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Abstract

Deep Neural Networks, despite their success in diverse do-
mains, are provably sensitive to small perturbations which
cause the models to return erroneous predictions to minor
transformations. Recently, it was proposed that this effect
can be addressed in the text domain by optimizing for the
worst case loss function over all possible word substitutions
within the training examples. However, this approach is prone
to weighing semantically unlikely word replacements higher,
resulting in accuracy loss. In this paper, we study robust-
ness to adversarial perturbations by using differentially pri-
vate randomized substitutions while training the model. This
approach has two immediate advantages: (1) by ensuring that
the word replacement likelihood is weighted by its proximity
to the original word in a metric space, we circumvent optimiz-
ing for worst case guarantees thereby achieve performance
gains; and (2) the calibrated randomness results in training
a privacy preserving model, while also guaranteeing robust-
ness against adversarial attacks on the model outputs. Our ap-
proach uses a novel density-based differentially private mech-
anism based on truncated Gumbel noise. This ensures train-
ing on substitutions of words in dense and sparse regions of a
metric space while maintaining semantic similarity for model
robustness. Our experiments on two datasets suggest an im-
provement of up to 10% on the accuracy metrics.

Deep Neural Networks (DNNs) have found applica-
tions within multiple domains: from computer vision
(Krizhevsky, Sutskever, and Hinton, 2012), and Natural Lan-
guage Processing (Mikolov et al., 2013), to robotics (Kober,
Bagnell, and Peters, 2013) and self-driving cars (Bojarski et
al., 2016). However, DNNs have been shown to be vulnera-
ble to adversarial examples. These are small perturbations of
examples that are correctly classified by well-trained models
but incorrectly classified in the target (Goodfellow, Shlens,
and Szegedy, 2014).

A few approaches have been proposed to defend against
such adversarial attacks. One of the most widely used meth-
ods is adding the adversarial examples to the original train-
ing set and retraining the model. On most kinds of perturba-
tions, such augmented training approach has achieved im-
proved robustness without harming accuracy on the orig-
inal testing sets (Jia and Liang, 2017; Iyyer et al., 2018;
Ribeiro, Singh, and Guestrin, 2018; Belinkov and Bisk,
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2017; Ebrahimi et al., 2017). However, this often leads to
the augmented neural network over-fitting to the additional
data (Matyasko and Chau, 2017), but failing to perform ro-
bustly against other types of adversarial examples (Jia and
Liang, 2017; Belinkov and Bisk, 2017). Recently, certified
defences have been adopted in the computer vision domain
(Lecuyer et al., 2019; Dvijotham et al., 2018; Gowal et al.,
2018). To defend against perturbations on text data, the In-
terval Bounded Propagation (IBP) approach was proposed
by Jia et al. (2019) to minimize the upper bound on the
worst-case loss that word substitutions can induce during
the training procedure. However, this approach is prone to
weighing semantically unlikely word replacements higher,
resulting in accuracy loss. This is due to the fact that the loss
optimization is done to cater to the worst case guarantees.

In this paper, we propose a new approach to generate ad-
versarial examples via word substitutions in textual analysis.
Our approach is based on randomized mechanisms satisfy-
ing Metric Differential Privacy (also known as d,-privacy
(Andrés et al., 2013)), which is a variant of traditional
Differential privacy (DP). DP was proposed by Dwork
et al. (2006) and has been established as a de facto stan-
dard for privacy-preserving data analysis. It mathematically
guarantees, given a privacy parameter e, that an adversary
observing separate outputs of computations over adjacent
databases (described by a Hamming distance) will make es-
sentially the same inference. As opposed to standard DP,
with d,-privacy, the guarantees are scaled by a (different)
distance metric between adjacent databases, and privacy pre-
serving noise is sampled from a distribution such as the mul-
tivariate Laplacian. The distances are over a metric space,
usually Euclidean, over the space defined by word em-
beddings such as GloVe Pennington, Socher, and Manning
(2014) or fastText Bojanowski et al. (2017), while the data
points are vector representations of the words. The mech-
anism assigns higher substitution probability, based on the
noise added, to words closer to the original one than those
further away. The private text mechanisms proposed by Fer-
nandes, Dras, and Mclver (2019); Feyisetan et al. (2020);
and, Xu et al. (2020) work this way.

