undergraduate students (5 women, 5 men) 
from the Department of Computer Science and Operations 
Research of the University of Montreal to participate in our 
experiment. They ranged in age from 22 to 33 (mean = 27.1, 
STD = 3.7) years old. As the Science and Health Research 
Ethics Board of the University of Montreal approved this 
research, all participants signed a consent form before 

beginning the experiment. Then the experimenter had the 
participants sit on a chair and checked the chair to maintain 
a good view on the computer screen. Next, the experimenter 
installed the Emotiv Epoc following the international 10-20 
system to ensure reproducibility. Before the participants 
started the exercises, the experimenter ran Emotiv 
TestBench and checked the sensors’ contact on the scalp. 
The experimenter then started to display and record the EEG 
data on the Emotiv TestBench, and the participants started 
to solve the cognitive ability tests. The cognitive ability tests 
were developed at the Heron lab of the University of Mon-
treal. The experimenter also asked each subject to minimize 
body movements during recording to reduce noise on the 
collected data. Once they finished the exercises, participants 
were compensated $20 for participating and debriefed at the 
end. Each participant participated only once, and the exper-
iment session lasted approximately one hour. 

Cognitive ability tests 
Fig. 1 introduces five series of exercises that we developed 
based on the following recognized cognitive tests: Raven’s 
progressive matrices (Raven 2000), Gmat critical reasoning 
test (Kuncel, Credé, and Thomas 2007), WAIS-IV (Benson, 
Hulac, and Kranzler 2010). In the first series, the partici-
pants had to select the missing figure from a set of geometric 
figures. In the second series of exercises, the participants 
read a short text and choose the statement that best com-
pletes the passage. In the third series, the participants com-
pleted 2d mazes. In the fourth series, the participants mem-
orized the position of items on a grid. Finally, in the last se-
ries, the participants had to memorize a sequence of num-
bers. Each set of exercises contained an example and four 
exercises with different levels of increasing difficulty result-
ing in 20 exercises. At the end of each exercise, the partici-
pants had to indicate their level of confusion (no confusion, 
slightly confused, moderately confused, very confused). 
 

 
Figure 1: Developed cognitive ability tests 



Dataset 

Our initial EEG signals 
For each participant, using the Emotiv Testbench, we ob-
tained an EDF file with the EEG data for all the 20 exercises 
done. At each second, 128 EEG signals were recorded for 
all 14 signals.  

Preprocessing with EEGLAB 
To make sense of the EEG signals and subsequently extract 
meaningful measurements, we preprocessed the data with 
MATLAB r2020b and EEGLAB v2020.0. We first ob-
served our entire dataset and deleted the exercises where 
most of the data was noise. We then used a high-pass filter 
at 0.5Hz. The reason for using the high-pass filter is that we 
wanted to use ICA (Comon 1994), and ICA is sensitive to 
low frequencies. The Emotiv Epoc is not supposed to record 
above 43Hz, so we applied a low-pass filter at 43Hz. After 
filtering the data, we examined the data and removed the ar-
tifacts. The artifacts often have a higher amplitude than the 
brain signals. Typical examples of artifacts are high-fre-
quency artifacts such as muscles and low-frequency artifacts 
such as eye movements. Other examples include electrical 
noise, a discontinuity in the signal, and so on. After remov-
ing the artifacts, we ran the ICA algorithm. ICA breaks 
down the signal into independent components. We had 14 
electrodes, each recording a signal from different brain 
sources (blink, jaw movement, physiological rhythm, etc.). 
The electrodes contained various sources. With ICA we ob-
tained the signal from a particular source, for example, the 
blink of an eye. We could, therefore, reject unnecessary 
components (muscles, eye movements, etc.) that we had not 
previously removed. 

