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Abstract 
Understanding the neural underpinning of reading disorders, 
such as dyslexia, is a fundamental question in developmen-
tal neuroscience. However, identifying and isolating in-
formative neural components elicited during free-naming 
paradigms (i.e. unprompted and unconstrained naming 
tasks) has proven a challenging methodological task. These 
methodological barriers have hindered the study of the neu-
ral underpinnings of reading disorders. In this paper, we 
proposed a machine learning approach for detecting neural 
components during free-naming, overcoming much of the 
current methodological challenges. We propose a new neu-
ral-based metric to differentiate groups of children with dys-
lexia (DYS) and their chronological age controls (CAC) in a 
free-naming task. Our approach combines electroenceph-
alography (EEG) and eye-tracking measures to generate 
single-trial fixation-related potentials (sFRPs) and formulate 
an optimization problem to extract naming-related neural 
components, informative of group differences. Our ap-
proach is validated on a real dataset involving children with 
dyslexia and CAC performing a Rapid-Automatized Nam-
ing (RAN) task. Our results demonstrate the validity of the 
proposed metric as an indicator of the neural-based markers 
of reading disorders. Importantly, our proposed framework 
provides a novel approach that can facilitate the study of 
neural correlates of reading disorders under paradigms cur-
rent methods are unable to. 

 Introduction   
Understanding the neural-underpinnings of reading disor-
ders, such as dyslexia, is a fundamental problem in devel-
opmental neuroscience. Analysis of neurophysiological 
measurements (i.e., EEG) is often used to provide insights 
into the underlying cognitive processes involved during 
reading and identify differences between typically develop-
ing children and children with reading disorders (Breznitz, 
2005, Loberg et al., 2019). To facilitate the analysis of neu-
rophysiological signals during reading or naming, experi-
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mental paradigms are designed to simulate the reading or 
naming task by presenting sequences of stimuli (typically, 
single letters or words) one at a time at predefined time 
intervals. Current analysis methods require such prompted 
paradigms to trigger Event-Related Potentials (ERP) – 
measurable stereotypical neural waveforms evoked in re-
sponse to physical stimuli - which are interpreted as indi-
ces of cognitive processes (Bakos et al., 2020). However, 
such prompted naming tasks – to which the present study 
focuses – do not necessarily engage the same cognitive 
processes as conventional, free-naming (i.e., unprompted 
and unconstrained naming tasks). Identifying neurophysio-
logical components elicited during free-naming tasks is 
likely to provide more relevant information about the un-
derlying cognitive processes involved during reading, thus 
providing a better understanding of reading disorders’ neu-
ral underpinnings (Bakos et al., 2020). However, existing 
methodological approaches for EEG analysis cannot isolate 
informative neuronal components during free-naming tasks 
because of the lack of experimenter-controlled time-locked 
events necessary to extract ERPs (Cohen et al., 2018). 
Thus, there is a need for novel computational methods to 
identify differential neuronal activity during free-naming 
tasks (i.e., in the absence of experimenter-controlled time-
locked events).  
 Traditionally, ERPs analysis has been used to differenti-
ate neuronal responses among groups and conditions 
(Breznitz, 2005). The analysis involves averaging neural 
responses to time-locked events in order to generate an 
average estimate of the event-related potential waveform in 
response to each event. Subsequently, comparing differ-
ences in the average waveform between groups or condi-
tions provides insights into the potential underlying neu-
ronal processes that affect different cognitive processes. 
ERPs have been used to study several psychological pro-
cesses, such as attention, memory and perception, person-
ality traits, and intelligence. Yet, ERP analysis requires 
experimental designs with time-locked events, which are 



