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Abstract 
Emotions affect our decisions, experiences, preferences, and 
perceptions. Understanding the neural underpinning of hu-
man emotions is a fundamental goal of neuroscience re-
search. Moreover, EEG-based emotion recognition is a key 
component towards the development of affective-aware in-
telligent systems. However, characterizing the neural basis 
of emotions elicited during video viewing has been proven a 
challenging task. In this paper, we propose a novel machine-
learning approach to isolate neural components in EEG sig-
nals that are informative of the affective content of emo-
tionally-loaded videos. Based on these components, we de-
fine a set of neural metrics and evaluate them as potential 
indicators of the overall emotional content of each video. 
We demonstrate the predictive power of the proposed met-
rics, on the DEAP benchmark dataset for EEG-based emo-
tion recognition. Our results provide novel empirical evi-
dence that the neural components extracted by our method 
can serve as an informative metric in EEG-based emotion 
recognition during video viewing and achieving a 4-fold in-
crease in predictive power compared to traditional frequen-
cy-based metrics. Moreover, each extracted component is 
associated with a spatial and a temporal profile, that allows 
researchers to inspect and interpret the spatiotemporal ori-
gins of the underlying neural activity. Thus, our method a 
framework that facilitate the study of neural correlates of 
emotion during video viewing. 

Introduction   
Electroencephalography (EEG)-based emotion recognition 
during video viewing has attracted the interest of many 
disciplines and affects domains such as artificial intelli-
gence (AI), affective computing, cognitive neuroscience, 
and human-computer interaction (HCI). From the neuro-
science perspective, the objective of EEG-based emotion 
recognition is to identify neural components that character-
ize a human’s emotional state and to gain insights into the 
underlying cognitive processes involved in emotion gener-
ation. Such insights could lead to a better understanding of 
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underlying cognitive processes and disorders affected by 
emotions, such as decision making and desensitization to 
media violence. In the context of affective computing, AI 
and HCI, EEG-based emotion recognition could facilitate 
the design of emotion-aware intelligent systems that inter-
pret human emotions and generate responses adaptable to 
the user’s emotional state. Moreover, implicit tagging of 
video using affective information can improve the perfor-
mance of affective-aware video and music recommenda-
tion systems. Yet, characterizing the neural-underpinnings 
of emotions during video viewing remains a challenging 
task. There is a need for novel computational methods to 
identify neural components from EEG measurement during 
video viewing that characterize the emotional state of hu-
mans consuming video content. 
 Current approaches to EEG-based emotion recognition 
have focused on either using the power in EEG signals in 
specific frequency bands (i.e., frontal-asymmetry) or relied 
on event-related potential (ERP) paradigms. Traditionally, 
EEG signals are analyzed in specific frequency-bands such 
as theta band (3-7Hz), alpha-band (8-13 Hz), beta-bad (14-
29Hz), and gamma-band (30Hz-47Hz). In particular, 
changes in the overall power -relative to the baseline with-
in selected bands during a stimulus presentation- have been 
explored as indicators of cognitive process modulation. In 
the context of EEG-emotion recognition, frontal-
asymmetry – which quantifies the asymmetry in the alpha-
band power recorded over the frontal lobe - has been ex-
tensively used as an indicator of emotional arousal (Da-
vidson,1992, Petrantonakis and Hadjileontiadies 2011). 
However, these metrics are ad-hoc in nature and exhibits 
large variability across individuals. Machine learning fea-
ture extraction approaches have been proposed to extract 
neuronal activity that maximally differentiates among cog-
nitive conditions in selected frequency bands (Christoforou 
et. al. 2018). Alternatively, ERP-related methods rely on 
the design of experimental paradigms that present brief 
emotional stimuli to participants to elicit ERPs - a stereo-
typical neural-response followed a stimuli presentation- 



