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Abstract
This paper proposes a method to mitigate the signifi-
cant performance degradation due to planned suspen-
sions in the multi-agent cooperative patrol problem. In
recent years, there has been an increased demand to uti-
lize multiple intelligent agents that control robots. Fur-
thermore, cooperation between multiple agents is re-
quired for performing tasks that are complex and/or
cover large spaces. However, since robots are machines,
they must be periodically inspected or replaced with
new ones to prevent unintended breakdowns for contin-
uous operation and to prolong the lifetime of agents as
much as possible. However, such suspension of agents
for inspection can cause a sudden deterioration in per-
formance, which is not ignorable in some applications.
Meanwhile, such suspensions are usually planned; thus,
we can know in advance which agents will stop, and
when, to anticipate a preparation period before the ac-
tual suspension time. Thus, we introduce a negotiation
method in which the agents that are scheduled to be sus-
pended hand over some responsible and important tasks
to other agents to reduce the impact of a sudden perfor-
mance degradation. The experimental results show that
the proposed method considerably reduces the perfor-
mance degradation, especially for security patrol appli-
cations.

Introduction
In recent years, the advancement of computational technol-
ogy has brought us closer to applications that utilize net-
worked intelligent agents to control robots and/or provide
sophisticated services. Furthermore, the use of multiple co-
operative agents is expected to increase, owing to the size
of the environment and the complexity of the required tasks.
One problem framework for these types of applications is
the multi-agent cooperative patrol problem (MACPP), in
which agents simultaneously patrol a specific environment
to execute required tasks, such as cleaning or status check-
ing for security, while collaborating with each other. How-
ever, because agents usually determine their actions inde-
pendently, their actions often negatively interfere with each
other, for example, for synchronization and collision avoid-
ance, so that the overall efficiency may decrease. To pre-
vent such a loss of efficiency, cooperation and coordina-
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tion of agents is required. However, it is not easy to de-
sign/implement coordinated behaviors in advance because
many factors must be anticipated, such as time and space
constraints as well as processing capacity that cannot of-
ten be determined in advance. Therefore, an autonomous
strategy learning method is required for efficient coopera-
tive behavior by considering the characteristics of the envi-
ronment/tasks and the learned behaviors of other agents.

Many studies on the MACPP have been performed. For
example, Yoneda et al. (Yoneda, Kato, and Sugawara 2013)
proposed a method adaptive meta-target decision strategy
(AMTDS) in which each agent autonomously determines
an appropriate patrol strategy using reinforcement learning,
with learning the frequency of visitation requests for each
location in the environment. Sugiyama et al. (Sugiyama,
Sea, and Sugawara 2019) proposed the AMTDS with en-
hanced divisional cooperation (AMTDS/EDC) by adding
light-weight negotiation for the division-of-labor by divid-
ing the environment to improve efficiency. However, when
the number of agents decreased for periodic suspension, for
example, they reported that it caused a temporary but signif-
icant decrease in the total performance. For example, the se-
curity patrol, which is an important application of MACPP,
has a concern of becoming a security hole even if it is short-
term. However, if we consider agents as robot-like machines,
a decrease in the number of agents is probable due to break-
downs as well as periodic inspections. Moreover, to ensure
the longevity and continuous operation of robots, periodic
inspections cannot be avoided. Thus, we have to tackle the
problem of performance degradation due to periodic inspec-
tion and maintenance without imposing any additional load
on human staff.

Therefore, we propose another negotiation method for
reducing the overall performance degradation due to the
suspension of some agents. This is accomplished by au-
tonomously delegating parts of the tasks for which the
agents are responsible to be performed cooperatively, if we
know which agents will stop and when. In fact, periodic
maintenance/inspection is necessary for machines, such as
robots, for sustainable operations and to increase their life-
times. Furthermore, the plan for stoppage associated with
this purpose is known in advance. Thus, by integrating our
method into the conventional method (Sugiyama, Sea, and
Sugawara 2019), we are able to decrease the occurrences of



security holes (in security patrols) or the amount of trash
that is left uncleaned (in cleaning tasks) through communi-
cations for negotiation using Wi-Fi at close distances. We
experimentally evaluate the proposed method in comparison
with the existing method, and show that it can considerably
reduce the performance degradation due to the planned sus-
pension in the MACPP.

