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Abstract

Hierarchical Task Network (HTN) planning uses task-subtask
relationships to break complex problems into more manage-
able subtasks, similar to how human problem-solvers plan.
However, one limitation of HTN planning is that it requires
domain knowledge in the form of planning methods to per-
form this task decomposition. Recent work has partially al-
leviated this knowledge engineering requirement by learning
HTN methods from traces of observed behavior. Although
this greatly reduces the amount of knowledge that must be
encoded by a domain expert, it requires a large collection
of traces in order to infer important landmark states that
are used during trace segmentation and method learning. In
this paper we present a novel method for landmark inference
that transfers knowledge of landmarks from previously en-
countered environments to new environments without requir-
ing any traces from the new environment. We evaluate our
work in a logistics planning domain and show that our ap-
proach performs comparably to the existing landmark infer-
ence method but requires far fewer traces.

1 Introduction
Human problem solving rarely treats complex tasks as
monolithic assignments that must be solved at once, but in-
stead subdivides them into a hierarchy of more manageable
and simpler subtasks (Choi and Langley 2005). Such a hi-
erarchical decomposition of problems is beneficial because
it allows reasoning over multiple alternatives for achiev-
ing an individual subtask, reuse of similar skills across a
variety of problems, and efficient generation of high-level
plans without worrying about all low-level details. Auto-
mated planning algorithms have attempted to replicate the
problem solving abilities of humans by using similar prob-
lem decomposition approaches. Hierarchical Task Network
(HTN) planning uses higher-level planning methods that en-
code task-subtask relationships that allow for a hierarchical
breakdown of complex tasks into simpler subtasks and fi-
nally primitive tasks (accomplished by action). Similarly,
domain landmarks are based on the idea that while there
may be multiple paths that can be taken for multiple prob-
lems in a domain, there are certain landmark states that must
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be reached along all of those paths. Although both of these
are valuable approaches to simplify the planning process,
they require a domain expert to encode additional informa-
tion in the form of planning methods and landmark loca-
tions. Our recent research has led to the development of
a state-of-the-art algorithm for learning planning methods
from existing behavior traces (Fine-Morris et al. 2020). This
algorithm infers domain landmark locations from a set of
behavior traces, uses those landmarks to partition the traces,
and then learns planning methods based on those subtraces.
One limitation of this algorithm is that its landmark iden-
tification requires a large set of behavior traces to identify
which states are part of many (or all) of the traces. If only a
limited set of behavior traces exist, landmark identification
will either not be possible or produce lower quality domain
landmarks.

In this paper we propose a novel domain landmark iden-
tification method that does not rely on behavior traces from
the current environment to identify landmarks but instead
learns to classify states as landmarks or non-landmarks
based on their high-level properties. Our approach leverages
knowledge of landmarks from other environments and trans-
fers that knowledge to the current environment, thereby al-
lowing rapid landmark identification in previously unseen
environments. These inferred landmarks can then be used
by other algorithms, such as an HTN learning algorithm
or landmark-based automated planner. Our work makes the
following key contribution: a novel method for identifying
high-quality landmark states that does not rely on an exist-
ing collection of behavior traces but instead uses informa-
tion from previously identified landmarks.

In the remainder of this paper we describe related work,
followed by our domain landmark identification method and
how it can be used in combination with a state-of-the-art
HTN method learning algorithm. Section 3 presents our
novel landmark identification process, which is later eval-
uated in a logistics domain in Section 4. We finish with con-
cluding remarks in Section 5.

2 Related Work
In our work we focus on domain landmarks: landmarks for
collections of problems in a domain. For example, if a city



is split into two parts by a river and there is only one bridge
connecting the two parts, any path going from one of the
city’s parts to the other one must go through the bridge.
Hence, being at the bridge is a landmark. There has been
prior work done that identifies planning landmarks for a
given problem. In contrast, in this work we are interested
in landmarks across multiple problems.

