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Abstract

Accurately learning from user data while ensuring quantifi-
able privacy guarantees provides an opportunity to build bet-
ter Machine Learning (ML) models while maintaining user
trust. Recent literature has demonstrated the applicability of
a generalized form of Differential Privacy to provide guaran-
tees over text queries. Such mechanisms add privacy preserv-
ing noise to vectorial representations of text in high dimen-
sion and return a text based projection of the noisy vectors.
However, these mechanisms are sub-optimal in their trade-
off between privacy and utility. In this proposal paper, we de-
scribe some challenges in balancing this trade-off. At a high
level, we provide two proposals: (1) a framework called LAC
which defers some of the noise to a privacy amplification step
and (2), an additional suite of three different techniques for
calibrating the noise based on the local region around a word.
Our objective in this paper is not to evaluate a single solution
but to further the conversation on these challenges and chart
pathways for building better mechanisms.

Privacy has emerged as a topic of strategic consequence
across all computational fields — from machine learning, to
natural language processing and statistics. Whether it is to
satisfy compliance regulations, or build trust among cus-
tomers, there is a general consensus about the need to pro-
vide privacy guarantees to users whose datasets serve as in-
puts to arbitrary functions provided by external processors.
Within the mathematical and statistical disciplines, Differ-
ential Privacy (Dwork et al. 2006) has emerged as a gold
standard for evaluating theoretical privacy claims. At a high
level, a randomized algorithm is differentially private if its
output distribution is similar when the algorithm runs on two
neighboring input databases. The notion of similarity is con-
trolled by a parameter £ > 0 that defines the strength of the
privacy guarantee. Similarly, it is possible to train differen-
tially private deep learning (Abadi et al. 2016) models by
extending the methods from the statistical literature to the
universal function approximators in neural networks. How-
ever, while Differential Privacy (DP) comes with strong the-
oretical guarantees, and the related literature is quite mature,
DP private mechanisms for generating text is less studied.
As a result, within the field of traditional and computa-
tional linguistics, the norm is to apply anonymization tech-
niques such as k-anonymity (Sweeney 2002) and its vari-
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ants. While this offers a more intuitive way of expressing
privacy guarantees as a function of an aggregation parame-
ter k, all such methods are provably non-private (Korolova
et al. 2009). Nevertheless, recent works such as (Fernandes,
Dras, and Mclver 2019; Feyisetan, Diethe, and Drake 2019;
Feyisetan et al. 2020) have attempted to directly adapt the
methods of DP to Natural Language Processing (NLP) by
borrowing ideas from the privacy methods used for loca-
tion data (Andrés et al. 2013). In DP, one way privacy is
attained by adding ‘properly calibrated noise’ to the output
of a mechanism (Dwork et al. 2006), or to gradient compu-
tations for deep learning (Abadi et al. 2016). The premise
of such ‘DP for text’ methods is predicated on adding noise
to the vector representation of words in a high dimensional
embedding space, and projecting the noisy vectors back to
the discrete vocabulary space.

Unlike statistical queries however, language generation
comes with a unique set of problems. Consider a simple
counting query where the objective is to return the number
of people who exhibit a certain property x. The sensitivity
of such a query is 1 since a new individual can only increase
the count by 1. With text however, the sensitivity is much
larger and is driven by the richness of the vocabulary, and
how it is represented in the metric space under considera-
tion. In this paper we propose strategies for increasing the
utility of these 'DP for text’” mechanisms by reducing the
noise required while maintaining the desired privacy.
Privacy Implications and Threat Model. We consider a
system where users generate training data (as text) which is
then made available to an analyst. The analyst’s utility re-
quirement is to assess the quality of a downstream metric
(e.g., ML model accuracy) derived from this data. The an-
alyst therefore requires clear form access to the input data
(e.g., for aggregation or annotation) to continuously improve
downstream utility. In this model however, it is possible that
the analyst learns more information about the user e.g., their
identity, or some property, than is required to play their role
of improving the utility metric. An example where textual
data was used for re-identification can be seen with the AOL
data release (Barbaro, Zeller, and Hansell 2006).
Challenges in Designing Private Text. Consider a set of
n users, each with data x; € X. Each user wishes to re-
lease up to m messages in a privacy preserving manner while
maximizing the utility gained from the release of the mes-