and extract components in the ERP that are modulated by 
stimulus emotion strength. Machine learning approaches 
have been proposed to extract informative components 
from ERP either on average or on a single-trial basis 
(Christoforou et. al. 2013, Philiastides and Sajda 2005, 
Christoforou et. al. 2010). However, due to methodological 
constraints, the application of ERP methods is limited to 
simplistic image stimuli and does not apply to dynamic 
stimuli such as video or music content. 
 Recently, few studies tried to exploit the synchrony in 
EEG signals while participants watch video stimuli to ex-
tract informative neural components. Such methods have 
were applied in predicting population-wide user prefer-
ences to video advertisement (Dmochowski et. al. 2014), 
predicting box-office sales performance of movies (Chris-
toforou et. al. 2017), and assessing the effectiveness of 
educational videos (Cohen et. al. 2018). However, to the 
best of our knowledge, such approaches have not been 
used to characterize the emotional state of individuals dur-
ing video viewing.  
 Several deep learning approaches have been explored in 
the analysis of EEG signals for emotion recognition  (Lue 
et al. 2020; Zhong et al. 2020; Alhagry et. al 2017). These 
models formulate emotion recognition as a binary classifi-
cation problem to classify low-vs-high emotional state 
(typically measured by valance, arousal, and dominance 
scores). However, such models do not capture the granular-
ity in human emotions. The labeling of high-vs-low emo-
tion states is arbitrary and subjective. Importantly, due to 
the black-box nature of deep neural networks, these models 
do not generate interpretable neural components that could 
provide insights for understanding the temporal and spatial 
dynamics of emotions at a neural level. 
 In this paper, we propose a novel framework for EEG-
based emotion recognition during the viewing of emotional 
musical videos. The framework provides an approach to 
extract interpretable spatial and temporal components that 
can be associated with arousal, valance, and dominance. 
By design, the component provides full granularity over 
the spectrum of emotion measurements.  Unlike traditional 
ERP it is applied directly to video stimuli and does not rely 
on heuristic metrics, but rather targeted features extracted 
from the data. The impact of the method is demonstrated 
on the benchmark dataset for real EEG-based emotion 
recognition. 

Methods 
Benchmark Dataset for Emotion Recognition 
The growing interest in emotion recognition has motivated 
the creation of several benchmark datasets of electrophysi-
ological (i.e. EEG) measurement and other modalities 
(such as ECG, GSR, EMG, respiration patterns, facial ex-

pression, among others. In this study, we apply our pro-
posed framework to one of the most prominent datasets on 
emotion recognition, namely the DEAP dataset (Database 
for Emotional Analysis using Physiological Signals). In 
this section, we briefly describe this dataset. 
  The DEAP dataset contains EEG recordings from 32 par-
ticipants (50% female; aged between 19 and 37; average 
age 26.9) while watching one-minute long segments. In 
total, participants watch 40 music video clips, selected to 
elicit different emotions. The recording used 32 EEG 
channels and eight peripheral channels for physiological 
signals (such as galvanic skin conductance [GSR], Elec-
tromyogram [EMG], and Electroculogram [EOG]). All 
signals were recorded at a sampling rate of 512Hz and 
were synchronized with an event trigger channel. For each 
music video clip, a one-minute segment with the maximum 
emotional content was extracted and presented to the par-
ticipants. Each trial (i.e. a video viewing) consisted of a 2-
second screen displaying the current trial number; a 5-
second baseline recording (i.e. fixation cross); a one-
minute display of the music video segment, followed by a 
self-assessment screen for arousal, valance, dominance, 
and liking (using the Self-Assessment manikins to visual-
ize the scale). The dataset also provides real-value scores 
indicating the level of arousal, valance, dominance, and 
liking for each video segment, as experienced by the par-
ticipants. A full description of the experimental paradigm 
and data collection procedure can be found in (Koelstra et 
al. 2011).  
 