Related Work
There are many studies on the MACPP to achieve cooper-
ative and coordinated behaviors of multiple agents. In gen-
eral, there are two main approaches to the coordination of
agents: the first approach is to divide the environment into
the responsible areas explicitly and assign one of them to
each agent (Ahmadi and Stone 2006; Elor and Bruckstein
2009; Kato and Sugawara 2013) For example, Elor and
Bruckstein (Elor and Bruckstein 2009) proposed an area par-
titioning method to balance the sizes of subareas allocated
to individual agents based on the model of balloon pressure.
Kato and Sugawara (Kato and Sugawara 2013) extended this
method to apply more complicated environments with obsta-
cles, slopes, and different visiting requirements. The other
approach is to let each agent autonomously select an ap-
propriate patrol strategy according to the environment and
other agents’ behaviors without partitioning the area explic-
itly (Kalra, Ferguson, and Stentz 2005; Elmaliach, Agmon,
and Kaminka 2007; Sampaio, Ramalho, and Tedesco 2010;
Yoneda, Kato, and Sugawara 2013; Sugiyama, Sea, and Sug-
awara 2019). However, as mentioned previously, these stud-
ies do not consider the performance degradation due to sus-
pension of a few agents. We take the latter approach because
it seems to be less affected by the periodic suspensions, al-
though it still causes unignorable degradation.

Some studies have investigated the planned suspensions
using a multi-agent system framework. Panteleev et al. and
Ghita et al. tried to make plans for the periodic mainte-
nance/inspection and repair of tech equipment in a multi-
agent simulated environment (Panteleev et al. 2014; Ghita,
Agnès, and Xavier 2018). Unlike our study, these studies
focused on the generation of a work plan for staff for peri-
odic inspections so as to reduce staff workload. There are
also many studies on planned suspensions in different fields.
Gavranis et al. proposed an exact solution algorithm for
a wide variety of flight and maintenance planning (FMP)
problems (Gavranis and Kozanidis 2015). Seif et al. ex-
tended this method to be applied to operations and mainte-
nance planning problems that are more general than the FMP
problem (Seif and Andrew 2018). Chen et al. (Chen and
Tang 2019) proposed a management workflow design that
integrates building information modeling and digital pro-
gramming for the operation and maintenance of a building.
However, to the best of our knowledge, there are no studies
that discuss the autonomous planned suspension of multiple
intelligent agents.

Model
The model description is almost identical to that in
Sugiyama et al. (Sugiyama, Sea, and Sugawara 2019) except

that we focus on the security patrol as well as the cleaning
task. We describe the model of our problem briefly; the de-
tails are presented in (Sugiyama, Sea, and Sugawara 2019).

Environment and Agents
We denote the set of agents A = {1, . . . , n}. The envi-
ronment in which agents patrol is denoted by the graph
G = (V,E), which can be embedded in a two-dimensional
space, where V = {v1, · · · , vn} is the set of nodes that cor-
respond to locations, and E is a set of edges whose elements
ek,l ∈ E represent the paths between nodes vk and vl. By
adding dummy nodes if necessary, we can assume the length
of all edges to be 1. Let d(vl, vk) be the length of the short-
est path and m(vl, vk) be the Euclidean distance between
∀(vl, vk) ∈ V × V . The discrete time whose unit is step,
is introduced. In one step, any agent can move to a neigh-
boring node, and reconnoiter that node. Expressing the lo-
cation of agent i ∈ A at time t as vit ∈ V , we define the
distances between agents i and j at t by d(i, j) = d(vit, v

j
t )

and m(i, j) = m(vit, v
j
t ). The Euclidean distance is used to

determine if communication is possible.
Every node has the occurrence probability p(v) (0 ≤

p(v) ≤ 1) of events that at least one agent i ∈ A has to
visit v, where events mean dirt accumulation to vacuum, or
occurrences of events to be observed. The number of unob-
served events Lt(v) in v at time t is set to 0 if i visits and
explores v at t; otherwise, it is incremented by one at ev-
ery step with probability p(v). Hence, agents have to more
frequently visit the nodes with higher probability of occur-
rence; thus, such nodes, for example, require a high level of
security.