From EEG signals to the power spectrum 
We decided to look at the different frequency bands, which 
are often used to portray brain activity, to avoid long train-
ing. These bands represent the speed at which the brain pro-
cesses information and interacts with other areas of the 
brain. Frequency can be defined as the number of times a 
phenomenon occurs in a given time. A high frequency will, 
therefore, indicate a phenomenon that occurs frequently and 
vice versa. The principle of switching from the time domain 
to the frequency domain is to decompose the signal into sev-
eral periodic signals to get a different view of the signal and 
see the frequencies. Having access to the frequencies makes 
it possible to see how many times each amplitude occurred. 
An amplitude that occurs frequently will have a higher fre-
quency than an amplitude that occurs more rarely. Fig. 2 il-
lustrates the transition from time to frequency domain. 

We first decomposed the EEG signals into the frequency 
domain using the Fast Fourier Transform (FFT). After 

getting the FFT, we computed the average band power 
(Welch 1967). The average band power is a number in 
𝜇𝑉!𝐻𝑧"# summarizing the contribution of the frequency 
band to the total signal power. We computed the average 
band power for the following bands (Marzbani, Marateb, 
and Mansourian 2016): delta (1-4 Hz), theta (4-8 Hz), alpha 
(8-13 Hz), beta (13-30 Hz), and gamma (30-43 Hz). Finally, 
the size of the input was 5007x14x5. 
 

 
Figure 2: From time domain to frequency domain 

Our output labels 
After each cognitive exercise, participants self-reported 
their level of confusion. They could select the following: not 
confused, slightly confused, moderately confused, and very 
confused. We converted these confusion levels into a three-
point Likert scale (low, medium, high confusion) and two 
options scale (no confusion, confusion). Initially, we had 
confusion levels associated with exercises of different dura-
tions, but we wanted to obtain a model that gave us the con-
fusion at each second. We split the exercises into seconds 
and assigned the self-reported confusion level for the entire 
exercise to each second. 

Dataset visualization 
Fig. 3 shows a 2D visualization of our dataset with three 
levels of confusion. We obtained this visualization using 
sklearn.decomposition.PCA. 
 

 
Figure 3: 2d visualization of the dataset. Low confusion is in 

blue, medium confusion in purple and high confusion in yellow. 
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Models and metrics 
We trained 3 models for multinomial classification: K-near-
est neighbors (KNN), a support vector memory (SVM), and 
a long short-term memory (LSTM). We split the data ran-
domly using 5-fold cross-validation. We used SMOTE 
(Chawla et al. 2002) oversampling of the minority classes to 
balance classes in the training data. To evaluate our models, 
we wanted to take into account correct predictions and pe-
nalize incorrect predictions. We also had several classes, 
and we wanted them all to have the same importance. To 
meet the above requirements, we computed the subset accu-
racy. The subset accuracy measures the percentage of inputs 
in a subset that exactly matches the labels. For example, 
among the signals that the model associates with an uncon-
fused state, it is the percentage of truly unconfused signals. 
Here is the formula for subset accuracy: 
 

𝑆𝑢𝑏𝐴𝑐𝑐 =
1
𝑛
𝐼(𝑦! = 𝑧!) (1) 

 
where 𝑛 is the number of samples of the class, e.g., the total 
number of unconfused signals. 𝑦 is the true level of confu-
sion associated with the signal of index 𝑖. 𝑧 is the predicted 
level of confusion for the signal of index 𝑖. 𝐼 is the indicator 
function which returns 1 if 𝑦 = z and 0 otherwise. It is also 
a widely used metric as it is one of the standard metrics of 
the Scikit-learn library for multiclass classification. In the 
following paragraphs, we used the word “accuracy” instead 
of “subset accuracy” for visibility reasons. 

KNN 
The KNN algorithm is a non-parametric algorithm that we 
used for the classification. We chose it because it does not 
need a training period and it only has a few parameters to 
tune. It is a fast and easy to implement algorithm resulting 
in quick first results. KNN classifies a given data point ac-
cording to the majority of its 𝑘 closest neighbors.  

We implemented KNN with the sklearn.neigh-
bors.KNeighborsClassifier class. To tune the 𝑘 hyperparam-
eter, we used the class sklearn.model_selec-
tion.GridSearchCV. The Grid Search tests a given set of val-
ues for each specified hyperparameter and gives the model’s 
accuracy at each test. We tested values of 𝑘 between 1 and 
20. 