EEG data pre-processing  
For our analysis, we considered the pre-processed version 
of the EEG data provided by the DEAP dataset. In this 
version, EEG data were down-sampled to 128Hz; eye arti-
facts were removed using a blind-source separation tech-
nique (Koelstra et al. 2011). Then the data were band-
passed filtered between 4Hz to 45H. Continued EEG was 
then segmented in 60-second trials and a 3-second pre-trial 
baseline was removed. All channels were re-references to 
the average channel. Moreover, we normalize each seg-
ment by dividing each channel by the standard deviation 
across time. After pre-processing, the resulting dataset is 
defined by EEG segments of each participant and each 
video segment, as follows: 
 

𝐷𝑎𝑡𝑎 = 	 {𝑋!" ∈ ℝ#×%	, ∀𝑠 ∈ 𝑆, 𝑣 ∈ 𝑉}		 
 

𝐿𝑎𝑏𝑒𝑙𝑠 = 	 {𝑎!	, 𝑣!, 𝑑! ∈ [0,10], ∀𝑣	} 
 
where each 𝑋!" ∈ ℝ#×%			correspond to the EEG segment 
obtained from participant s while viewing video segment v, 
D corresponds to the number of EEG channels (i.e. D=32 
in this study) and T corresponds to the number of time 
samples within each segment, S is the set of all partici-



pants, V is the set of all videos. For each video v, the label 
values 𝑎!	, 𝑣!, 𝑑! ∈ [0,10] correspond to the arousal, val-
ance and dominance scores for video v  calculated by ag-
gregating the responses to the self-assessment scores 
across all participants. 
 
Neural-Congruency Components 
Our objective is to identify neural components (i.e. spatial 
projection of the EEG signals) that are modulated by emo-
tions elicited while participants watch each video and thus 
are informative of the emotional content of each video as 
captured by the arousal, valance, and dominance scores. 
Our approach is motivated by the hypothesis that syn-
chrony of neural responses between individuals while 
watching an emotional video can carry information about 
the underlying cognitive processes involved in emotional 
experiences. Here we provide details of the proposed ap-
proach to isolate such components. 
 Consider the set of all trials (i.e. viewings) for a video v 
and all participants {𝑋!', 𝑋!(, …𝑋!

|*|}, where S denotes the 
set of subject that watch the particular video. Then for a 
given projection vector 𝒘 ∈ ℝ# and a pair of participants 
(𝑖, 𝑗) ∈ 𝑆 × 𝑆, the between-subject Pearson Correlation 
Coefficient of the projected components is given by 
  

𝜌(𝒘; 𝑖, 𝑗, 𝑣) =
𝒘+𝑹,-! 𝒘	

(𝒘+𝑹,,!𝒘)
'
(D𝒘+𝑹--! 𝒘E

'
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where 𝑅,- ∈ ℝ#×# is the cross-covariance matrix between 
trials defined as follows:  

𝑹,-! =
1
𝑇𝑿!

, 𝑋!
-+	 

 
We note that the italics T denotes the number of temporal 
samples, while the non-italic superscript T denotes the 
transpose operation). We can now consider the inter-
subject Pearson Correlation Coefficient of a projected 
component across all videos and all participant pairs as 
follows: 
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where M is a normalization factor 𝑀 = |𝑆|(|𝑆| − 1). With 
that, we seek to find a set of optimal spatial projector vec-
tor 𝒘 that maximizes the average Person Product Moment 
Correlation Coefficient across all subject pairs. Formally, 
the optimization problem seeks to find  𝒘M  as : 
 

 
𝒘M 	= arg3𝑚𝑎𝑥 	𝜌(𝒘) 

 
Taking the derivative of equation (1) with respect to w and 
setting it to zero, and further assuming that the dataset have 
similar power levels (i.e. approximating 𝒘𝑻𝑅,,𝒘	 ≈
𝒘%𝑅--𝒘	∀(𝑖, 𝑗)), we obtain that an optimal 𝒘M  is a solution 
to the following generalized eigenvalue problem (see ap-
pendix for derivation): 
 