Agent i ∈ A has a finite battery capacity and must return
to its own charging base before it runs out. For ∀v ∈ V , i
has an importance value pi(v), which is also the predicted
event occurrence probability at v estimated from its own
event explorations. Therefore, pi(v) differs among agents,
even for the same node v, because it is estimated on the
basis of individual observations. Agent i determines the
next target node vitar using the strategy s chosen by the
AMTDS and then generates the shortest or reasonable path
to vitar . The AMTDS is the learning method for choosing
the target decision strategy s among four simple strategies
by Q-learning to decide the next goal to move. The re-
ward for Q-learning is the number of observed events per
step for each strategy. After i reaches vitar , i determines
the next target node again and repeats these actions until
its battery power becomes low. Thus, each agent period-
ically returns to its charging base to charge for constant
patrolling. Please see (Yoneda, Kato, and Sugawara 2013;
Sugiyama, Sea, and Sugawara 2019) for the details of the
AMTDS, the four simple strategies and the control for peri-
odical returns.

Agents i and j can communicate with each other when
their distance is less than or equal to dco , i.e.,m(i, j) ≤ dco .
To suppress excessive communications, i retains T i,j

lst , which
is the last time when it communicated with j, and i does not
communicate with j until T i,j

lst + B, where positive integer
B is the minimum communication interval.



When agent i visits node v at t and finds events to be
observed, it updates the importance value pi(v) as

pi(v) = (1− α)pi(v) + α
1

t− tvvis
, (1)

where α (0 < α ≤ 1) is the learning rate, and tvvis is the
time when any agent visited node v most recently because
of the assumption that each agent can know other agents’
positions. Then, i individually has the responsible nodes V i

R
(⊂ V ), which is the set of nodes whose importance value
pi(v) is up to the upper N i

R-th value; therefore, it consists
of nodes to which i decides to visit more frequently. Note
that the responsible nodes is updated when agents return to
their charging base. Initially N i

R = |V |, so that V i
R = V

for ∀i ∈ A. Next, N i
R is updated dynamically depending

on the contribution of each agent. How to determine N i
R is

explained below.

Performance Measure
If we consider our MACPP application with patrols for se-
curity surveillance in a large area, agents need to cooperate
with each other to minimize the number of events that are
left unobserved. Therefore, we introduce the maximal num-
ber of unobserved events, which is calculated by

Uts,te(s) = max
v∈V,ts≤t≤te

Lt(v)

during the interval from ts to te (ts < te). If U(s) is large,
some nodes are left unobserved, so security weakness may
exist. On the other hand, if we consider cleaning task appli-
cations, we have to reduce the amount of time trash exists
that is left uncleaned; this can be defined as

Dts,te(s) =
∑
v∈V

te∑
t=ts+1

Lt(v),

which is called the cumulative unobserved duration of
events. Thus, a large D(s) indicates that the environment
is left dirty. Therefore, the smaller values of U(s) and D(s)
indicate more efficient patrol.

Proposed Method
We attempted to solve the problem by integrating
the proposed negotiation for task delegations to pre-
vent/reduce a sudden deterioration in efficiency with the
AMTDS/EDC (Sugiyama, Sea, and Sugawara 2019). Our
proposed method is an extension of the negotiation method
in AMTDS/EDC, but the main difference is that their
method is to balance the workload to improve the efficiency,
whereas in our method, the tasks of the agents that will be
stopped are delegated to other agents, and thus, intentionally
unbalanced. We refer to the proposed method as the AMTDS
with task handover for scheduled suspension (AMTDS/TH).

Scheduled Suspension of Agents
For a subset of agents AS (⊂ A), a scheduled suspension of
AS for inspection or maintenance is specified by a tuple of
AS and three positive integers (AS , Tsp , Trs, Grsv), where

Tsp is the scheduled suspension time, Trs is the scheduled
resume time, and Grsv is the preparation period before sus-
pension. After the tuple for the scheduled suspension is an-
nounced to all agents, they enter the preparation period at
Tsp − Grsv, i.e., they start preparations to reduce a sudden
deterioration by the suspension. Next, the agents calculate
the maximum number of chances to negotiate Npn(t) until
the scheduled suspension at t

Npn(t) =
Tsp − t
B

to estimate the remaining negotiation chances with other
agents.