sages. One approach is for each user to submit their mes-
sages (Ti,1,-.-,Tium ) in clear form to a frusted curator.
The curator then proceeds to apply a privacy preserving ran-
domized mechanism R () to the analysis .A(z) on the ag-
gregated data. The privacy mechanism works by injecting
noise to the results of the analysis. This technique corre-
sponds to the curator model of DP (Dwork et al. 2006), how-
ever, it requires that the users trust the curator. This is the
proposed approach for preserving privacy in the upcoming
U.S. Census (Abowd 2018). The curator model results in
high utility since noise is applied only once on the aggre-
gated data; however, a parallel approach cannot be clearly
drawn for private text synthesis.

Another theoretical approach is for each user to apply the
encoding or randomizing mechanism R : X — Y™ to
their data. The resulting n - m messages (Yi1 5. -« Yism ) =
R(z;) for each user is then passed to the curator for analysis
A : Y* — Z. This corresponds to Local DP (LDP) (Ka-
siviswanathan et al. 2011), since each user randomizes their
data locally. The model provides stronger privacy guaran-
tees in the presence of an untrusted curator. However, it in-
curs more error than the curator model because it requires
multiple local R(x;) transformations (as opposed to one by
the trusted curator). As a result, it has mainly been suc-
cessfully adopted by companies with large user bases (such
as Microsoft (Ding, Kulkarni, and Yekhanin 2017), Google
(Erlingsson, Pihur, and Korolova 2014), and Apple (Team
2017)) which compensate for the error. The local model is
more amenable for text (Fernandes, Dras, and Mclver 2019)
and the literature builds on this framework.

The error accrued in the local model is exacerbated by
the output range of the randomization function R(z;). As
an example, for one-bit messages (e.g., a coin flip) where
f+ X — {0,1}, the overall error goes down faster as the
number of users increase, given the small output size of 2.
Using a die roll with 6 outputs, the noise smooths out a bit
slower. However, for analysis over vector representations of
words [ : X — R?, where d is the dimensionality of a word
embedding model, and the number of words in the vocab-
ulary could exceed thousands, the resulting analysis leads
to far more noisy outputs. The noise (and by extension, the
error) increases because of the DP promise, i.e., to guaran-
tee privacy and protect all outliers, there must be a non-zero
probability for transforming any given x to any other z’. We
loosely correlate this size of the output space with the sen-
sitivity of the function f. Therefore, when the sensitivity is
large, more noise is required to preserve privacy.

The challenge with designing privacy mechanisms for
text stems from these aforementioned issues. We observe
that unlike the natural distribution of values over the num-
ber line, the vector representation of words in an embed-
ding space tends to be non-uniform. The distance between
words carries information as to their semantic similarities,
and as a result, there are sparse regions and dense regions.
Conversely, the privacy guarantees from differential privacy
extends to every word in the entire space (leading to the
large noise required to ascertain worst-case protections).
This problem is not unique to the text space, however, it
has been better studied in the statistical privacy literature.

For example, the theoretical sensitivity for computing the
median of an arbitrary set of numbers is infinite, but, in
most dataset scenarios, the sensitivity is smaller as values
coalesce around the median (Nissim, Raskhodnikova, and
Smith 2007). Similar considerations have also been explored
in private release of graph statistics (Blocki et al. 2013;
Kasiviswanathan et al. 2013).

In this exploratory paper we examine these challenges
from different lenses:

1. Can we reduce the noise by deferring additional privacy
guarantees to other amplification mechanisms that do not
require noise (e.g., sub-sampling, shuffling, k-aggregation
have all been proposed in the literature (Li, Qardaji, and
Su 2012; Bittau et al. 2017));

2. Can we re-calibrate the noise added such that it varies for
every word depending on the density of the space sur-
rounding the current word — rather than resorting to a sin-
gle global sensitivity?