𝑹(𝒃)	𝒘 = 𝜆	𝑹(3)𝒘 
 
where: 

𝑅(8) =	
1
𝑀	J J 𝑅,-!
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,0-	
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where 𝑅(8), 𝑅(3) are the between-subject and within-
subject covariance matrix across all video viewings. Solu-
tions to the generalized eigenvalue problem comprise the K 
eigen-vectors {𝒘9}9:';  of the matrix D𝑅(3)E<'𝑅(8) , and 

their corresponding eigenvalues given by 𝜆9 =
𝒘𝒌
">($)𝒘𝒌	

𝒘𝒌
𝑻>(')𝒘𝒌

	. 

Each eigenvector represents a component projection that 
captures neural activity with the largest correlation across 
participants while consuming an emotional video, while 
the corresponding eigenvalue represents the strength of 
that correlations. We hypothesize that the components that 
exhibit high correlation during the viewing of emotional 
videos capture neural activity that is modulated by the un-
derlying emotions and thus can be predictive of the emo-
tional experience of viewers. Therefore, we consider the 
eigenvalues associated with each component as a potential 
neural indicator of emotional state. We term these indica-
tors as neural-congruency scores and their corresponding 
eigenvectors as neural-congruency components. 
 
Spatial and temporal profiles of neural-congruency 
components.  
Given the solutions to the generalized eigenvalue problem, 
the temporal profile of each components is calculated as 
the product of each component 𝒘9with the EEG recordings 
of each video viewing. Moreover, the topographical profile  
(i.e. the forward model) of each component is calculated as  
 

𝒂9 =		
𝑅(3)	𝒘9

𝒘9
+𝑅(3)𝒘9

		

(1) 

(2) 



 
The temporal profile provides a visual representation of the 
modulation of neural activity relating to a particular emo-
tion during the viewing of the video. Visual inspection of 
the temporal components can provide insights as to which 
sections of the video elicit the strongest emotional respons-
es. Similarly, the spatial profile provides a topographical 
map that captures the covariance between each compo-
nent’s activity as measured by each electrode and can be 
used to estimate the areas of the brain the elicit the neural 
activity (i.e. using source estimation algorithms)  
  
Relation of neural-congruency to emotion scores. 
To evaluate the ability of the proposed neural-congruency 
metrics to predict the emotional content of each video, we 
used linear regression to model the relation between each 
of the extracted components to valance, arousal, and domi-
nance scores. We report the explained variance of the 
model and regression statistics corrected for multiple com-
parisons using the false discovery rate. 
 

Results  
We applied the proposed method for extracting informative 
neural components on the EEG measurements of 32 partic-
ipants watching the 40 music videos to identify neural-
congruency components. The solution to the generalized 
eigenvector problem in equation 2, resulted in a total of 32 
eigenvectors, of which we consider the eight with the high-
est associated eigenvalues. The value for the number of 
selected components (K=8) roughly corresponds to the 
knee point of the eigenvalue-spectrum of the auto-
covariance matrix 𝑅(3). The forward models of the eight 
selected components and their associated eigenvalues are 
shown in Figure 1. The topography of each forward model 
informs of the approximate location of the underlying neu-
ronal activity eliciting the components; while the associat-
ed eigen value shows the degree, this neural activity is 
“synchronously” observed across participants.  

A correlation analysis was performed between each of 
the resulting neural components and each of the three emo-
tion measurements. Correlation analysis showed a strong 
positive correlation between the seventh neural-synchrony 
component (i.e. the component with the 7th highest eigen-
value) and the population-wide valance scores (r=0.49, 
p<0.001); A strong positive correlation exists between neu-
ral-synchrony component and the dominance metric 
(r=0.39, p < 0.01).  No correlation was shown between the 
7th component and the arousal matric (r=0.09, p> 0.57). 
None of the other components showed a strong or moder-
ate correlation between the three emotion-metrics after 
correction for multiple comparison using false discovery 
rate. 