However, for words with embedding vectors in dense ar-
eas, these existing mechanisms fail to distinguish nearer
(i.e., more relevant) words from other close but less relevant
words. As a result, for a given value of the privacy param-



eter ¢, an irrelevant word could have a similar substitution
probability as a relevant word. We propose a new metric-DP
mechanism called the truncated Gumbel perturbation mech-
anism to allow a smaller range of nearby words to be con-
sidered than the multivariate Laplace mechanism. The new
mechanism samples a k value from a truncated Poisson dis-
tribution as the number of substitution candidates before per-
turbation, and hence, words nearby with irrelevant meanings
are disregarded.

We carry out experiments to investigate the performance
of text classification models trained to be robust to adversar-
ial substitutions. Unlike existing work such as Jia and Liang
(2017), the input text is perturbed by a metric DP mechanism
with varying noise levels corresponding to different degrees
of semantic preservation. This helps us attain both adversar-
ial robustness and differentially private guarantees. Further-
more, our results suggest that this approach better preserves
word semantics and improves utility of models trained on
perturbed datasets in downstream tasks. We summarize our
main contributions as follows:

* We propose a novel metric DP mechanism called the trun-
cated Gumbel mechanism, which better preserves seman-
tic meanings than the existing multivariate Laplace mech-
anisms. We formally prove its privacy guarantees and an-
alyze relevant privacy statistics.

* To the best of our knowledge, we are the first to leverage
metric DP mechanisms to generate adversarial examples
and study the performance of different adversarial train-
ing approaches at different noise levels.

* We empirically demonstrate the benefit of the truncated
Gumbel mechanism in preserving semantics and show
that augmented training performs better than certifiably
robust training, both in clean and adversarial accuracy.

Technical Preliminaries. We begin with providing some
background on metric DP and the multivariate Laplace
mechanism, which has previously been used for privacy-
preserving textual analysis. We also provide details on the
truncated Gumbel distribution and some other mathematical
preliminaries that will be used throughout this paper.

Differential Privacy (DP). First proposed by (Dwork et al.,
2006), DP provides a strong mathematical framework for
guaranteeing that the output of a randomized mechanism
will remain essentially unchanged on any two neighboring
input databases. Formally, a randomized mechanism M :
X — Y satisfies (e, §)-DP if for any x, 2’ € X that differ in
only one entry, then it holds for all Y C ) that:

PriM(z) € Y] < ePr[M(z') € Y]+, (1)

where € > 0 and 0 € [0, 1] are parameters that quantify the
strength of the privacy guarantee. If § = 0, we say that the
mechanism M is e-DP.

This definition can be generalized to other metrics for
capturing dataset proximity depending on the application,
e.g., the Manhattan distance metric used to provide indis-
tinguishability if the individual’s registration date differs at
most 5 days in two databases, and the Euclidean distance on
the 2-dimensional space used to preserve the user’s longi-
tude and latitude information (Chatzikokolakis, Palamidessi,

and Stronati, 2015). In particular, for text data, we adopt
metric Differential Privacy (a.k.a. d,-privacy), following
(Chatzikokolakis et al., 2013; Fernandes, Dras, and Mclver,
2019; Feyisetan et al., 2020; Xu et al., 2020). In this frame-
work, we ensure that for all y € ), it holds that:

Pr[M(z) = y] < @ Pe[M (2') = o], )

where the metric d(z,2’) = ||¢(x) — ¢(')|| describes the
Euclidean distance of the word representations for x, z’ in
some semantic embedding space like GLOVE (Pennington,
Socher, and Manning, 2014). Under this definition, the like-
lihood of a similar output from the mechanism is weighted
in proportion to distance of the word being substituted.

