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Abstract

In this work, we propose a deep neural architecture
that uses an attention mechanism which utilizes re-
gion based image features, the natural language ques-
tion asked, and semantic knowledge extracted from the
regions of an image to produce open-ended answers for
questions asked in a visual question answering (VQA)
task. The combination of both region based features
and region based textual information about the image
bolsters a model to more accurately respond to ques-
tions and potentially do so with less required training
data. We evaluate our proposed architecture on a VQA
task against a strong baseline and show that our method
achieves excellent results on this task.

Introduction
Visual Question Answering (VQA) is a task in which a sys-
tem provides natural language answers to questions con-
cerning an image. This is typically accomplished using deep
learning systems that extract textual features from the ques-
tion and image features from the related image. One diffi-
culty that arises with this approach is that there is very little
text signal that networks can use to derive semantic informa-
tion in the image. This means that either 1) Large amounts
of question and answer data must be gathered for ML tech-
niques to learn effectively or 2) Approaches will struggle to
draw a connection between image features and text seman-
tics.

To overcome these shortcomings, we propose to augment
a deep learning architecture that utilizes neural attention
with additional, external knowledge about the image. This
type of approach has been used in the past (You et al. 2016;
Wu et al. 2016; Kim and Bansal 2019; Wu, Hu, and Mooney
2019); however, our work seeks to take advantage of a dif-
ferent form of knowledge. Our resulting network, which we
call the Visual Question Answering-Contextual Information
network (VQA-CoIn), improves upon past work by extend-
ing it to incorporate semantic information extracted from
every regions an image via image descriptions. We hypothe-
size that this will help bridge the gap between image features
and natural language text, which should improve network
understanding.
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In our proposed model, we have extend the work in (Kim,
Jun, and Zhang 2018) by incorporating semantic informa-
tion of an image’s regions in addition to the image fea-
tures and questions. To evaluate the effectiveness that this
additional information has, We have used the VQA v2.0
(Goyal et al. 2016) dataset to train and evaluate our archi-
tecture. For generating semantic information for each im-
age of the dataset, we utilize Densecap(Johnson, Karpathy,
and Li 2015) to extract all possible image regions and pro-
duce image captions for them. We preprocess these captions
to extract the important words out of them as we want to
make sure that the information limits to a fixed length and
the deep learning network used to encode these words focus
on the meaningful texts. For evaluation of our network, we
use accuracy as the evaluation metric like all prior works.
To measure the test accuracy score, we use VQA challenge
hosting site EvalAI where we submit the generated results
and the site measures the scores for 3 categorical questions
and overall test accuracy for the test split data. In addition,
we also evaluate how well our techniques scales with data
compared to other techniques by testing with different per-
centages of the training dataset.

Related Works
The introduction of the VQA v1.0 and VQA v2.0 datasets
(Antol et al. 2015; Goyal et al. 2016) have drastically
accelerated research in this area. As a result, some in-
teresting works like (Yang et al. 2015; Das et al. 2016;
Kazemi and Elqursh 2017; Anderson et al. 2018; Teney
et al. 2017) have been proposed for the advancement in
VQA. For instance, while the work in (Yang et al. 2015)
focuses on putting stacked attention on images, (Anderson
et al. 2018) has assigned bottom-up attention to figure out
the regions and then used top-down mechanism to deter-
mine the important features. Both (Yang et al. 2015) and
(Anderson et al. 2018) are the winners of the VQA chal-
lenge 2016 and 2017 respectively. The region based fea-
tures introduced by (Anderson et al. 2018) have been uti-
lized by several approaches (Kim, Jun, and Zhang 2018;
Jiang et al. 2018) including ours. In the 2018 VQA chal-
lenge, authors improved upon the 2017 winner by chang-
ing learning schedule, fine tuning the model, and using both
grid level features and region features of images (Jiang et al.
2018). But recently a research work has revisited grid based



features of VQA and used them in end-to-end training (Jiang
et al. 2020), which has produced strong results.

There has been prior work that merges elements of image
and text for the VQA task. For example, Kim and Bansal
utilized both paragraph captions and object properties de-
scribed using sentences as prior knowledge to aid in the
VQA task on the visual genome dataset (Kim and Bansal
2019). Wu et al. proposed a free-form VQA model where
internal textual representations of an image are merged with
textual information sourced from a knowledge base (Wu et
al. 2016). They claim that by using this method, a VQA sys-
tem can answer both complex and broad questions condi-
tioned on images. In work by Wu, Hu, and Mooney (Wu, Hu,
and Mooney 2019), captions are generated from questions
and are used as an input to the neural network. The model we
propose in this work focuses on using region-based contex-
tual information as we believe that performance of a VQA
model can be bolstered if more knowledge about an image
is provided through both region-based visual features and
textual information. These semantic texts about images can
better help our model to bridge the gap between images and
natural language questions as well.