not available in free-naming paradigms, and thus cannot be 
directly applied to these paradigms. 
 Several machine learning approaches have also been 
proposed to analyze EEG in the study of neurocognitive 
processes. Such methods aim to identify neural correlates 
of different cognitive functions and often find application 
in scenarios where traditional average ERP cannot capture 
the true nature of the underlying neural components or 
overcome the ERP analysis’s intrinsic limitations.  For 
example, multivariate, single-trail discriminant analysis 
has been proposed to capture neural representations of de-
cision-making processes during perceptual categorization 
tasks (Philiastides & Sajda, 2005). Multivariate single-trial 
correlation analysis has been proposed to isolate neural 
components that maximally correlate with continuous, be-
havioral observations. It has been applied towards the 
characterization of stimulus presentation modality effect 
(i.e., the differences in performance observed in memory 
rehabilitation programs due to the modality of the stimuli 
used) (Christoforou et al., 2013). Common Special Patterns 
(CSP) based single-trial analysis has been proposed for 
cognitive process disambiguation in the context of special 
cognition (Christoforou et al., 2018). Similar to the ERP 
analysis, such methods have been employed only in para-
digms that provide experimenter-controlled events and do 
not generalize to the free-naming type of paradigms.  
 Therefore, major barriers in applying such data-driven 
methods towards free-naming paradigms are the lack of 
time-locked events relevant to reading and the intrinsic low 
signal-to-noise ratio of EEG signals. These barriers are 
observed because of eye movement during free-naming 
tasks and the inter-subject variability observed in neuro-
physiological experiments (Christoforou et al. 2010). In 
this paper, we propose a new framework that allows for 
extracting neural components during free-naming tasks. 
Our approach utilizes eye-tracking and EEG measurements 
simultaneously recorded during a free-naming task to iso-
late neuronal activity that differentiates between children 
with dyslexia and their chronological age controls. Our 
analysis serves as a feasibility study for using machine 
learning techniques and multi-modal integration to study 
reading disorders during free-naming tasks. 

Methods 
Experimental Paradigm and Data Collection  
Data used to assess the feasibility of the proposed method-
ology were collected as part of a broader project1 aiming to 
identify the neural underpinnings of dyslexia in children. 
Here, we briefly introduce the specific paradigm and data 

 
1 Fella A. & Papadopoulos, T. C. (2017). Reading ability: Cognitive and 
neurophysiological performance indicators. Center for Applied Neurosci-
ence, University of Cyprus.  

collection apparatus related to the scope of the paper. In 
particular, we focus on analyzing data collected during a 
computerized version RAN task involving four different 
conditions. A total of 60 children (30 with dyslexia and 30 
chronological-age controls) participated in the study; all 
children were native Greek speakers. At each task of the 
paradigm, participants were shown letter-matrix organized 
in five rows and ten columns and were asked to name out 
loud each letter from left to right and from top to bottom as 
fast and accurately as possible. Four letter-matrix condi-
tions were shown to each participant, varied in the degree 
of visual and phonological confusability, among letters. An 
example of a letter-matrix condition (phonological confus-
able) is shown in Figure 1.  
 

 Simultaneous Eye-tracking and EEG measurements 
were collected for the session duration. Eye-gaze data were 
recorded using the Eyelink 1000 eye-tracking system (SR 
Research) at a 1000Hz sampling rate. To improve eye-gaze 
measurement stability, participants held their head in a 
chinrest for the duration of the data collection session. A 
13-point calibration session was run before the experiment 
begin. In addition to raw eye-gaze points, eye-motion 
events such as fixations and saccades were recorded using 
EyeLink Parser. EEG data were collecting using a BioSemi 
Active-two system (BioSemi, Amsterdam, Netherlands) at 
a sampling rate of 256Hz. A 64-electrode cap following the 
10/20 system was used; the DC offset of all sensors was 
kept below 20mV. A trigger channel was used to synchro-
nize measurements from both modalities to record time 
markers indicating each trial’s beginning and end.  
 