Multivariate Laplace Mechanism. A popular approach for
achieving metric-DP is to use a multivariate Laplace Mech-
anism for high-dimensional data (Wu et al., 2017; Feyise-
tan et al., 2020). Given the embedding vector ¢(z) € R™
for each word in the vocabulary, an n-dimensional noise s
is sampled following the distribution p(k) o exp(—e||&]|).
This variate is obtained by first sampling a uniform vector
in the n-dimensional unit ball and scaling it using a Gamma
variate sampled from I'(n, 1/€). The perturbed word z’ is
the nearest word to ¢(x) + x in the embedding space.

Truncated Poisson Sampling. The mechanism we define in
this paper uses random variates sampled from a Poisson dis-
tribution, but truncated in value if it gets too large. Let A > 0
be areal and a, b be two integers with 1 < a < b. We say that
a random variable X follows a TruncatedPoisson (A; a, b)
distribution if the following holds:

e A8 ifa<k<b
Pr(X =k)=q1 -0l e X jrp—y
0 otherwise.

Truncated Gumbel Distribution. Our mechanism uses ran-
dom variables sampled from the truncated Gumbel distri-
bution for location parameter 1 € R and scale parameter
B > 0, with the density function proportional to:

TruncatedGumbel(z; i, 5, C) x exp (_:cﬁ,u - e—lﬁ“)
for all z € [—C,C], where C' > 0 is a constant. The dis-
tribution has no support in the interval [-C, C]. We write
X ~ TruncatedGumbel(0, b, ¢) to denote a truncated Gum-
bel distributed random variable with y = 0, § = b, and
C' = c. Further, if C = oo, the truncated Gumbel distribu-
tion reduces to the Gumbel distribution, which we write as
Gumbel(0, b). Samples from TruncatedGumbel(z; i, 8, C)
can be obtained using standard rejection sampling.

The Truncated Gumbel Mechanism

Motivated by the approach proposed by (Durfee and Rogers,
2019), our density-aware word substitution mechanism uses
a truncated Gumbel random variable for selecting amongst a
list of candidate perturbations (see Algorithm 1. We provide
an overview of the main steps involved in our algorithm. Due
to space constraints, we refer the reader to the Appendix for
missing details in this section.



Algorithm 1: Truncated Gumbel Perturbation Mechanism

Input : String & = wyws . .. wy € WY, privacy parameter e, word set W.
1 Let A = maxy, wew ||¢(w) — ¢(w’)||2 be the maximum inter-word distance, and Ag = min,, /¢y [|#(w) — ¢(w’)]|2 be the

minimum inter-word distance in the embedding space.

— 2A 1
Setb = ntwEan), e, (e AoV}
Initialize an empty string .
for w; € z do

[

Add w; to Z.
end
o Return z.

I 7 I )

=

Sample k ~ TruncatedPoisson (log [W]|; 1, |W|) and find the top k closest words to w; as u = [uq, . ..
Compute the distances d = [d1,d2, ...d;, ..., dx], where d; = ||w; — uj]|2.
Set w; = uj, where j = argmin {d1 + g1,d2 + g2,...,dx + g} and g1, . ..

w#w’

where a = 3 (e — 2(1%%\\/\1\)) and W denotes the principal branch of the Lambert-W function.

, uk], where u1 = w;.

, gk ~i.i.d. TruncatedGumbel(0, b, A).

For each sentence in the database, we independently per-
turb each word using the following two steps. First, we ran-
domly select k£ nearest neighbors of the original word using
a truncated Poisson variable, with support over the entire vo-
cabulary (see Step 5). This is done to ensure plausible deni-
ability in our algorithm, for which the support of the substi-
tution mechanism must include all the words in the vocab-
ulary. Ideally, limiting the set of candidate substitutions to
only the semantically similar words is necessary to maintain
utility. Our approach addresses this trade-off efficiently, by
setting the mean number of candidates to the natural loga-
rithm of the vocabulary size. This ensures that the number
of candidate substitutions is neither too small, nor too large.