Method
Given an image and associated question, the aim of our pro-
posed model is to produce an answer of the question utiliz-
ing the salient image features and semantic information of
the image. In all upcoming sections, semantic information
will be approached as SI. We name our model as VQA-
contextual information (VQA-CoIn) model and following
this, in the rest of the paper, we will address the method by
VQA-CoIn model. Through our network, we emphasize that
adding contextual information of the image can help a VQA
agent to learn more about the content of the target image to
answer relative questions about the image.

In our proposed architecture, there are three different
modules which make an end to end deep learning architec-
ture for the Visual Question Answering task. The first mod-
ule:Input Encoder, where visual features are extracted using
Faster r-CNN(Ren et al. 2015) method and textual features
like natural language questions and semantic knowledge of
the images are embedded using gated recurrent units (GRUs)
(Cho et al. 2014).

The next process in our model involves attending to im-
ages and SI of images works using a bilinear attention mech-
anism(Kim, Jun, and Zhang 2018) conditioned on question
embedding vectors. We also apply self attention on ques-
tions to learn the importance of the words residing in the
given questions. The third component is the classifier which
predicts candidate answers using the concatenated vector
produced from the sum pooling of the three output vectors
of the previous two modules. Figure 1 shows an overview of
our VQA-CoIn model. We will discuss each module of our
architecture in greater detail below.

Input Encoder
The Input Encoder takes an image, associated question, and
the SI of the image as inputs and produces three embedding

Figure 1: Overview of the proposed VQA-CoIn architecture.

vectors, one from each of the inputs. For the image features,
we use the pre-trained bottom-up attention features which
were generated in (Anderson et al. 2018). They used Faster
r-CNN algorithm (Ren et al. 2015) with ResNet-101 to train
the model. Adaptive number of features fi per image is con-
sidered to generate the vector representation fi×di for each
image where di is the image feature size.

Our model uses semantic information (SI) extracted from
the image as external knowledge to learn more about the im-
age. To encode these semantic features, each word is embed-
ded using pre-trained GloVe(Pennington, Socher, and Man-
ning 2014) 300d word vectors. Then the embedded word
vectors are propagated through GRU cell which gives us hid-
den vector for each corresponding word. The hidden vectors
are used in the attention layer to create the encoding vector
of the semantic features.

The final input for our task is the question related to the
image which is embedded twice with two different hidden
vector sizes in our model. We do this because we realize
from our experiments that questions with large hidden vec-
tors can contain more information from image while attend-
ing them. But in the case of prioritizing information from
its own features, hidden layers with smaller dimensions can
perform this task more effectively. In Figure 1, yellow is
used for questions with large vector sizes and blue is for
questions with smaller dimensions. As with the SI embed-
ding, we use the same pre-trained GloVe word embedding
to embed each word of a question. The obtained word em-
bedding vector is then passed through two separate GRU
cells (Chung et al. 2014) represented as GRUl and GRUs for
larger and smaller hidden state respectively in Figure 1. The
GRU cells have nq numbers of hidden states h ql and h qs.
Here, nq is the word count in the question and h ql and h qs
denote the hidden states from GRUL and GRUS respectively.
Hidden states of both GRU cells are passed to the attention
layer to generate the context vector of the questions.

Attention Layer

In the attention layer, we employ an attention mechanism
to find out the importance of different parts of the input se-
quence based on a query vector. We use two different at-
tention mechanisms on the input vectors: 1. Self-Attention,
applied to question embedding vector and 2. Bi-Linear At-
tention, applied to image embedding, question embedding
and SI embedding vectors.



Figure 2: A detailed architecture of self attention mechanism of questions with smaller hidden states h qsn. Here, n defines
the number of words in a question. These hidden states are passed into two FC layers and then multiplied to create a joint
representation. This joint representation is forwarded through ReLU and FC layers to get the attention weights. The question
embedding vector is element-wise multiplied with the attention weights to achieve the context vector.