EEG and Eye-tracking data pre-processing  
Fixation points of each participant were loaded using the 
pyGaze Analyzer library in python. The trigger channel 
information was used to re-reference and synchronize the 
time- onset between the two modalities. For each partici-
pant and stimulus, the set of recorded fixations whose 
timestamp fell within the stimulus’s presentation duration 
were extracted and labelled as such. Fixations whose (x,y) 

Figure 1 Example stimuli from the Rapid-Automatized Naming 
Paradigm; phonologically confusable stimuli; beta and theta are 
phonologically similar.  



coordinates fell outside the visual region of the stimulus or 
whose duration exceeded 3 standard deviations of the mean 
duration were removed. At the end of the pre-processing, 
each participant p and each stimulus s was associated with 
the corresponding set of valid-fixations 	𝐹!,# =
{𝑓$, … 𝑓%}.	Each fixation 𝑓& was represented by its (x,y) co-
ordinates, its starting onset (relative to the stimulus synch 
onset), and a duration time, all measured in milliseconds.  
 All EEG pre-processing was performed using custom 
Python code and using the MNE library2. A 0.5Hz high-
pass filter was used on the continuous EEG to remove DC 
drifts, and notch filters at 50Hz and 100Hz were used to 
minimize the power-line interference. EEG sub-segments, 
spanning 2 seconds before each stimulus onset and until 2 
seconds after the stimulus offset, were generated.  The 
baseline amplitude of each segment was removed, and 
channels were re-referenced to the average reference. The 
duration of each segment varied between each participant 
and each stimulus. Thus each participant was free to name 
the stimuli at their own pace. At the end of the basic EEG 
pre-processing, each participant and stimulus has an asso-
ciate EEG segment, 𝐸𝐸𝐺!,# ∈ 	ℝ'×)!,# 	representing the 
entire recording session of the segment of D channels and 
𝑇!,#	 time samples.  
 
Generating single-trial Fixation Related Potentials 
As noted in the introduction, free-naming tasks, such as the 
RAN task used in this study, do not provide experimenter-
controlled time-locked trials necessary to extract Event-
Related Potentials. This makes the application of conven-
tional single-trail analysis methods not directly applicable. 
To overcome this inherent constraint of the paradigm and 
enable the study of naming under realistic scenarios, we 
explored integrating eye-gaze measures and EEG measures 
to identify and detect differential neural components.  Spe-
cifically, the fixation and EEG segments were used to gen-
erate a set of Fixation Related Potentials (FRPs), i.e. EEG 
responses following the onset of a fixation. In particular, 
for each EEG segment 𝐸𝐸𝐺!,# (i.e. the EEG recording of a 
participant p during the stimuli presentation s), and the 
corresponding set of fixations 𝐹!,# , a set of |𝐹!,#| FRPs 
were generated by epoching the 𝐸𝐸𝐺!,# segment, between 
at -200ms to 500ms of the onset time of each 𝑓& ∈ 𝐹!,#. 
Baseline amplitude was removed from each FRP. Moreo-
ver, each single-trial FRP was assigned a group label 
𝑦!,#(𝑡) ∈ {0,1} indicating whether the participant generat-
ing the trial originated from the DYS and CAC groups. 

 
2 https://mne.tools/stable/index.html  

After epoching, the resulting dataset is a set of single-trial 
FRPs and corresponding group labels as follows:  
 
𝐹𝑅𝑃𝑠 = 	 9𝑋!(𝑠, 𝑡) ∈ ℝ'×) , 𝑦!(𝑠, 𝑡) ∈ {0,1};+,$

)!,#	 	∀𝑝, 𝑠 

 
where D corresponds to the number of channels and T the 
time samples in each FRP.  
 
Inter-subject FRP Correlation Components 
Our objective is to identify neural components in the re-
sulting FRPs modulated by the naming task and carry dif-
ferential information about CAC and DYS. Our approach 
is motivated by the hypothesis that synchrony of neural 
responses between individuals while naming is predictive 
of reading difficulty conditions and thus carries infor-
mation about the underlying cognitive conditions. Here we 
provide details of the proposed approach to isolate such 
components.  
 Consider the set of single-trial FRPs {𝑋!,#(𝑡) ∈
ℝ'×)}	∀𝑝, 𝑠,  as defined in the previous section; we seek to 
find special multivariate components	𝒘 ∈ ℝ' that maxim-
izes the inter-subject Pearson correlation of the single-trial 
FRP projected on w for a set of conditions and all trials.  
Specifically, for a pair of participants (i,j), and a given spa-
tial projection w the inter-subject Pearson Product Moment 
Correlation Coefficient between the projected components 
is given by:  