To address (1), we propose framing the private data re-
lease problem within the central DP (Erlingsson et al. 2019)
paradigm by recommending a generalized form of the ESA
protocol of (Bittau et al. 2017) which we denote as LAC. For
(2), we propose three different methods that can be adopted
to directly reduce the noise: density modulated noise, cali-
brating the noise to data sensitivity, and truncating the noise
using a variety of approaches.

Preliminaries and Current Methods. We now give some
preliminaries before providing details of our proposals.

Definition 1 (Differential Privacy (Dwork et al. 2006)). A
randomized algorithm A : X™ — Z is e-differentially pri-
vate if for every pair of adjacent datasets © ~ x' € X™ and
every Z C Range(A), it holds that
PrlA(z) € Z] < e*Pr[A(2’) € Z].

A DP algorithm protects a user by ensuring that its output
distribution is approximately the same, whether or not the
user was in the dataset used as an input to the algorithm. DP
is usually achieved by applying noise drawn from a Laplace
distribution scaled by the sensitivity of the analysis function.

Several pieces of research have demonstrated general-
ized DP (also known as dy privacy) for different met-
ric spaces and distance functions (Chatzikokolakis et al.
2013; Andrés et al. 2013; Chatzikokolakis, Palamidessi,
and Stronati 2015; Feyisetan et al. 2020; Fernandes, Dras,
and Mclver 2019; Feyisetan, Diethe, and Drake 2019). For
example, (Chatzikokolakis et al. 2013) demonstrated how
the Manhattan distance metric was used to preserve pri-
vacy when releasing the number of days from a refer-
ence point. Similarly, the Chebyshev metric (chessboard
distance) was adapted to perturb the output of smart me-
ter readings (Chatzikokolakis et al. 2013) providing pri-
vacy with respect to TV channels being viewed. Further,
the Euclidean distance was utilized by (Andrés et al. 2013;
Chatzikokolakis, Palamidessi, and Stronati 2015) in a 2 di-
mensional coordinate system to privately report the location
of users, and finally, (Fernandes, Dras, and Mclver 2019) ap-
plied the Wasserstein metric in higher dimensions to demon-
strate privacy preserving textual analysis using the metric
space realized by word embeddings.



This work focuses on preserving privacy in high dimen-
sional metric spaces equipped with the Euclidean metric. To
achieve this form of metric differential privacy (d privacy),
using a corollary to the Laplace mechanism, noise is sam-
pled from an n—dimensional Laplacian and added to the
output of the desired mechanism.

Proposal 1: Deferred Amplification

Our mechanism starts with a protocol similar to the privacy
strategy of the local model. Given a set of n users, each with
m data submissions z; € X. Each user applies the dx pri-
vacy mechanism £ : X — )™ to their data. The resulting
n - m messages (Yi,1,---,Yi,m ) = L(z;) for each user is
then passed to the curator C : Y* — Z.

Our proposal includes an additional step that amplifies the
privacy guarantees. Between the local noise injection £(x)
and the curator analysis C(y), we introduce a privacy am-
plification step A : Y* — Y* which takes in the result of
the message perturbations from all the users A(U_ L(z;)),
amplifies the privacy and outputs it to the curator.

To get an intuition on how LAC can be used to improve
utility while preserve privacy, consider the standard random-
ized response of (Warner 1965). Given a bit b € {0,1} and

privacy parameter €. To output a privatized bit b,weseth = b

with probability p = %, otherwise b = 1 —b. To improve
the utility of this mechanism, we need to increase €. How-
ever, in the local model, an adversary can map the output

{bAl, . ,bAn} to the n corresponding users. Therefore, the

parameter p has to be close to % otherwise b ~ b and the
privacy guarantees are meaningless. Thus, to maintain the
original (privacy) guarantees (while improving the utility),
we need an additional mechanism that’s different from the
bit flipping noise addition. The desired property is such that
the privacy guarantees are still meaningful when p < %

In building composite DP algorithms, tools for privacy
amplification are used to design mechanisms that provide
additional guarantees than the initial privacy protocol.