Next, we select the closest k—1 words to the original word
(using a nearest neighbor search in the embedding space)
and compute their distances to the original word (see Step
6). A random choice over this set as follows: the distances
are first noised with i.i.d. truncated Gumbel distributed ran-
dom variables, and then, the smallest noised distance deter-
mines the new word (see Step 7). The noise is scaled using
the privacy parameter ¢, the diameter A and the minimum
inter-word distance A, of the embedding space, and then
clipped using a truncation parameter C' > 0. We set C' = A
in our algorithm to ensure that the noised distances are not
larger than the inter-word distance, which helps bound the
sensitivity of our substitution mechanism. The process is re-
peated independently for each word in the input string. We
formally show that the mechanism described in Algorithm 1
satisfies metric-DP.

Theorem 1. The Truncated Gumbel mechanism, defined in
Algorithm 1, is ed,-private with respect to the Euclidean
metric, for any given privacy parameter € > (.

Empirical Evaluation

We now give an overview of approaches discussed in this pa-
per. Given text input x € X, we consider classification tasks
where a model f(z;60), parametrized by 6, should predict a
label y € ). For sentiment classification tasks, the input « is
composed of a string of [ words x1,zs, -+ , z; and labelled
by one of the two classes y € {1, —1}, where the positive
sentiment is denoted by 1 while the negative by —1. For tex-
tual entailment tasks, two texts are given, one is the premise

x and the other is the hypothesis z’, and a label is provided
based on the relationship between the two: y € {0, 1,2} de-
noting the entailment, contradiction or neutral relationship,
respectively. Performance of the classification model is eval-
uated by the percentile of correct predictions inferred on the
testing set: 3 L(f(2i;0) = yi)/|Deest|, where 1 is an
indicator function equal to 1 if the predicted label f(x;;6)
is identical to the ground-truth y;, 0 otherwise; | Dyes| Tepre-
sents the size of the test set.

Adversarial Attacks by Word Substitutions. We evaluate the
performance of existing certifiably robust trained models
when perturbed texts are provided as inputs. Formally, a
word-level perturbation is obtained by substituting a given
word x; by another word Z; in a way that the semantic
similarity between the two is determined by the leveraged
metric DP mechanism. To achieve this, the additive noise is
parametrized by the privacy parameter e: a larger value of €
corresponds to less noise, and vice versa.

For the multivariate Laplace Mechanism of (Feyisetan et
al., 2020), since the noise is scaled purely as a function of
the distance from the original word, when € is small, words
in the dense regions of the embedding space are prone to
getting substituted with dissimilar words (that are further
away), compared to the words in the sparse region. This is
because in areas where embedding vectors are densely lo-
cated, the distance between two irrelevant words is commen-
surate to that between two words with similar meanings in
a sparse region. Hence, adapting the word-level substitution
to variations in the density of the embedding space can help
boost the utility of models trained on perturbed datasets. To
do this efficiently (and without any expensive computation
of local sensitivity each time a substitution is made), we
propose a novel mechanism based on a truncated Gumbel
distribution and prove that it admits metric DP. Instead of
sampling based on the distance from the original word, this
approach samples k candidate substitutions following the
Truncated Poisson distribution and then makes a distance-
based calibrated random choice from the k—1-nearest neigh-
bors of the original word in the embedding space (see Algo-
rithm 1). We describe this mechanism in more detail and
prove its formal privacy guarantees in the Appendix.



Dataset IMDb SNLI
Task type binary three-class
Training set size 20,000 550,152
Testing set size 1000 10,000
Total word count 11,856,015 4,614,822
Vocabulary size 145,901 49,895

Sentence length ~ 263.46+£195.29  8.25+3.20

Table 1: Summary of dataset properties.

Learning with Adversarial Examples. Motivated by the suc-
cess of augmented training approaches when text perturba-
tions happen in the form of extraneous text insertion (Jia
and Liang, 2017), paraphrasing (Iyyer et al., 2018; Ribeiro,
Singh, and Guestrin, 2018), character-level noise (Belinkov
and Bisk, 2017; Ebrahimi et al., 2017), we also investigate
the effectiveness of adding adversarial examples generated
by metric DP mechanisms to the training set for retraining.
Retaining the label of each sample, we perturb the text four
times, during which every word is perturbed by either the ex-
isting multivariate Laplace Mechanism or the proposed trun-
cated Gumbel Mechanism.