Casting the learning problem of learning domain land-
marks as word embeddings has been explored in previ-
ous work (Fine-Morris et al. 2020; Gopalakrishnan, Muñoz-
Avila, and Kuter 2018). They receive as input a collection
of annotated plan traces. Each annotated trace is a sequence
of s a s′, state - action - state, such that a is applicable in s
and s′ is the state resulting from applying a into s. The basic
premise is to view a collection of annotated plan traces as
text, each annotated plan trace as a sentence and each indi-
vidual atom in the state and each action as a word. This input
is given to Word2Vec (Mikolov et al. 2013) to generate vec-
tor representations of these atoms. Crucially, atoms that fre-
quently co-occur will have a similar vector orientation. Us-
ing clustering algorithms on the distance between the vec-
tors’ orientations, clusters of atoms can be identified. The
atoms that are the closest between two neighboring clusters
usually correspond to planning landmarks. The procedures
differ in scope. For example, Fine-Morris et al. (2020) al-
lows learning methods with an arbitrary number of subtasks
whereas the other approach (Gopalakrishnan, Muñoz-Avila,
and Kuter 2018) can only learn two subtasks per method. In
contrast to those works, in this paper we transfer landmarks
between domains so we can construct HTN methods on do-
mains for which no input training traces are given.

A variety of procedures have been explored to learn
HTNs. Some are incremental such as ICARUS (Choi and
Langley 2005) and HTN-Maker (Hogg, Munoz-Avila, and
Kuter 2008), which augment their HTN knowledge with
new training instances. In ICARUS, learning occurs as a re-
sult of the system detecting gaps in its HTN knowledge. In
HTN-Maker, methods are learned whenever new annotated
traces are given. Other systems are not incremental and in-
stead learn methods by analyzing a collection of annotated
traces. The systems described in the previous paragraph be-
have that way. Another such system is HTNLearn (Zhuo,
Muñoz-Avila, and Yang 2014), which cast the HTN learning
problem as a constraint satisfaction problem such that when
it is solved (e.g., by a constraint solver such as MAXSAT
(Borchers and Furman 1998)), it will learn HTN methods.
Our work is also non-incremental. It uses landmark prop-
erties from the source domain to identify landmarks in the
target domain. The most important difference versus all pre-
vious work is that our approach does not require training
examples in the target domain to identify landmarks.

3 Landmark Transfer
The primary motivation for our work is to provide a land-
mark inference approach that can be used by existing algo-
rithms that learn hierarchical task networks (HTNs). More
specifically, we focus on providing landmarks for our exist-
ing algorithm for learning HTNs (Fine-Morris et al. 2020),
although our approach is not coupled to this algorithm and

can be used in any application that requires landmark infer-
ence.

3.1 HTN Method Learning
The algorithm takes in three inputs: a set of observed traces
T , a set of action operators A, and a set of tasks G. Each
trace ti ∈ T is an alternating sequence of states (s) and
actions (a) that were collected while observing an agent
in the environment, where the agent is assumed to per-
form an action in response to each encountered environ-
ment state. If trace ti contains mi observed actions, then
ti = s0 a1 s1 . . . smi−1 ami

smi
. The set of actions A pro-

vide the actions that may be performed in the environment
and each action is a tuple 〈name, preconditions, effects〉,
where name is the name of the action, preconditions are the
conditions of the state that must hold for the action to be
performed, and effects are the changes to the state that occur
when the action is performed. The tasks in G represent a set
of specific tasks than an agent may attempt to achieve in the
environment. The output of the algorithm is a set of HTN
methods H , where each method in H is a tuple 〈name, pre-
conditions, subtasks〉. Since HTN methods are hierarchical,
the list of subtasks contains the lower-level tasks that should
be achieved and may include both primitive subtasks (i.e.,
those achievable using an action) or non-primitive subtasks
(i.e., those requiring an HTN method to decompose the sub-
tasks into simpler subtasks).

The algorithm has the following five steps: (1) identify
landmark states from raw traces, (2) determine the goal
achieved by each trace, (3) split the traces into subtraces
based on the identified landmarks, (4) learn right-recursive
and single-subtask methods from the subtraces, and (5)
learn landmark methods from each trace. After the learn-
ing process is complete, the algorithm returns the set H
of learned methods containing landmark methods, right-
recursive methods, and single-subtask methods. Our de-
scription of this algorithm was only meant to provide a high-
level summary of how it operates. For full details, please re-
fer to the original publication (Fine-Morris et al. 2020).

This HTN learning algorithm is able to learn HTN meth-
ods with as few as a single training trace. However, the al-
gorithm’s approach to identifying landmark states (Step 1)
requires analysing numerous traces to identify states that
are commonly reached. Thus, while the algorithm can learn
with limited training traces, in practice it is unable to due to
the landmark identification process it uses. To overcome this
limitation, and to allow the algorithm to be practically used
with limited training traces, we propose a novel landmark
identification approach that transfers landmark identification
knowledge from other environments.