 Moreover, we sought to investigate whether the neural 
congruency extracted with the proposed framework is pre-
dictive of population-wide emotional experiences associat-
ed with each video. In particular, we considered three uni-
variate regression models, each respectively uses one of 
the population-wide emotion scores as its dependent varia-
ble (i.e. valance, arousal, dominance) and the neural-
congruency scores of component 7 as an independent vari-
able. Regression analysis shows that neural congruency 
score significantly predicted population-wide valance 
scores, b=0.4836, t(38)=3.473, p<0.001; the neural-

congruency score explained 24% of variance in popula-

tion-wide valance (R2 = 0.24; F(1,38)=12.06; p < 0.001). 
Neural-congruency also significantly predicted population-
wide dominance score b=0.2159, t(38)=2.669, p<0.01; and 
it explained16% of the variance in dominance (R2 = 0.16; 
F(1,38)=7.126; p < 0.01). The neural congruency scores 
did not predicted the population-wide arousal scores 
b=0.0495, t(38)=0.565, p>0.57);  F(1,38)=0.3196;). The 
scatter plots in figure 2 show the regression line for the 
three models.  

Figure 1: Forwards model of the eight components with highest in-
ter-subject correlation extracted by the proposed method. Compo-
nents are ordered from highest to lowest correlation; lambda corre-
sponds to the eigenvalue associated with each component. 

 

Figure 2: Scatter plots showing the regression line of the three 
models; each using the neural-congruency scores of component 7 
as an  independent variable, and respectively the valance, arousal 
and dominance scores as the dependent variable. 

 



 Finally, we inspected the correlation between the three 
observed emotion matrices to each other. Correlation anal-
ysis shows a strong positive correlation between valance 
and dominance metrics (r=0.8, p<0.0001e-7); the analysis 
also showed a moderate negative correlation between 
arousal and dominance metrics (r=0.48, p< 0.002).  A 
weak correlation between arousal and valance we ob-
served; however, it failed to reach statistical significance 
(r=0.08, p>0.06).  We further checked the correlation be-
tween the three emotion-metrics and population-wide, self-
reported likeability scores for each video. The analysis 
shows a positive correlation between the valance and like-
ability, r=0.78, p< 0.001; and dominance and likeability, 
r=0.46, p<0.002).  
 

Discussion and Conclusion 
In this paper, we propose a novel approach to isolate neu-
ronal components elicited during the viewing of emotional-
ly loaded musical video clips and are informative of the 
emotional content of those videos.  Specifically, we formu-
lated an optimization problem to extract spatial compo-
nents from EEG measurements that maximize the correla-
tion across viewings and subjects. Based on the resulting 
optimal components, we defined a set of neural-
congruency metrics which we then evaluated as potential 
indicators of the overall emotional content of each video, 
as experience by viewers in terms of valance, arousal, and 
dominance.  Moreover, each of the extracted components 
is associated with a corresponding temporal and spatial 
profile. These profiles enable researchers to inspect and 
interpret the spatiotemporal origins of the underlying neu-
ral activity and thus study the neural-correlates on emo-
tions. The neural-congruency metric is validated, on a 
benchmark dataset, to carry predictive information as to 
the level of valance and dominance each video elicits to 
viewers. 
 Our results demonstrate the neural-congruency compo-
nents extracted using our approach carry predictive infor-
mation as to the underlying emotional metrics associated 
with the music video in the DEAP dataset. In particular, 
the neural-congruency component (component 7) explains 
24% of the variance (R=0.49) in valance scores and 16% 
of the variance in dominance scores (R=0.39); both results 
were statistically significant. These results constitute novel 
evidence that the synchrony in neuronal activity in EEG 
measures, extracted by our method, can be an informative 
metric that can be used in EEG-based emotion recognition 
and to evaluate the emotional content of videos. In compar-
ison, results reported in (Koelstra et al. 2011) on the same 
DEAP benchmark dataset showed that traditional power-
based features on few selected channels exhibit only a 
small,  correlation with the valance scores (R<0.08, the 
average across participant; indicatively, valance x theta-
power on channel PO4: R=0.05; valance x alpha power in 