Experimental Results. We evaluate the proposed privacy
mechanism, adversarial attacks and the defense approach by
aiming to answer the following:

How will different adversarial training approaches, i.e.,
IBP with certified robustness, and the proposed augmented
training, perform when testing on adversarial examples de-
rived from metric-DP mechanisms?

Tasks and Datasets: We evaluate the robustness of models
on two text classification tasks: sentiment analysis on the
IMDb movie review dataset from (Maas et al., 2011); and
textual entailment on premise-hypothesis relation dataset
SNLI (Bowman et al., 2015). We use 300-dimensional
GLOVE vectors for word embedding. The statistics of the
two datasets are listed in Table. 1.

Sentiment Analysis: In IMDb, each movie review has a posi-
tive or negative label. We implemented the CNN architecture
that achieved the best adversarial attack and certified accu-
racy in (Jia et al., 2019).

Textual Entailment: In SNLI, each sample is composed of
two sentences: one as the premise and the other as the hy-
pothesis. The classification task is to define the relationship
as an entailment, contradiction, or neutral. Following the im-
plementation in (Alzantot et al., 2018), only words in hy-
pothesis are allowed to be substituted. Similarly, we adopted
the architecture that outperformed others in (Jia et al., 2019)
for evaluating different adversarial training approaches.

Compared Approaches. We compare robustness of the fol-
lowing two training approaches when adversarial examples
are generated using metric-DP perturbation.

Certifiably Robust Trained Approach: Interval Bound Propa-
gation (IBP) was leveraged to minimize the upper bound on
the worst-case loss that any combination of word substitu-
tions can induce. Specifically, an upper and lower bound on
the activation of a neuron in each layer is computed based on
the bounds of neurons in previous layers that connect to it.
Bounds for the input layer is computed based on the smallest

axis-aligned box that contains all the possible word substi-
tutions, while the upper bound on the loss in the final layer
is combined with the normal cross entropy loss to optimize
the classification performance on the actual word and any
other substitutions. The allowed substitutions are based on
(Alzantot et al., 2018).

Augmented Training: We add the adversarial examples gen-
erated by metric DP mechanisms (perturbing each sample
four times) into the training set and retrain the model.

Adversarial Attack Methodology Following (Alzantot et
al., 2018), a population-based genetic attacker is imple-
mented to search for perturbations that lead to misclassifi-
cation from the model. Given an original or modified sen-
tence, the attacker randomly substitutes a word from the
sentence with a new one based on the perturbation mech-
anism satisfying metric DP. After multiple substitutions, the
attacker obtains a population of new sentences together with
their fitness scores (negatively proportional to the probabil-
ity predicted for the correct label). If the new sentence with
the highest fitness score successfully fools the model, then
the attacker moves forward to the next sentence and starts
a new round of testing. Otherwise, the attacker will per-
form crossover and mutation operations: sample two new
sentences as parents from the population according to their
fitness score, and then generate the child sentence by tak-
ing the word from either parent randomly. Another round
of perturbation over the child sentence is then performed to
further increase sentence diversity. The model is certified ro-
bust to after providing correct predictions over a predefined
numbers of attacks.

Evaluation Metrics Based on attributes of the testing set,
the following two metrics are evaluated: Clean Accuracy:
the percentage of correct predictions when testing on the
original samples; and, Adversarial Accuracy: percent of cor-
rect predictions when testing on perturbed samples.

Privacy Parameter. To make the correlation between pri-
vacy and noise more intuitive, and to aid comparison be-
tween the Laplace and Truncated Gumbel mechanism, we
opted to surface the privacy parameter as a noise scale. The
larger the noise scale, the stronger the privacy guarantees (as
opposed to the inverse relation between privacy and €). For
more details on how the e parameters for both Laplace and
Truncated Gumbel map to the noise scale, see the Appendix.