Probably the most studied technique is privacy ‘ampli-
fication by sub-sampling’ (Chaudhuri and Mishra 2006;
Kasiviswanathan et al. 2011), which states in its basic form
that an e-DP mechanism applied to a ¢ fraction sub-sample
of the initial population, yields an &’-DP mechanism, where
¢’ =~ qe. Other approaches such as (Li, Qardaji, and Su
2012) and (Feyisetan et al. 2019) have proposed augment-
ing sub-sampling with a k—anonymity parameter. Another
class of amplification is by contractive iteration (Feldman
et al. 2018) for privacy preserving ML models.

Amplification Model Spotlight: The Shuffler. In this
work, we highlight the shuffle mechanism (Bittau et al. 2017;
Erlingsson et al. 2019; Cheu et al. 2019; Balle et al. 2019) to
amplify the privacy guarantees. While shuffling on its own
offers no DP guarantees (unlike sub-sampling, which does),
when combined with LDP, it has the advantage of maintain-
ing the underlying statistics of the dataset by not ‘throwing
away’ any of the data. The shuffler de-links data by masking
its origin. For shuffling to be a viable amplification model,
the Analyzer and Randomizer outputs must be amenable to

Algorithm 1: Composite privacy mechanism

// Localizer
Input: word w € W, parameters m, for each n users
Output: word w € W
fori e {1,...,m} do
L Noise n ~ Lap(Ay/e)
¢ =¢(w)+n
release W
// Amplifier
Input: Multiset {1; };c[n], outputs of randomizers
Output: Multiset {10; };¢[,], uniform permutes of [n]
forie {n—1,...,1} do
7 < random integer such that 0 < 57 <¢
L exchange w; and w;

release {w}

// Curator

Input: Multiset {1/; };cn], With y; € Y
Compute z = A(y)

release z

shuffling, and not rely on any discriminating characteristics
that link an individual to their contributions.

The pseudo-code in Alg. 1 provides a high level overview
of the composite privacy mechanism using a shuffler. Each
user contributes their data which passes through a local pri-
vacy randomizer. The noisy outputs are then passed to a
shuffler which permutes the order of the source of the per-
turbed data. The overall protocol P, thus, consists of (£, A,
C) and is modeled around the Encode, Shuffle, Analyze (ESA)
architecture of (Bittau et al. 2017).

In principle, shuffling can be implemented via multi-party
computation, mixnets, running on secure hardware or via a
trusted third party (Cheu et al. 2019; Bittau et al. 2017).
Selecting a Privacy Amplification Model. We provide
some high level proposals:

Shuffler: can be used to generate text that’s fed into linear
classifiers with high utility. For example, a mechanism that
outputs a sentiment class based on private perturbed data can
still yield high utility on user de-linked and shuffled data.
Sub-sampler: For other use cases such as personalization
which require some form of user linked data, a sub-sampler
can be used instead of a shuffler. This will be more suitable
if the data is reasonably uniform (without outliers).
K-threshold: with randomized sub-sampling can be used for
cases where the underlying data follows a long tail distribu-
tion such as for annotating data in crowdsourcing or training
generalized ML models with user data.

Proposal 2: Improved Randomizers

The randomizer R is based on the d y metric privacy mech-
anism described by (Feyisetan et al. 2020) on word em-
beddings where the distance between word vectors is rep-
resented as the Euclidean metric. A similar mechanism was
also proposed by (Fernandes, Dras, and Mclver 2019), how-
ever, the distance metric was the Earth mover distance. Sim-
ilarly, (Feyisetan, Diethe, and Drake 2019) extended the
model to demonstrate preserving privacy using noise sam-
pled from Hyperbolic space. The metric space of interest is



as defined by word embedding models which organize dis-
crete words in a continuous space such that the similarity
in the space reflects their semantic affinity. Models such as
WORD2VEC (Mikolov et al. 2013), GLOVE (Pennington,
Socher, and Manning 2014), and FASTTEXT (Bojanowski et
al. 2017) create such a mapping ¢ : W — RY, where the
distance function is expressed as d : W x W — [0, o). The
distance d(w, w’) between a pair of words is therefore given
as ||¢(w) — ¢(w')||, where || -|| is the Euclidean norm on R,