channel PO4: R=0.05; valance x beta power in channel 
CP1, R=-0.07; valance x gamma power in channels CP6, 
CP2, and C4, R=0.08), albeit statistically significant. The 
proposed neural-congruency components demonstrate a 4-
fold increase in correlation compared to traditional power-
based features. Thus, our results suggest that the synchrony 
in EEG signals can be predictive of emotional state and can 
serve as an informative metric for EEG-based recognition 
systems.  
 Our proposed method learns the neural components for 
the data and does not rely on heuristic, hand-selected fea-
tures such in the case with frontal-asymmetry and frequen-
cy-power approaches (Petrantonakis and Hadjileontiadies 
2011). Moreover, unlike discriminant deep-neural net-
works approaches (Lue et al. 2020; Zhong et al. 2020; 
Alhagry et. al 2017) that focus on differentiating between 
categorical variables of high vs low valance, arousal, and 
dominant, the proposed neural-cognitive congruency met-
ric provide regression scores; hence it provides granular, 
real-value ratings for the EEG-based emotion recognition 
for each video. Importantly, our approach not only serves 
as a neural indicator of emotions during emotional video 
viewing but also isolates spatial and temporal profiles of 
each informative neuronal activity. These profiles can be 
used to study the temporal dynamics of emotion during 
video and estimate which brain areas elicit the neural activ-
ity. As noted in the introduction, paradigms for studying 
emotions have been limited to simplistic image stimuli. 
Hence, the interpretability of the spatial-temporal neural 
profiles makes them a valuable tool in neuroscience re-
search and in the study of emotions during video viewing, 
opening new frontiers in emotion understanding. 
  In conclusion, we proposed a novel approach for EEG-
based recognition that extracts interpretable and informa-
tive neural components that predict the emotional experi-
ence of viewers watching the video. Our approach can find 
applications in the design of emotion-aware AI systems, 
HCI, emotional video tagging, and the study of human 
emotions during video content. In future research, we plan 
to further explore the per-subject modulation of the result-
ing components, as well as extending our proposed method 
of EEG signals filtered in specific frequency bands.    
  

Reference 
Alhagry, S.; Fahmy, A.; and El-Khoribi, A. 2017. Emotion 
recognition based on eeg using LSTM recurrent neural Networks, 
Emotion 8 (10) pp. 255-258. 
Christoforou, C.; Constantinidou, F.; Shoshilou, P.; and Simos, P. 
2013.Single-trial linear correlation analysis: application to char-
acterization of stimulus modality effects. Frontiers in Computa-
tional Neuroscience 7, 15 
Christoforou, C.; Haralick, R.M.; Sajda, P.; and Parra L.C. 2010. 
The bilinear brain: towards subject-invariant analysis, In 2010 4th 
International Symposium on Communications, Control and Sig-
nal Processing (ISCCSP), pp. 1–6. IEEE. 