Model Robustness Against Adversarial Samples. We list
performance of the two adversarial training approaches
when samples are perturbed by the multivariate Laplace
mechanism in Table 3 and the truncated Gumbel mecha-
nism in Table 2. In Table 3, clean accuracy of the proposed
augmented training approach is approximately 8.74% higher
than that of the certifiably robust trained approach IBP for
any noise scale selection on IMDDb and 3.33% higher when
the noise injected is < 0.05 on SNLI. Retraining with adver-
sarial examples helps maintain the similar level of clean ac-
curacy as the normal training approach, which is consistent
with observations in literature (Jia and Liang, 2017; Iyyer
et al., 2018; Ribeiro, Singh, and Guestrin, 2018; Belinkov
and Bisk, 2017; Ebrahimi et al., 2017). When evaluating the



Table 2: Performance of adversarial training approaches using the Truncated Gumbel Perturbation Mechanism.

Noise Scale 0.574 0341 0262 0.181 0.102 0.075 0.06 0.049 0.042
Clean IBP 81.00 81.00 81.00 81.00 81.00 81.00 81.00 81.00 8&1.00

IMDb Aug 89.60 88.10 90.00 88.30 89.20 89.00 8940 89.80 89.70
Ady IBP 3460 4740 58.60 7090 79.90 80.80 80.90 80.90 81.00

Aug 3490 4330 60.20 7180 86.20 88.80 89.30 89.70 89.70

Clean IBP 79.19 79.19 79.19 79.19 79.19 79.19 79.19 79.19 79.19

SNLI Aug 7992 8132 81.74 81.77 8220 82.18 81.86 81.65 81.96
Ady IBP 1149 1298 1495 24.01 58.78 7451 78.18 78.88 79.12

Aug 17.34 1657 17.05 2396 58.58 76.54 80.62 8141 81.90

Table 3: Performance of adversarial training approaches using the Multi-variate Laplace Mechanism.

Noise Scale 1 0.2 0.11 0.05 0.025 0.0167 0.0125 0.01 0.005

Clean IBP  81.00 81.00 &81.00 81.00 81.00 81.00 81.00 81.00 81.00

IMDB Aug 88.22 88.20 87.34 87.38 88.60 88.74  88.12 88.46 87.76
Adv IBP 030  0.50 1.20 490 38.60 68.30  78.50 80.30 81.00

Aug 10.80 8.50 10.20  6.90 9.50 17.70 32.10 53.00 88.30

Clean IBP 7919 7919 7919 79.19 79.19 79.19 79.19 79.19  79.19

SNLI Aug 76.68 7728 77.07 78.08 8138 8179 81.75 81.91 82.00
Adv IBP 1.84 1.90 221 3.70 922 2419  46.62 64.92 79.16

Aug 244 261 3.01 4.20 9.14 24.08 46.94 66.54 81.94

model’s robustness against word perturbations from the mul-
tivariate Laplace mechanism, the augmented training out-
performs the IBP approach only when the noise scale value
is smaller than some threshold, e.g., < 0.01 on IMDb and
< 0.025 on SNLI. This is expected as the augmented train-
ing cannot protect against all attacks especially when large
amounts of noise results in any word substitution without
considering semantic-preserving. In this case, the model can
hardly learn the hidden relationship between the corrupted
new texts and the original text label.

Given better semantic-preserving capability inherent in
the proposed truncated Gumbel mechanism, the augmented
training approach outperforms the certifiably robust trained
IBP method in both clean and adversarial accuracy almost
for any tested noise scale value tested. In Table 2, improve-
ment of clean accuracy by the augmented training approach
over IBP is 9.87% on IMDb and 3.77% on SNLI when
the noise scale is 0.075. At the same time, better perfor-
mance against adversarial attacks is achieved by the aug-
mented training approach: 9.90% higher adversarial accu-
racy on IMDb and 2.72% on SNLIL

One possible explanation of the inferior adversarial accu-
racy achieved by the certified defense approach IBP may be
attributed to the training procedure, which is based on the
word substitutions that preserve semantic meanings (Alzan-
tot et al., 2018). However, the testing adversarial examples
are generated by randomized perturbations from metric DP
mechanisms, where the semantic meaning is not always pre-
served, but dynamically determined by the noise scale.