This mechanism however leads to sub-optimal accura-
cies due to a lack of uniformity in the embedding space.
In particular, to achieve a certain level of privacy protec-
tion, the amount of noise is controlled by the worst-case
word, which roughly corresponds to the word whose em-
bedding is farther apart from any other word (i.e., the global
sensitivity). Therefore, at a given level of ¢, a unique word
like nudiustertian will be perturbed similarly to a common
word like drunk which has over 2,000 possible synonyms'.
To improve on this, we propose a variation of the original
mechanism that can provide a fixed level of plausible denia-
bility (Bindschaedler, Shokri, and Gunter 2017), measured
in terms of the proxy statistics of (Feyisetan et al. 2020)
with less noise, thus yielding more accuracy. In other words,
the improved mechanisms should provide the same level of
plausible deniability as the original mechanism, but under a
larger value of . To achieve this goal, we propose:

1. Defining a prior to account for the space variability.
2. Calibrating the noise to the local sensitivity of the space.
3. Adopting a truncated noise mechanism.

Density-Modulated Noise. We observe that the algorithm
from (Feyisetan et al. 2020) can be interpreted as an in-
stance of the exponential mechanism (McSherry and Talwar
2007) together with a post-processing step. Further, noise
sampling via the exponential mechanism assumes a base
measure p(z) with a uniform distribution over the feasi-
ble range. Accordingly, the algorithm can be expanded as
pN(z) o u(z) x exp(—¢||z||). However, the distribution of
words in R® is not uniform over the embedding space. As
a consequence of Zipf’s law, some words occur more fre-
quently in a dataset and are surrounded by dense regions of
similar words in the embedding space.

A natural way to “bias” an exponential mechanism with-
out changing its privacy properties is to modulate it with a
public “prior” p(z). For example, such a prior can be con-
structed over a publicly available corpus such as Wikipedia
or Common Crawl. The question we address in this section
is whether we can design an appropriate, potentially unnor-
malized, prior such that the resulting exponential mecha-
nism that samples from py(z) o u(z) x exp(—elz||) pro-
vides more accurate answers than the original mechanism
under similar privacy constraints. An important research
challenge in this direction is that by incorporating this cor-
rection to improve accuracy, we might end up with a mech-
anism that is computationally hard to sample from.

To obtain a prior that will solve the non-uniformity in the
privacy mechanism using a vanilla word embedding is to
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modulate the distribution by a prior that captures the dis-
tribution of words in R? induced by the word embedding.
By introducing a prior that assigns high probability to dense
areas of the embedding and low probability to sparse areas
of the embedding, we can achieve the same level of plausible
deniability statistics with smaller values of ¢, hence, mitigat-
ing the worst-case effect that is observed in the unmodulated
mechanism around sparse areas of the embedding.

One way to produce this prior measure p(z) is to
take a kernel density estimator with Radial Basis Func-
tion kernels on the resulting embedding, ie., u(z) o
> wew €xp (—[|z — ¢(u)||?/20?) for some tuned variance

o%. However, it is not immediately clear how to sample
from the modulated mechanism that on input w has density
pN(z) x p(z) xexp(—e||z||) for pu(z) defined above. Rather
than sampling directly, we can either opt for an approxima-
tion to the distribution, or adopt indirect sampling strategies
such as the Metropolis—Hastings algorithm.