Christoforou, C.; Hatzipanayioti. A.; and Avraamides M. 2018. 
Perspective Taking vs Mental Rotation: CSP-based single-trial 
analysis for cognitive process disambiguation. In Wang, S., 
Yamamoto, V., Jianzhong S., Yang Y., Jones, E., Iasemidis, L., 
Mitchell, T., (Eds.) Proceedings of International Conference, 
Brain Informatics (pp. 109-199). Arlington, TX, USA. 
Christoforou, C.; Papadopoulos, T.C.; Constantinidou, F.; Shoshi-
lou, P.; and Theodorou, M. 2017. Your Brain on the Movies: A 
Computational Approach for Predicting Box-office Performance 
from Viewer’s Brain Responses to Movie Trailers. Frontiers in 
Neuroinformatics 7, 15 
Cohen, S.S.; Madsen, J.; Touchan, G.; Robles, D.; Lima, S.F.A; 
Henin, S.; and Parra, L.C. 2018. Neural engagement with online 
educational videos predicts learning performance for individual 
students, Neurobiology of Learning and Memory. 
Davidson, R.J. 1992. Anterior cerebral asymmetry and the nature 
of emotion. Brain Cognition, pp. 75-80.  
Dmochowski, J.P.; Bezdek, M.A.; Abelson, B.P; Johnson, J.S.; 
Schumacher, E.H.; and Parra, L.C. 2014. Audience preferences 
are predicted by temporal reliability of neural processing. Nature 
Communications.  
Koelstra, S.; Muhl, C.; Soleymani, M; Lee, J.; Yazdani, A.; 
Ebrahimi, T.; Pun, T.; Nijholt, A; and Patras, I. 2011. DEAP: A 
database for emotion analysis using physiological signals, IEEE 
Transactions on Affective Computing 3 (1) pp. 18-31 
Liu, Y.; Ding, Y.; Li, C.; Cheng, J.; Song, R.; Wan, F.; and Chen, 
X.  2020. Multi-channel EEG-based Emotion Recognition via a 
Multi-level Features Guided Capsule Network, Computers in 
Biology and Medicine 
Petrantonakis, P.C.; and Hadjileontiadies, L.J. 2011. A novel 
emotion elicitation index using frontal brain asymmetry for en-
hanced EEG-based emotion recognition. IEEE Trans. Info. Tech-
nolo. Biomed., 15 (5), pp. 737-746.  
Philiastides, M.G.; and Sajda, P. 2005. Temporal characterization 
of the neural correlates of perceptual decision making in the hu-
man brain. Cerebral Cortex 16, 509-518 
Zhong, P.; Wang, D.; and  Miao, C. 2020. EEG-Based Emotion 
Recognition Using Regularized Graph Neural Networks, IEEE 
Transactions on Affective Computing.  
 

Appendix 
In this section we provide the derivation the solution to the 
optimization problem defined in the methods section 2.  
Recall we are trying to maximize the expression in equa-
tion (1) with respect to the vector w. Under the assumption 
that 𝒘𝑻𝑅,,𝒘	 ≈ 𝒘%𝑅,,𝒘	∀(𝑖, 𝑗), we define the covariance 
matrix in equation (1), with respect to the average covari-
ance matrix 𝑅(3) = '

?
	∑ 𝑅,,,∈?  and we can re-write equa-

tion (1) as follows:  
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Taking the derivative of 𝜌(𝒘) with respect to w and setting 
it to zero we get the following 
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Setting the derivative to zero, we get: 
 

𝑅(8)𝒘(𝒘%	𝑅(3)	𝒘) −		𝑅(3)	𝒘D𝒘%	𝑅(8)	𝒘E = 0	 
 

=> 𝑅(8)𝒘(𝒘%	𝑅(3)	𝒘) = 		𝑅(3)	𝒘D𝒘%	𝑅(8)	𝒘E	 
 

=> 𝑅(8)𝒘 =		𝑅(3)	𝒘
D𝒘%	𝑅(8)	𝒘E
(𝒘%	𝑅(3)	𝒘)	 

 
=> 𝑅(8)𝒘 =		 𝜆	𝑅(3)	𝒘	 

 

where we set 𝜆 = @3"	>($)	3A
(3"	>(')	3)

	   and 	𝑅(8) =

`1
𝑀
	∑ ∑ 𝑅𝑖𝑗(𝑖,𝑗)∈𝑆×𝑆

𝑖≠𝑗
𝑣∈𝑉 a. Thus, the optimal w is a solution to 

the generalized eigenvalue problem of equation (2) 
 
 
 