1
|𝑆|. |𝑇|	∑ ∑ 𝒘)𝑋&(𝑠, 𝑡)𝑋-)(𝑠, 𝑡)𝒘+∈)#∈/

∏ B 1
|𝑆||𝑇|	∑ 𝒘)𝑋0(𝑠, 𝑡)𝑋0)(𝑠, 𝑡)𝒘)	#∈/ 	C0∈{&,-}

$/4 

where 𝑆 = {1,2,3,4} denotes the set of the four stimulus 
types, 𝑇 = {1, . . , 𝑁} denotes in indexes of the set of single-
trials within each stimulus, |.| denotes the cardinality of a 
set. The above equation can be re-written in terms of the 
covariance matrix of the single-trial observation as fol-
lows: 
 

𝒘)	𝑅&- 	𝒘

(𝒘)𝑅&& 	𝒘)$/4	H𝒘)𝑅-- 	𝒘I
$/4 

where  

		𝑅&- =	
1

|𝑆|. |𝑇|	JJ𝑋&(𝑠, 𝑡)𝑋-)(𝑠, 𝑡)
+∈)#∈/

 

 With that, we seek to find the optimal spatial projector 
vector w that maximizes the average Person Product Mo-
ment Correlation Coefficient across all subject pairs. For-
mally, the optimization problem seeks to find w maximize: 
 
 



arg5𝑚𝑎𝑥		
1
𝑁	JJ𝛿&-

𝒘)	𝑅&- 	𝒘

(𝒘)𝑅&& 	𝒘)6$/4	H𝒘)𝑅-- 	𝒘I
6$/4

-∈7&∈7

	 

 
where P is the set of participants, N=P(P-1) and 𝛿&,- =
1	𝑖𝑓		𝑖 ≠j, 0 otherwise.  Under the assumption that  
𝒘𝑻𝑅&&𝒘	 ≈ 𝒘)𝑅&&𝒘	∀(𝑖, 𝑗) the optimal w is given by the 
solution to the following generalized eigenvalue problem 
(see appendix for derivation): 
 

𝑅(:)	𝒘 = 𝜆𝑅(5)𝒘		 
 
where  

𝑅(:) =
1
𝑁	JJ𝛿&- 	𝑅&-

-∈7&∈7

 

 

𝑅(5) =
1
𝑃	J𝑅&&

&∈7

 

  
 The solution to the generalized eigenvalue problem 
above comprise the K eigenvectors {𝒘0}0,$< 𝑜f the matrix 

H𝑅(5)I6$𝑅(:) and the corresponding eigenvalues 𝜆0 =
𝒘𝒌
&>(()𝒘𝒌	

𝒘𝒌
𝑻>(+)𝒘𝒌

 .  Each eigenvector 𝒘0	represents a component-

projection that captures the largest correlations in neural 
activity between all participants, while its corresponding 
eigenvalue 𝜆0 denotes the strength of that correlation. 
Components associated with high eigenvalues correspond 
to neural responses similar across subjects during the task 
at hand. Thus, they likely represent neural activity which is 
modulated by the underlying cognitive states during nam-
ing. We refer to these components as naming-related cog-
nitive-congruency components.  
  To determine (quantify) how similar each subject is to 
the others experiencing the same stimulus, we calculated a 
per-subject naming-congruency, which is computed as: 
 

𝑝𝑒𝑟_𝑠𝑢𝑏𝑗𝑒𝑐𝑡_𝜆!,0 =
𝒘𝒌
)𝑅(:),!𝒘𝒌	

𝒘𝒌
𝑻𝑅(5),!𝒘𝒌

 

 
where  

𝑅(:),! =
1

𝑁 − 1	J𝛿&!	(𝑅&! + 𝑅!&)
&∈7	

	

  

𝑅(5),! =
1

𝑁 − 1	J𝛿&!	(𝑅&& + 𝑅!!)
&∈7	

 

note that 𝛿&,- = 1	𝑖𝑓		𝑖 ≠j, 0 otherwise, where the set of 
{𝒘0}0,$<  corresponds to the eigenvectors of equation (1).  