Another observation is that we don’t need to pay the cost

of an expensive sampling every time we want to use the
mechanism. Instead, by introducing the projection step of
the sampled vector to the closest word embedding, we can
represent the mechanism by a W x W matrix containing
the probabilities Pr[M(w) = w'], where M is the com-
plete mechanism. We can precompute and store these ||V ||?
probabilities and then use this matrix to define the output
distribution every time we run the mechanism.
Calibrating Noise to Data Sensitivity. In the proof of
(Feyisetan et al. 2020), w is calibrated at the worst-case dis-
tance T from w and w’ which is analogous to the global sen-
sitivity. We can however, have a data dependent sensitivity
definition over the metric space:

Definition 2 (Local sensitivity (Nissim, Raskhodnikova, and
Smith 2007)). The local sensitivity of a function f : X™ —
R? is given for x ~ ' € X as,

1f(z) = f(2)lx

Ag, = max

: z/:d(z,x’)=1
The local sensitivity of f with respect to x is how much
f(a') can differ from f(z) for any a2’ adjacent to the input
z (and not any possible entry ). We observe that the global
sensitivity Ag, = max, Az, (x). However, a mechanism
that adds noise scaled to the local sensitivity does not pre-
serve DP as the noise magnitude can leak information (Nis-
sim, Raskhodnikova, and Smith 2007). To address this, for
example, (Nissim, Raskhodnikova, and Smith 2007) adds
noise calibrated to a smooth bound on the local sensitivity.
The noise is typically sampled from the Laplace distribu-
tion. Thus, if we consider w at a distance 0 < t < T, then
the local sensitivity Az, is:

Aﬁf(t) = max  Ag,. (D
w’:d(w,w’) <t

However, for our rare word w =nudiustertian, the local sen-
sitivity might still leak information on output w. As a result,
we can construct the smooth sensitivity As, as a f—smooth
upper bound (Nissim, Raskhodnikova, and Smith 2007) on
the local sensitivity. The desired properties of the bound in-
clude that:



(HVweW: As, (w) > Ar, (w)
Q) Vw,w" e W As,(w) < e’ Ag, (w')
Observe that the smooth bound is equal to the global sen-
sitivity Ag, when 3 = 0. Therefore, the smallest function
Ag;ﬂ that satisfies the two stated properties is the smooth

sensitivity of the underlying function f and can be stated as:
_ ) ¢, 1 —Bd(w,w’
Ag;ﬁ (w) = w';dr(ii)u{’)gt (ALf (w') - e~ B ))

However, we cannot describe the local and smooth sen-
sitivity this way since the local sensitivity construction in
Def 2 was defined for integer-valued metrics (such as the
Hamming distance). To translate this to real-valued metrics
as is required for d,-privacy, we can adopt the approach of
(Laud, Pankova, and Pettai 2020) for defining the local sen-
sitivity in metric spaces.

First, we consider each word embedding vector as a
point in some Banach space. A Banach space is a vector
space with a metric that allows the computation of vec-
tor length and distance between vectors. For example, our
n—dimensional Euclidean space of word embeddings, with
the Euclidean norm is a Banach space.

Next, we observe from (Kasiviswanathan et al. 2013) that
the local sensitivity of a function is similar to its derivative
(e.g., taking the limits in Eqn 1 as ¢ — 0). Therefore, the
aim is to find an analog of a suitable derivative for contin-
uous functions. One option is for the local sensitivity to be
defined as the Fréchet derivative in Banach spaces. (Laud,
Pankova, and Pettai 2020) described an approach for this
and they demonstrated how to apply noise sampled from the
Cauchy distribution to satisfy the DP guarantees. Additional
research would be needed to explore the direct application of
the method of local (and then smooth) sensitivity calibration
to embedding spaces.