SVM 
After viewing our dataset with PCA, we saw that it was not 
linearly separable. We used a support vector machine 
(SVM) because it is a robust algorithm that can be applied 
with non-linear data and has often been used in the literature 
to classify emotions (Atkinson and Campos 2016). Moreo-
ver, it is efficient in high-dimensional space. The SVM 

algorithm uses a technique called kernel trick to transform 
the data. It then separates the data according to their classes.  

We implemented SVM with the sklearn.svm.SVC class. 
To tune the regularization parameter 𝐶 and the kernel coef-
ficient 𝑔𝑎𝑚𝑚𝑎 we used the Grid Search. We tested values 
for 𝐶 between [0.01, 100] and values for 𝑔𝑎𝑚𝑚𝑎 between 
[0.01, 100]. 

LSTM 
The long short-term memory (LSTM) neural network can 
learn over long sequences to predict the next one. It is often 
used with time series (Lipton et al. 2015) because of its 
memory capacity and therefore looked promising with our 
EEG signals. We chose it as a third model to compare it with 
the others’ results.  

We implemented LSTM with the tf.keras.layers.LSTM 
class. To tune the number of neurons and the number of 
epochs, we used the Grid Search. We tested values for the 
number of neurons between [35,48] and values for the num-
ber of epochs between [500,1000]. 

Results 
In this last section, we compare the results of the classifica-
tion of our KNN, SVM, and LSTM. We also compare our 
results with those of state-of-the-art. We obtained all our 
scores with a random 5-fold cross-validation and subset ac-
curacy metrics. 
 We initially focused on the multinomial classification of 
levels of confusion. We started with the KNN model, which 
has a good time complexity allowing us to have quick first 
results. We tested KNN with the Euclidean distance and a 
neighbor number between 1 and 20. KNN obtained the best 
accuracy of 65.3% with 𝑘 = 20 as shown in Fig. 4. 
 We then switched to the SVM model as it has been used 
in the literature for EEG detection (Atkinson and Campos 
2016). We evaluated SVM with different hyperparameters 
as described in Table 1. The kernel coefficient 𝑔𝑎𝑚𝑚𝑎 
seems to be the most significant parameter for accuracy with 
the SVM model. The regularization parameter 𝐶 has also al-
lowed to improve the accuracy in a consequent way. We got 
the best accuracy of 68.0%, using 𝑔𝑎𝑚𝑚𝑎 = 100 and 𝐶 = 
100. Fig. 5 shows the confusion matrix of the SVM. 
 We then trained an LSTM because it is known for its per-
formance with the times series (Lipton et al. 2015). Another 
advantage is that it learns patterns from data on the contrary 
of KNN that compute distances. We configured the number 
of neurons, and the number of epochs. We got the best ac-
curacy of 65.1% using 4 hidden layers, 47 hidden units, a 
batch of size 128, and 1000 epochs as shown in Table 2. 
 After making a multinomial classification of the levels of 
confusion, we wanted to see our models’ accuracy for a sim-
plified task: the detection of the confused or unconfused 



state. Following the same pipeline as for the multinomial 
classification, the SVM obtained the best accuracy of 
78.6%. Fig. 6 shows its confusion matrix. 

Finally, we compared our models with state-of-the-art in 
Table 3. Our best model for detecting the state of confusion 
achieved an accuracy of 78.6%, placing it second to state-
of-the-art. 
 

 
Figure 4: Validation curve on the KNN parameter k for detecting 

3 levels of confusion. For k=20, the accuracy is 65.3%. 
 

C gamma 5-fold accuracy 

0.01 100 55.0 ± 1.4 
1 100 64.8 ± 1.0 
10 100 67.7 ± 0.8 
100 100 68.0 ± 1.1 
10 1 57.9 ± 1.4 
10 10 64.2 ± 1.3 

Table 1: Accuracy of SVM model for detecting three levels of 
confusion. 