 

Naming speed-related Cognitive Congruency Metric 
We consider the sum over the per-subject naming-
congruency components as a metric of the overall neural 
activity relevant to the naming task. In particular, we de-
fine the Naming-related Cognitive Congruency (NCC) as: 
 

𝑁𝐶𝐶(𝑝) = 	 J 𝑝𝑒𝑟_𝑠𝑢𝑏𝑗𝑒𝑐𝑡_𝜆!,0
0∈<@

		

 
for a selected subset of 𝐾@ cognitive-congruency compo-
nents. The resulting NCC(p) score corresponds to a metric 
that captures the overall synchrony in neural activity dur-
ing naming per subject (i.e., participant p). Thus, it could 
serve as a neural-related metric to naming speed.  
 
Spatial and temporal profile of naming-related 
cognitive congruency components. 
Given the solutions to the generalized eigenvalue problem, 
the temporal profile of each component is calculated as the 
product of each component 𝒘0with each of the single-trial 
FPR, followed by taking t grant-average FRP of the pro-
jected components. Moreover, the topographical profile 
(i.e., the forward model) of each component is calculated 
as:  
 

𝒂0 =		
𝑅(5)	𝒘0

𝒘0
A𝑅(5)𝒘0

		

  
The forward model captures the covariance between each 
component’s activity as measured by each electrode.  
 
Statistical comparison between groups  

Figure 2:Box plot of the average NCC metric for each group 

(1) 



To compare differences between DYS and CAC groups to 
determine the discriminative power of the proposed nam-
ing-related cognitive congruency metric, we employ an 
ANOVA test.   
 

Results 
 
We sought to investigate whether the proposed naming-
related cognitive-congruency metric is predictive in differ-
entiating between DYS and CAC groups during the RAN 
task. We consider group membership (DYS vs CAC) as an 
independent variable and the proposed naming speed-
related cognitive congruency metric as a dependent varia-
ble. A one-way ANOVA analysis shows significant group 
differences between DYS and CAC F(56,1)=7.20, p< 0.01. 
The boxplot in Figure 2 indicates that the average NCC 
score is significantly higher for the CAC group than the 
DYS group. 

Figure 3 shows the projected NCC component average 
across all FRPs of the four components with the largest 
eigenvalues in descending order (i.e., component 1 has the 
highest lambda). The topographic profile for the four com-
ponents is illustrated in Figure 4.   
 

Discussion and Conclusion 
We proposed a novel computational approach to identify 
neural components elicited during an unconstrained RAN 
task that differentiates children with dyslexia and their 
chronological age controls under four different conditions. 
In particular, we formulated an optimization problem to 
extract spatial components from EEG measures that max-

imize the correlation between fixation-related potentials 
during naming speed. Based on the resulting optimal com-
ponents, we then defined the per-participant Naming-
related Cognitive Congruency metric (i.e., NCC), which 
served as an indicator of the degree to which participants 
engaged neural processes relevant to the naming task. 
Moreover, the resulting components are associated with 
corresponding temporal and spatial profiles, which allow 
us to investigate and interpret the spatiotemporal origins of 
the underlying neural activity. They also help study the 
neural underpinning of reading disorders under realistic 
naming paradigms (i.e. unprompted naming speed task). 
The proposed NCC metric is validated to carry predictive 
information between DYS and CAC groups in a real da-
taset.  
 This study’s key finding is novel empirical evidence that 
the proposed NCC metric captures neural components that 
carry information that differentiates between DYS and 
CAC. Our results show that the resulting NCC differ sig-
nificantly between the two groups, with the CAC group 
exhibiting stronger NCC scores than the DYS group. This 
result suggests that the neural responses during a naming 
speed task follow a stereotypical pattern more consistently 
for chronological age controls than for DYS, who deviate 
from the expected pattern. Our results also suggest that 
single-trial fixation-related potentials encode neural activi-
ty of the underlying naming-related cognitive processes 
that can be isolated using our proposed method.  
 The proposed method overcomes several methodologi-
cal challenges allowing extracting neural components dur-