Discussion and Conclusion. We study the performance of
different adversarial training approaches against adversar-

ial examples generated by metric DP mechanisms. To better
preserve semantic meanings during word perturbations, we
propose a novel Truncated Gumbel mechanism, which for-
mally satisfies metric differential privacy. Empirically, our
experiments demonstrate the advantage of this mechanism
over the multivariate Laplace mechanism due to its smaller
range of substitution candidates. In two text classification
tasks, retraining with adversarial examples performs better
than certified defence in both clean and adversarial accuracy.

We believe the following aspects are interesting for future
work: 1) robustness of other adversarial training approaches
based on the metric DP-inspired adversarial examples, e.g.,
surrogate-loss minimization; 2) generalization capability of
the well-trained augmented training approach, e.g., perfor-
mance against other types of adversarial examples; 3) pri-
vacy preservation performance of the proposed truncated
gumbel mechanism, e.g., performance of membership infer-
ence attacks (MIA) on perturbed texts.
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Privacy Proof for Truncated Gumbel
Mechanism

Restatement of Theorem 1. The truncated Gumbel mech-
anism, defined in Algorithm 1, is ed,-private with respect
to the Euclidean metric, for any given privacy parameter
€e> 0.

Proof. We first show for any pairs of substitutable words w
and w’,

Pr[M(w) = w;| K = n)
Pr(M(w') = w|K =n]

where n = |W| and d(w,w’) = ||¢(w) — ¢(w’)||2. Condi-
tional on K = n,

Pr(M(w) = w;|K =n)

2
< exp [beiﬂdm w'ﬂ 7

= Pr(di +g < m;ndj +gj).
JF1

Since g1, ..., gy, are i...d. random variables, we argue for
each ¢ independently. Fix g—; = [g1,- -+, Gi—1, Jit1s-- - Yn)
as a random draw from n — 1 independent Gumbel distribu-
tions. Define g* = supg : d; + g < minj»; d; + g;. Then
g; < minjz;(d; + g;) — d; if and only if g; < g¢*, which
means M (w) = w; if and only if g; < g¢*. Now consider
another substitutable word w’ with a corresponding distance

vectord’ = [d}, ..., d]]. By triangle inequality, we have
|d; — d;| <d(w,w’), fori =1,....,n.
Therefore,
Pr(M(w') = w;| K = n)

—Pr(d} + g < myién(d‘ +9,))

=Pr (gz<g +2d(w w')).

Since g; follows a Truncated Gumbel distribution, and the
normalizing constant gets cancelled out in the probability
ratio below, we have

Pr(M(w) = w| K =n)
Pr(M(w') = w|K =n)
Pr(g; < g*)
~Pr(g; < g% + 2d(w,w"))
exp(—e~59")
_exp(fe_%g*_%d(w’w'))

= exp|—e 19 (1 — e~ v dlww)),

which is increasing in g* as 1 — e~ tdww’) 5 0, Since gt >
—2A, and then

By symmetry of w and w’, we also have
Pr(M(w) = w|K =n)
Pr(M(w') = u;|K =n)

Recall that K ~ TruncatedPoisson (\; 1,n). We want to

show an upper bound for %, which is

< exp [ieiAd(w, w’)] .

Pr(M(w) = u,)
Pr(M(w) = u,)
S Pr(M(w) = wilK = k) Pr(K = k)
TS, Pr(M(w') = wK = k) Pr(K = k)
Zk 1PI‘(M(U/)—U1‘K—]C)PI“( =k)
Pr(M(w’) = w]K = n) Pr(K = n)

n—14Pr(M(w)=u|K =n) Pr(K =n)
Pr(M(w') = u;|[K =n)Pr(K =n)

Since

In order to guarantee € d., -privacy, we solve for b using

2A

’ 2
cdww’) > opexple® + \) exp<begAd(w, w’)).
Taking logarithm on both sides,
! log, | 2nexp(e 4 A )+ Zett
d( w') °° b

so we need to find an upper bound for the right-hand side of
the equation as a function of b.