 

 
Figure 5: Confusion matrix of SVM model for detecting three 

levels of confusion. 
 

Number 
of epochs 

Number of 
neurons Accuracy  

500 35 62.0 
1000 46 63.6 
1000 47 65.1 
1000 48 64.7 

Table 2: Accuracy of the LSTM to detect three levels of confu-
sion with a batch_size of size 128 and 4 hidden layers. 

 
Figure 6: Confusion matrix of SVM model for detecting con-

fused/unconfused state of confusion 
 

Method Features Detection Accu-
racy 

Yang 
et. al. 
(2016) 

EEG signals, audio-
visual sources 

Confused, un-
confused 87.8 

Our 
SVM Power spectrum Confused, un-

confused 78.6 

Wang 
et al. 

(2018) 

Power spectrum, at-
tention, meditation, 

EEG signals 

Confused, un-
confused 75.0 

Our 
SVM Power spectrum Low, medium, 

high confusion 68.0 

Table 3: Overview of best classifiers accuracy 

Discussion 
We hypothesized that we could detect three levels of confu-
sion, which has not been seen in state-of-the-art. Our best 
model achieved 68.0% accuracy. Given the accuracy 
achieved by the two-level (confused/unconfused) confusion 
recognition models in state-of-the-art, confusion is a com-
plex emotion that seems difficult to recognize. More than 
two-level emotion recognition models generally have less 
accuracy than two-level models (Jun, and Smitha 2016). 
Hence, for our three-level model, an accuracy of 68% seems 
to be a promising result. We also wanted to develop a model 
to detect two-level confusion and compare this model with 
state-of-the-art. Our best model for detecting the state of 
confusion used fewer features than state-of-the-art models. 
Despite this, it ranked second with an accuracy of 78.6% 
(Table 3). Its advantage is that it is easier to use in real-time 
as it only uses the features given by the neuroheadset. The 
KNN, SVM, and LSTM algorithms achieved close accu-
racy. The question then arises as to which one to choose. 
KNN computes the distances and, therefore, does not find 
patterns in the data. The only information KNN gives is that 
the training data form clusters and that the examples of the 
same class are close in the feature space. KNN, therefore, 
requires representative training samples because it cannot 
abstract and learn patterns. If the data is exposed to certain 



transformations that change distances, KNN can lose its ef-
ficiency. Another of its constraints is that it always needs all 
the data to make a new prediction. On the other hand, SVM 
and neural networks learn patterns on the data. Thus, they 
can be more appropriate for real-time data that may be iso-
lated from the other clusters. SVM has the advantage of not 
requiring a large number of training examples. 

Our confusion recognition model can be used in real-time 
to assess an individual’s confusion in different applications 
such as education or health. The requirement is to have an 
EEG device that records brain activity. EEG devices have 
advantages, such as the fact that they can be used with peo-
ple who cannot make a motor response, but they also have 
limitations. Their most known drawback is their low spatial 
resolution that creates noise. We reduced this noise during 
preprocessing, but it is still present. EEG also requires care-
ful placement of electrodes, and hair, skull shape, user 
movement, can make detection difficult. All these factors 
limit the use of these technologies in clinical settings. There-
fore, our model can be implemented in real-world scenarios, 
keeping in mind that it provides help but does not have ulti-
mate reliability and should be used in applications where de-
tection reliability is not critical. 

Conclusion 
The recognition of confusion is important in adapting learn-
ing, care, or broadly a system, to a user. This study demon-
strates the possibility of multiclass classification of confu-
sion for three levels of intensity. In addition, our best model 
for classifying three levels of confusion reached 68.0% ac-
curacy. We also predicted the confused/unconfused state 
with an accuracy of 78.6%. It would be interesting for a fu-
ture study to analyze whether confusion led to engagement 
or frustration and find a way to predict if confusion is likely 
to have a positive or negative outcome. The neurological ac-
tivities related to emotions can be very different from one 
person to another. Therefore, it would also be desirable for 
our model to be adaptable to the participants. 
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