Self-Attention Self-attention is an attention mechanism
where relations among different parts of a sequence are com-
puted using the same sequence as query. In our proposed
architecture, we apply self-attention on a question to figure
out the internal relations among the words of a question. For
example, in a question like ‘what is the color of the bus?’,
invoking self-attention on itself would enable the model to
identify that the words ‘color’ and ‘bus’ are interrelated and
should be more emphasized to learn about the question.

Figure 2 shows the detailed architecture of the self-
attention module. We implement the self-attention mecha-
nism inspired by the idea of multi-headed attention which
are featured in many transformer architectures (Vaswani et
al. 2017). In this process, we take into account all of the
hidden states of the GRUS instead of the final hidden state
as RNNs have a tendency to forget the information encoun-
tered in the early steps of the sequence. All of the hidden
states are passed through two fully connected (FC) layers
which generate two vectors, a query vector q and a value
vector v. In each FC layer, weight normalization and ReLU
activation are performed on the input vectors. Then the re-
sultant vectors q and v are multiplied together to create a
new context vector. Here, the multiplication operation is the
element-wise multiplication (Hadamard product) of the vec-
tors. The new context vector is forwarded to another FC
layer followed by a softmax layer to generate the attention
weights of the input question embedding. Afterwards, these
weights are multiplied with the initial question embedding
to construct the final context vector c qs. This final question
context vector represents the prioritized words in the input
question sequence. As a next step, c qs is used to put bilin-
ear attention (Kim, Jun, and Zhang 2018) on the semantic
concepts of the images.

Bilinear Attention Bilinear attention is usually applied on
two inputs with multiple channels so that the two input chan-
nels decrease their dimensionality concurrently. We adopt
this attention mechanism from Bilinear attention networks
(Kim, Jun, and Zhang 2018). In our case, we have two in-
put groups to apply the attention: one group is the combined
group of the image and question and the other is the com-
bined group of the SI and question context vector. In the at-
tention procedure, at first an attention map is generated us-
ing image features conditioned on given questions embed-
ded using GRUL. Similar to (Kim, Jun, and Zhang 2018),

this attention map is then run through eight glimpses. In
each glimpse, a vector representation from the image and
question is produced using the bilinear attention map. Next,
with this representation, for every glimpse, we keep integrat-
ing the resultant vectors of the residual learning network and
counter module (Zhang, Hare, and Prügel-Bennett 2018). As
a result, at the last glimpse, we get a final output vector b cv .

For the input group of SI and the question context vector
c qs, we similarly produce an attention map using the two
input vectors. But unlike the image-question input group, we
use one glimpse on the attention map of SI-question group
to generate a vector. Also, we element-wise add the context
vector c qs of question with the resultant vector from the
glimpse. This creates an output vector b csi.

Classifier Layer
b cv , b csi and c qs are the inputs of our classifier layer. The
sum pooling of these three input vectors are concatenated as
the next step of the classifier. And the concatenated vector is
then redirected to two FC layers to gather predicted answers
for the questions. In FC layers, we use ReLU as the activa-
tion function and the output dimension is set to the number
of unique answers. We have selected these answers that ap-
pear at least 9 times for the distinct questions in the training
dataset.

Experimental Setup
In this section, we are going to have a detailed discussion
about the implementation procedure and experimental setup
for VQA-CoIn model. First, we discuss the dataset we use
for our task and then the preprocessing of our additional
prior semantic knowledge. We will then outline the network
parameters for our proposed model that we use in the experi-
ments. To evaluate our method VQA-CoIn, we have used the
available VQA challenge guidelines. We use BAN-8 (Kim,
Jun, and Zhang 2018) as our baseline. And we compare our
validation and test scores with bottom-up attention model
(Anderson et al. 2018) as well.

Dataset
We evaluate our proposed model on VQA v2.0 dataset. We
use the provided train/validation split of the dataset to train



Scale% VQA-CoIn BAN
25 54.84 54.09
50 61.76 62.42
75 65.08 64.92

Table 1: Validation accuracy after training VQA-CoIn with
different scales of train split.

our network. In the training dataset, more than 400k ques-
tions and 82k images and in the validation split, 200k ques-
tions and 40k images are available. Though we are utilizing
full dataset, our model is trained to learn from the selective
answers from the train split. Recall that these are chosen, be-
cause they appear as answers at least 9 times for the unique
questions of the split. The number of these selective answers
is 3,129. The full test split of the dataset has around 82k im-
ages and 440k relevant questions on which we test our net-
work. As VQA task is an open challenge, the ground truth
answers for the questions in the test dataset are not available
and cannot be compared with.