3.2 Labelling Source Landmarks
We define the source environment as the environment for
which some landmark knowledge already exist and the tar-
get environment as the environment that requires identifica-
tion of landmarks. We assume the existence of a labelling
function labs that labels any state ss ∈ Ss, where Ss ⊂ S,
from the source environment as either a landmark or non-
landmark: labs : Ss → {landmark, non−landmark}.



This labelling function could be provided, learned (e.g., like
how the HTN algorithm identifies landmarks), or the result
of expert labelling. Thus, each state in the source environ-
ment can be represented as a state-label pair: 〈ss, labs(ss)〉.

These state-label pairs could be used to train a classifier
to discriminate between landmark states and non-landmark
states. However, the complexity of the state representation
may be sufficiently high such that the classification problem
becomes difficult or computationally complex. Instead, we
represent the state using higher-level state metrics that re-
duce the complexity of the state encoding. Our use of state
metrics is motivated by previous work that found such met-
rics can reduce the representation complexity in realistic en-
vironments and simplify the reasoning that needs to occur
over those representations (Floyd et al. 2017). We assume
the availability of r such metric functions f1, . . . , fr, each
of which computes a single high-level metric of any state
s ∈ S: f1, . . . , fr : S → [0, 1]. No restrictions are placed on
the types of computations performed by these metrics and
they can range from domain-independent to highly domain-
dependent. Using the available state metrics, a state s can be
represented as the state encoding es = 〈f1(s), . . . , fr(s)〉.
Similarly, a state-label pair 〈ss, labs(ss)〉 from the source
environment can be converted to the encoding-label pair
〈ess , labs(ss)〉, since we assign the state encoding the same
label as the original state.

3.3 Target Landmark Classification
The encoding-label pairs, which represent the landmark la-
bel knowledge from the source environment, are then used to
train a binary classifier that predicts whether a state is a land-
mark or non-landmark. We make no assumptions about the
specific classifier that is used, only that it: (a) takes as input a
feature vector of length r where each feature is a value in the
range [0, 1], (b) produces a binary classification to discrimi-
nate between landmarks and non-landmarks, and (c) can use
|Ss| encoding-label pairs during training. Outside of those
requirements, any classification algorithm may be used. The
resulting classifier is used as a labelling function labt that
labels any state encoding e ∈ E as either a landmark or non-
landmark: labt : E → {landmark, non−landmark}.

Thus, given a new target environment, landmark states in
that environment are extracted as follows:

1. Encode states: For all states in the target environment,
generate their state encoding: ∀st ∈ St, where St ⊂ S,
est = 〈f1(st), . . . , fr(st)〉. ∀st ∈ St∃est ∈ Et.

2. Label states: Use the classifier to generate labels for each
of the state encodings: ∀est ∈ Et, 〈est , labt(st)〉.

3. Extract landmarks: For any state st where labt(st) =
landmark, add st to the list of landmarks L.
Returning to the algorithm described in Section 3.1, this

process would be used in place of Step 1 and produce a list
of landmarks that will be used by the remaining steps of the
algorithm.

4 Evaluation
Our evaluation looks to examine how landmark quality im-
pacts planning performance when using the HTN planning

methods that were learned using an HTN learning algorithm.
More specifically, we examine the following experimental
hypotheses: H1: When using our landmark inference ap-
proach, the performance will be lower but comparable to
when high-quality landmarks are used; H2: When using
our landmark inference approach, the performance will be
higher than if low-quality landmarks are used; and H3: Us-
ing landmarks, even if they are lower quality, will result in
increased performance than if no landmarks are provided.

4.1 Domain
The domain we use for our experiments is a simulated lo-
gistics domain where a truck navigates between locations
on a map by performing movement actions. Locations on
the map are represented by nodes and connections as edges,
with each edge being equidistant. Goals represent locations
a truck should move to.

In this domain we use the following state metrics: con-
nectivity (i.e., the number of connections the location has),
local clustering coefficient (i.e., how tightly clustered the lo-
cation is with its neighbors), average neighbor connectivity
(i.e., the average connectivity of the location’s neighboring
locations), closeness centrality (i.e., how close the location
is to all other locations on the map), and distance to cen-
ter (i.e., the distance of the location from the center of the
map). These metrics were selected because they are well-
established graph metrics, and thereby usable in any graph-
based representation, rather than being coupled to the par-
ticular domain we used for evaluation.