Truncated Noise Mechanisms The standard d,-privacy
mechanisms were designed by borrowing ideas from the pri-
vacy methods used for location data (Andrés et al. 2013).
One of the proposed approaches in that work was to truncate
the mechanism to report only points within the limits of the
area of interest. To achieve this, they define an ‘acceptable
area’ of admissible points A C R? (i.e., location privacy in
2—d space) beyond which results are truncated to the closest
point in A. Other truncation mechanisms have been explored
in traditional DP including the truncated Laplacian (Geng
et al. 2018), and truncated geometric mechanism within the
context of d,-privacy (Chatzikokolakis et al. 2013).
Designing a corollary for text based d,-privacy requires
an approach to setting the truncation bounds while main-
taining the privacy guarantees. We identify 2 potential ways
of achieving this: (1) Distance based truncation; and (2) K-
nearest neighbor based truncation. To achieve (1) we can de-
fine a distance based limit similar to (Andrés et al. 2013). In
this approach, a word can only get perturbed to words within
the distance-defined admissible area A € {/. The maximum
distance 7 between a word and the farthest word in A is de-
fined and fixed a-priori. To handle words that fall outside
the noise limits, (Andrés et al. 2013) proposes a discretiza-
tion step to select the closest word in .A. Another option is
for the mechanism to concentrate the probability of selecting

a word to the admissible area .A, while assigning a residual
probability to satisfy the DP guarantee on the entire set U/.
Therefore, when the noise exceeds the distance 7, a replace-
ment is randomly drawn from the set I/ — A.

The downside of this approach is seen in regions of
sharply varying density e.g., in the embedding space where
one word has 2, 000 synonyms which potentially fall within
A and the rare word with no neighbors in .A. Therefore to
achieve (2) rather than having a fixed distance from each
word, we can also define the (randomized) k—closest words
as delineating our acceptable area. One potential benefit of
this is, in dense spaces, we can select closer candidates
while simultaneously guaranteeing that isolated words are
replaced by one of their k—nearest neighbors regardless of
how far off it is.

Implementing either of these mechanisms however come
with their own set of challenges. For example, there isn’t
a direct way to set a maximum distance when drawing the
multivariate laplacian noise that was proposed by (Feyisetan
et al. 2020). One option will be to fix 7, or the distance to the
max randomized k as the local sensitivity. Another option
will be to rethink the entire design of the randomizers such
that the noise is not added to the vector representation of the
words, but to these 7 distances.

Connections to Related Work The traditional DP litera-
ture contains techniques to limit the privacy preserving noise
added to a mechanism. In one work, (Nissim, Raskhod-
nikova, and Smith 2007) introduced the notion of smooth
sensitivity where a smooth upper bound on the local sensi-
tivity is used to determine how much noise is added.

Similarly, (Dwork and Lei 2009) introduced a paradigm
called Propose-Test-Release (PTR) where: the algorithm
proposes a bound on sensitivity, tests the adequacy of the
bound on the dataset, and halts if the sensitivity is too high.

In related work, (Kasiviswanathan et al. 2013) extended
the notion of limiting the noise for private graph analysis
where the degree bound (a function of the number of nodes
in the graph) can be arbitrary. To achieve this, they set a D
bound on the graph which aims to keep the sensitivity low
while retaining as large a fraction of the graph as possible.

These all describe principled approaches to limit the mag-
nitude of noise applied to a privacy preserving mechanism
in the contexts of statistical and graph analysis by redefin-
ing the sensitivity that controls the noise. As opposed to the
reviewed techniques, our representations are within a metric
space defined by word embeddings.

Conclusion and Future work In this proposal paper,
we surveyed some of the challenges of building differen-
tially private mechanisms for generating text based on word
embeddings. We investigated approaches built on the d,-
privacy framework in Euclidean space. The core issues stem
from the non-uniformity of the metric space defined by em-
beddings and the need to provide worst case guarantees for
outliers as required by differential privacy. This necessitates
a large amount of noise thus leading to utility impacts on
downstream tasks that rely on the generated text as input.
Our approach was to explore the resulting utility issues
from different perspectives: first, considering methods of re-



ducing the required noise by deferring additional guaran-
tees to other privacy amplification mechanisms that do not
require noise (such as shuffling). We then proposed three
ways to reduce the needed noise by accounting for the den-
sity around the word under consideration. These included in-
troducing a prior, re-calibrating the noise, or truncating the
noise. In future work, we plan to explore these approaches in
detail and provide a study on what works, when it works, and
why. Our aim is to provide a principled approach to study-
ing these mechanisms in order to accelerate the research and
drive adoption.
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