Preprocessing
As we have mentioned, our method exploits the semantic
concepts of images available in the dataset as an input of our
architecture. To generate this information, we use Dense-
cap (Johnson, Karpathy, and Li 2015), an image captioning
model. For each image, Densecap generates a variable num-
ber of captions. We have found that after a certain number
of generated captions, the generated information tend to be
duplicates. For example, Densecap has generated both ‘man
wearing a hat’ and ‘a man wearing a hat’ captions for an
image. To avoid these duplicate words, we have removed a
sentence which has at least 80% similarity with any previous
selected sentence.

After discarding the similar sentences, from the resultant
list, first 10 sentences are taken and preprocessed. As pre-
processing steps, we tag the words of each sentence with
the NLTK part-of-speech tagger and then get rid of the stop
words such as ‘the’, as well as any preposition and auxiliary
verbs from the sentences. Afterwards, the remaining words
are gathered in a list which we have used as the SI for the
respective image.

Network Parameters
We consider our image feature size di as 2048 and the num-
ber of features fi as variant between 10 to 100 per image.
For word embedding, pre-trained GLoVe vectors of size 300
have been used. As we mention in section 3.1, questions are
embedded twice in our architecture. Question embeddings
which are used for attending image features utilize GRU
cells with a dimension of 1024 and the question features uti-
lized for self-attention and external knowledge prioritization
consists of a 512 sized vector. The maximum word length nq

for any embedded question in the proposed model is 14. To
embed the semantic concept of an image, we fix the size of
the GRU units to 512. The additional semantic knowledge
about an image can consist of maximum 40 words. For train-

Method Validation Score
bottom-up 63.20
BAN-8 66.28
VQA-CoIn(I+Q) 66.03
VQA-CoIn(I+Q+SI) 66.33

Table 2: Validation scores computed on the full VQA v2.0
dataset for bottom-up model, BAN-8 and our architecture.

Method yes/no number other overall test-
dev

bottom-up - - - 65.67 65.32
BAN-8 83.61 50.45 58.12 67.75 68.07
VQA-CoIn 83.57 50.91 58.33 67.88 68.2

Table 3: Comparison of Test-standard scores among VQA-
CoIn, BAN-8 and bottom-up model. VQA-CoIn are trained
using VQA v2.0 train and validation splits and tested on test
split. Note that all 3 models are single models.

ing, we find that 18 epochs are enough to sufficiently train
the network. We have used the batch size of 180 for training
and testing the dataset. The Adamax optimizer is used to op-
timize the classifier and dropout value of the classifier is set
to 0.5 while FC layers have dropout of 0.2.

Baselines
BAN-8 (Kim, Jun, and Zhang 2018) is our baseline archi-
tecture. To compare with the baseline model, we have re-
trained the BAN model(Kim, Jun, and Zhang 2018) from
their github repository to reproduce the results. A note to
mention, we deploy some changes to BAN model while re-
producing it. First, we use batch size 180 to run their model
as we deploy for our VQA-CoIn model. Second, we have
omitted the effect of data augmentation of visual genome
dataset from BAN model as we have not employ any data
augmentation. The reason of making these changes is to ap-
propriately compare our model with the baseline model.

Evaluation Criterion
For VQA tasks, question accuracy is the preferred evaluation
metric. In this section, we are going to illustrate the eval-
uation process we have followed. Like previous VQA ap-
proaches, we have computed accuracy to decide how our ar-
chitecture is performing to figure out the correct answers for
a given question using both image features and contextual
information about the image. According to the employed
dataset, validation and test accuracy scores are calculated.
Validation accuracy is measured by comparing against the
ground truth answers available in the validation data split.
And to obtain the test score, we have generated answers for
the questions in the test split based on our model and sub-
mitted the results in the VQA challenge hosting site EvalAI.
It provides scores for each category of questions which are
already defined in the dataset.



question What is he doing at night? What sport is the man par-
ticipating in?

What color is the man
wearing?

semantic info ‘man playing frisbee’,
‘green grass field’, ‘man
wearing white shirt’,
‘sky clear’, ‘man wearing
shorts’, ‘man short hair’

‘large blue sky’, ‘person
skiing’, ‘man wearing
black jacket’, ‘person
snowboarding’, ‘snow
covered mountain’

‘black and white cow’,
‘man wearing hat’, ‘hat
man’, ‘man and woman
sitting bench’, ‘red and
white striped shirt’

ground truth answer playing frisbee snowborading red, white and blue
VQA-CoIn answer playing frisbee snowboarding red and white
BAN-8 answer playing skiing white

Table 4: Comparison of answers generated for questions and images from the validation data by VQA-CoIn and BAN-8 models.