4.2 Experimental Conditions
Our experiments compare four landmark selection methods:
(1) Frequently Occurring Landmarks (FREQ) - the land-
mark selection method that was originally used by the HTN
learning algorithm where it examines a large set of behavior
traces to find states that appear frequently in those traces and
labels them as landmarks; (2) Inferred Landmarks (INF)
- our novel landmark inference algorithm described in this
paper; (3) Random Landmarks (RAND) - A fixed number
of states are labelled as landmarks using a uniform random
distribution; and (4) No Landmarks (NONE) - an empty
set of landmarks is provided.

The INF method relies on learning a landmark classifier
that transfers knowledge from previously encountered envi-
ronments. To train the classier, 10 maps were randomly gen-
erated, each with a mean of N locations (where N varies de-
pending on the experiment). These represent previously en-
countered environments. For each of the 10 maps, traces of a
truck performing shortest-path planning to 250 randomly se-
lected goal locations were generated. Those traces were used
by the FREQ approach to identify landmark states, and then
all states are encoded and labelled as either landmarks or
non-landmarks. The state encodings from all 10 maps were
used to train a decision tree classifier, which is used during
the evaluation process.

Our evaluation is repeated 100 times with each evaluation
run using a different randomly generated map, each with a
mean of N locations. Whereas the maps used to train the
classifier represent past environments, these maps represent



Table 1: Average planning time (Time), average plan length
(Length), and average methods learned (Methods) on map
sizes 15, 30, and 60 for all four landmark selection methods.

Time Length Methods
15 30 60 15 30 60 15 30 60

FREQ 0.2 0.6 2.4 3.0 3.8 4.3 12.5 14.2 14.8
INF 0.2 0.6 2.5 3.0 3.6 4.5 12.5 14.2 15.5
RAND 0.2 0.7 4.2 2.7 4.0 5.5 9.0 15.0 19.2
NONE 0.3 0.9 5.0 3.4 5.1 6.8 13.2 19.8 24.9

the current environment. For each experimental run (i.e.,
each map), a trace of a truck completing 250 additional goals
is generated and provided to the FREQ method (to provide
it with sufficient information to operate, giving it an advan-
tage over the other methods). Candidate landmarks are com-
puted for a map by each method, and those landmarks are
used to learn HTN methods using the previously described
HTN learning algorithm. 20 additional goals are generated
and plans are generating using the four sets of HTN meth-
ods (i.e., one set from each of the landmark inference ap-
proaches). The planning performance is measured for the
HTN methods generated by each approach using the follow-
ing metrics: average planning time (seconds), average plan
length (actions), and average methods learned.

4.3 Results
Our results for maps of an average size of N=15, N=30,
and N=60 are shown in Table 1. Across all metrics and
map sizes, the approaches that provide non-empty landmark
sets (FREQ, INF, and RAND) are statistically significant im-
provements over NONE (using a paired t-test). This shows
that any landmarks, even randomly selected ones, are better
than none, providing strong support for H3.

Across nearly all map sizes and metrics, there are small
but not statistically significant differences between FREQ
and INF, with FREQ tending to perform slightly better. The
one exception is the average plan length metric when N=30,
where INF shows significantly better results than FREQ.
How close the results were between FREQ and INF was un-
expected, given that FREQ was always provided data from
the current map (i.e., the traces of 250 goals being achieved),
whereas INF only had data from the 10 previously observed
training maps. These results provide partial support for H1
since INF actually outperformed our expectations, which
provides better overall support for the benefit of our land-
mark inference method.

Comparing the various methods of landmark inference,
the informed methods (FREQ and INF) generally perform
better than selecting landmarks at random. The one excep-
tion to this trend is on maps of size N=15. For these smaller
maps, RAND has the lowest average plan length and the
lowest average number of methods learned. However, as the
map size increases to N=30 and N=60, RAND performs sig-
nificantly worse. We believe this occurs because landmarks
become more important as the size of the map increases and
true landmarks begin to emerge. More specifically, the maps
begin having sub-neighborhoods form that can only be tra-

versed between by passing through a landmark location. For
smaller maps, landmarks are less important since there are
generally multiple short paths between any pair of locations.
This provides partial support for H2 since our landmark in-
ference approach does not improve performance for small
maps.

5 Conclusions
In this paper, we presented a novel method for infer-
ring landmark states that transfers landmark identification
knowledge from previously encountered (source) environ-
ments to the current (target) environment. Our evaluation
used the landmarks produced by our approach as part of an
existing state-of-the-art HTN learning algorithm in a logis-
tics domain. The results demonstrated that even though our
approach required far fewer input traces in the target envi-
ronment, it performed comparably to the existing data-heavy
landmark inference approach. We plan to evaluate our land-
mark inference approach in more complex and varied do-
mains as part of future work.
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