Figure3: Temporal profiles of the NCC components with the 
highest eigenvalue 

Figure 4: Forward model of the NCC components with the 
highest eigenvalue. 



ing unconstrained naming speed paradigms than the cur-
rent state-of-the-art method. In particular, it eliminates the 
need for experimenter’s controlled onsets by integrating 
fixation-related onset to define single-trials. Moreover, it 
mitigates inter-subject variability in single-trial analysis 
methods by maximizing the correlation of the resulting 
components across subjects.  
 Finally, our study’s broader impact is that it provides a 
methodological approach to facilitate research on studying 
the neural underpinning of reading disorders during read-
ing paradigms. By isolating neural components, our ap-
proach allows for identifying task-relevant neural activity 
under realistic naming tasks which are expected to be simi-
lar in reading paradigms (e.g., Georgiou, Parrila, Papado-
poulos, & Cui, 2013). In future work, we will explore the 
use of the NCC to characterize the reading components 
under different difficulty levels (i.e. congruent vs incon-
gruent) and under different age groups.  
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Appendix 
In this section, we provide the derivation of the solution to 
the optimization problem in section 2.  Recall we are trying 
to maximize the expression in equation (1) for the vector 
w. Under the assumption that 𝒘𝑻𝑅&&𝒘	 ≈ 𝒘)𝑅&&𝒘	∀(𝑖, 𝑗), 
we define the covariance matrix equation 1, with respect to 
the average covariance matrix 𝑅(5) = $

7
	∑ 𝑅&&&∈7  as fol-

lows: 	

𝑔(𝑤) = 		
1
𝑁	J 𝛿&-

𝒘)	𝑅&- 	𝒘
(𝒘)𝑅(5)	𝒘)		

&,-∈7

 

Taking the derivative of g(w) for w and setting it to zero, 
we get the following 
 
𝜕𝑔(𝒘)
𝜕𝒘)

=		
1
𝑁	J 𝛿&-

	𝑅&- 	𝒘(𝒘)	𝑅(5)	𝒘) −		𝑅(5)	𝒘(𝒘)	𝑅&- 	𝒘)
(𝒘)𝑅(5)	𝒘)4		

&,-∈7

 

 

=
1

(𝒘)𝑅(5)	𝒘)4	
	f
1
𝑁	J 𝛿&-𝑅&- 	

&,-∈7

g𝒘(𝒘)	𝑅(5)	𝒘)

−		𝑅(5)	𝒘(𝒘) 	f
1
𝑁	J 𝛿&-𝑅&- 	

&,-∈7

g 	𝒘) 

Setting the derivative to zero, we get: 
 

𝑅(:)𝒘(𝒘)	𝑅(5)	𝒘) −		𝑅(5)	𝒘H𝒘)	𝑅(:)	𝒘I = 0	 
 

=> 𝑅(:)𝒘(𝒘)	𝑅(5)	𝒘) = 		𝑅(5)	𝒘H𝒘)	𝑅(:)	𝒘I	 
 

=> 𝑅(:)𝒘 =		𝑅(5)	𝒘
H𝒘)	𝑅(:)	𝒘I
(𝒘)	𝑅(5)	𝒘)	 

 
=> 𝑅(:)𝒘 =		 𝜆	𝑅(5)	𝒘	 

 

where we set 𝜆 = B5&	>(()	5C
(5&	>(+)	5)

	   and 	𝑅(:) =

i$
D
	∑ 𝛿&-𝑅&- 	&,-∈7 j. Thus, the optimal w is a solution to the 

generalized eigenvalue problem of equation (1) 