Results & Discussion
We have considered BAN-8 (Kim, Jun, and Zhang 2018)
model as our baseline and compared our results with it’s
single model validation and test scores. Unlike other ap-
proaches, we also execute an experiment in which we check
the validation accuracy while a model is trained with dif-
ferent scales of training data. Through this investigation, we
want to figure out whether our model can learn and gener-
ate precise answers for the validation questions though it has
been trained on different sets of train dataset.

Quantitative Results
Table 1 demonstrates the results for our data scaling experi-
ment. We perform this experiment using on our VQA-CoIn
model and our baseline model. We find that for one fourth
and three fourth of the dataset, when we train our model,
it is capable of functioning better than BAN-8 model. But
while trained on 50% of the training split, BAN model per-
form better than VQA-CoIn. The reason behind this could
be, as we are enforcing contextual information of the im-
ages generated by a pre-trained model in our method, some
of these information may not carry knowledge related to the
question to answer it correctly. This observation can lead our
study to further investigation by producing and invoking SI
using other pre-trained models in future. We still feel that
this gives strong evidence that our approach can better uti-
lize small amounts of data when compared to state-of-the-
art approaches. Through Table 2, we estimate the validation
score of our model for the whole dataset with the state-of-
the-art VQA models. The validation score on the VQA-CoIn
(I+Q) row of the table portrays the importance of the region
based SI of images we employ through our model. While SI
along with image(I) and question(Q) as inputs are given to
the network, VQA-CoIn outperforms the state-of-art base-
line architectures in terms of accuracy.

In order to receive scores for the test set, we submitted
the results produced by our model to the VQA competition
using EValAI. We also submit the reproduced answers of
BAN in the same site to find out and compare the test-dev
and test-standard scores with ours. According to the results
returned, displayed in Table 3, We can observe that VQA-
CoIn has outperformed BAN and bottom-up(Anderson et al.
2018) in test-dev and test-standard challenges. If we con-
sider each category of questions for BAN-8 and VQA-CoIn
models, we can see that VQA-CoIn network has surpassed
the scores of BAN-8 for ‘number’ and ‘other’ categorical
questions. For ‘yes/no’ category of questions, BAN has per-
formed better than ours. We feel that these results are signif-
icant, especially our performance on the ‘other’ category. To
answer any question from ‘other’ category, a model needs
to understand more complex relation among the contents of
an image (where to search for an answer). SI provides sup-
port behind this logic and helps our model to generate more
accurate answers than our baseline models.

Qualitative Results
After the quantitative comparison of our and two state-of-
the-art models, we do a qualitative contrast between VQA-
CoIn and BAN-8 using the data of validation split. This is
not meant to be a formal evaluation, but mainly meant to pro-
vide additional context to the results that our approach gives
compared to our baselines. Table 4 represents the contrast.
We have image, question and SI for each of three examples.
The human annotated ground truth answers for the examples
are also added so that the answers generated by both of the
models can be compared with it. From the table, we can see
that for image (a) and (b), our model generates correct an-
swers. For the same images, BAN model generates answers
that are very close to the answers from the dataset, but not
accurate. Here, the reason of the success of our model is
both image features and SI for images. The answers for the



questions are already available in the SI. For ease of read-
ing, we bold the texts on the row named as semantic info in
the table. Now, if we match answers for image (c) of both
models, answers are not exact to the ground truth answers.
Our model is able to detect only two colors using both image
features and SI (bold texts in semantic info row under image
(c)) available for the input question. So, VQA-CoIn chooses
these two colors as answer. It also means that, if better SI is
used, our model can generate more correct answers.

Conclusion
In this paper, we have proposed a novel VQA architecture,
VQA-CoIn, which incorporates contextual information of
every possible region of an image to understand and rep-
resent features of an image with already available textual
information about it. Our motivation behind incorporating
SI in the form of natural language descriptions is to bet-
ter enable ML models to bridge the gap between the ques-
tions being asked and the image itself. We also hypothesize
that this should result in better data scaling, and enable ML
models to perform well with less data. We have compared
our VQA-CoIn model with two state-of-the-art models and
showed that our model performs better than those models
both in terms of raw accuracy, and in terms of scaling per-
formance. As our future work, we intend to apply our model
to build applications to help visually impaired to guide them
with human understandable texts. We also have a plan to do
human evaluation of the results we achieve.
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