1 248
mloge 2nexp(e® +

+A)) + zebd
2
b

2
b@

2
FA

1
<A<2+10gn+eb —|—)\) e

0

_2+logn+ A 1 +2 E7
Ao

Ao b
which is decreasing in b. When b < Ag,
2+logn+ A (1 2)€§A

Ay Ag b
<2+logn+)\+3 2a

=TT A, e



it is sufficient to set
2A

)
2A _ 2+4logn+A

where W is Lambert-W function. When b > A,
2 +logn + A (1 2>e§A

b=

7+7

Ay Ao b
<2+logn+)\+ie%A’
- Ay Ay

it is sufficient to set
2A

w3

Thus, a sufficient condition for

b=

1 24
€> Ao log, | 2nexp(e™
is to set b to be

2A

max( ’
2A _ 24logn+A

2A

log, <A3° (6 - 2+kfon+k>) >

Now that we have proved the proposed mechanism M is
e dy-private with respect to Euclidean metric d on a string

of one word, we have for any pair of inputs w, w’ € W* and
any output v € W¥,

Pr(M(w) =u) ‘ Pr(M(w;) = w;)
Pr(M(w/) = u) H(Pr(M(wn = ui>>

) =1
< H exp(ed(w;, w;)) = exp(ed(w, w")),

where d(w,w") = Zle d(w;, wl). O
For Algorithm 1, we set A = log |W], so that the value of
b used is the following:

2A

b—max< ,
(s ()

0

2A

1Oge<A30 <€ _ 2+21Ag|W>) )

For this value of b to be defined, we must ensure that € is
set in a way that the logarithm and Lambert-W function in
the denominator has a positive argument. This holds when-
ever € is larger than 2 (1 + log|W)|) /Ao. However, since
the nearest neighbor search in the embedding space is scale-
invariant, we can scale A to make e arbitrarily small.

Fraction of Modified Words

Lemma 1. For given € > 0, string x = wy ... wy and any
fixed k, the expected fraction of words that get modified us-

ing Algorithm 1 is at least (1—p), where p = exp (—e*%)
In particular, E(N,,) < p|W|.

Proof. Fix a word w; € x. Since u; = w;, observe
that we can write the probability that it does not get
modified as Pr (w; = u1) = Pr (g1 < min;>s (d; + g;)).
Let gf = supg : g < min;>s (dj + g;). Then, sim-
ilar to the proof of Theorem 1, g1 < min;>2 (d; + g;)
if and only if ¢y < g¢j. This gives Pr(w; =u1) =
Pr(g1 < gi) = exp (—e 9/%). Since g] < 2A, we can
write Pr (w; = u1) < exp (—e_%

Thus, the expected fraction of words in x that do not get
modified is at most p, where p = exp (— exp (—22&)). From
this, we compute the expected fraction of words that get
modified as at least (1 —p), as desired. The bound on E(N,,)
follows from a simple union bound over all the words in the
vocabulary. O

Note that % = % exp (*6 %) < 0, and hence, p is
a decreasing function in b, implying that as the privacy in-
creases (b increases), the value of E(N,,) decreases, as ex-

pected.

Utility Analysis vs. Sparsity of the Embedding
Space

For a fixedd ¢, the Truncated Gumbel mechanism keeps w

unchanged when the noise added to w is smaller than any

other perturbed candidate. If pgym(w) is the probability that

w does not change under this perturbation, then we can write

the following:

paum(w) > Pr (g1 < 0(w) + g2) Pr(K > 2)
=Pr(g1 — g2 < 6(w)) Pr(K > 2)

Since the difference of two i.i.d. Gumbel random variables
follows a Logistic distribution, we obtain the following (by
letting G, ~ Logistic (0,b)):

Peum(w) > Pr(Gy < 0(w)) Pr(K > 2)

1
B (HW,> Prik >2)

>e e " pr(K > 2),

where, the last inequality follows since 1 + z <

e®. Thus, even when &(w) approaches 0 (denser re-
gions), there is at least pgum(w)|sw)—0 > M =
% 1-— %) M 36.7% probability that w remains
unchanged. This helps preserve utility by ensuring that the
modified word is likely to be closer to the original word
since there is a significant probability mass around the orig-

inal word (specially as |V increases).