Negotiations during Preparation Period
In normal time (i.e., no suspension is scheduled), agent
∀i ∈ A communicates with other agents to exchange the im-
portance values of the nodes selected from V i

R to balance the
workload and enhance divisional cooperation for better effi-
ciency, as described in the conventional method (Sugiyama,
Sea, and Sugawara 2019). Meanwhile, during the prepara-
tion period, we introduce the negotiation for unidirectional
task delegation between agents i ∈ AS and j ∈ A \ AS , in
which only i transfers the importance values in V i

R to j; this
negotiation message may lead to one-way indirect delega-
tion to hand over some tasks to j, because j is likely to visit
the received nodes more frequently due to the increased im-
portance values, although i will visit them fewer times. Note
that even after j receives the importance value of v, j will re-
evaluate the received importance values by itself, so that it is
possible that v is excluded from V j

R. Conversely, i may re-
visit v; if it finds that j has not visited v, then i will increase
its importance values again, because the task handover for v
did not work well. Also note that agents in AS do not com-
municate each other during the preparation period, whereas
agents in A \ AS mutually negotiate the same as in normal
times.

Unidirectional task delegation between i ∈ AS and j ∈
A \AS proceeds as follows: Agent i selects the nodes in V i

R

that have the top eg (> 0) values of pi(v). Then, i transfers
a certain ratio of pi(v) of any selected node to j. This results
in the update of importance values in i and j as

pj(v)← pj(v) + pi(v)× δc
pi(v)← pi(v)× (1− δc)

for each v of the selected nodes. Parameter δc(0 < δc <
1) specifies the ratio of importance values to transfer. The
positive integer eg is calculated by

eg = min

(
N i

R, N
i
dmax,

⌊
N i

R

Npn(t)
× γc

⌋)
,

where N i
dmax(0 < N i

dmax < N i
R) is a threshold to prevent

unanticipated changes, and γc is the ratio of transfer. After
passing the importance values, N i

R and N j
R are modified by

N i
R ← N i

R − eg
N j

R ← min(|V |, N j
R + eg)

After the updates of pi(v) and pj(v), their responsible nodes
V i
R and V j

R will be recalculated at their charging base.



Figure 1: Experimental environment.

Experimental Evaluation
Experimental Setting
The objective of our experiments is to show that the pro-
posed method AMTDS/TH is able to suppress a sudden per-
formance degradation when multiple agents enter a sched-
uled suspension compared with the performance of the con-
ventional method, AMTDS/EDC. We conducted two exper-
iments to evaluate our method in two patrol problems: the
cleaning task (for the comparison with that of the conven-
tional method); and security patrol by multiple robots, which
requires tighter control. To verify if our method is effective
for multiple scheduled suspensions, two scheduled suspen-
sions were conducted in this experiment.

The experimental environment and setting, which are
identical to the one used in (Sugiyama, Sea, and Sugawara
2019) for comparison, is a 101×101 grid, as shown in Fig. 1,
where the black lines are walls. Colored regions have higher
probabilities of event occurrences, which is specified by

p(v) =

 10−3 (if v was in a red region)
10−4 (if v was in an orange region)
10−6 (otherwise)

for ∀v ∈ V . The number of agents is 20 as an example, the
charging base for all agents is set at the center of the en-
vironment, and multiple agents can exist, only at the center
location for charge.

The length of one experiment is 3,500,000 steps. We set
two scheduled suspensions, which are specified by (AS ,
Tsp , Trs, Grsv)= (A1, 1000000, 1500000, 500000) and (A2,
2000000, 2500000, 500000).A1 andA2 = A\A1 are the set
of ten agents randomly selected from A in each run. Other
parameters used in the various experiments are shown in Ta-
ble 1. The graphs shown below are the average values of 20
experimental runs, unless otherwise mentioned.

Comparison of Degradation in Efficiency
We plotted the value ofU(s) (we omit the subscripts for sim-
plicity) for security patrol in Fig. 2, and D(s) for the clean-
ing task in Fig. 3. These figures indicates that, in both exper-
iments, agents in the AMTDS/TH could reduce the sudden
degradation of performance due to the scheduled suspen-
sions more than that of the agents in AMTDS/EDC. These
results show that the agents scheduled to be suspended were
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Figure 2: Transition of U(s) over time.
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Figure 3: Transition of D(s) over time.
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Figure 4: Performance comparison (U(s)).
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Figure 5: Performance comparison (D(s)).



Table 1: Experimental parameters.

Description Parameter Value

Number of agents |A| 20
Communication Range dco 5
Minimum communication interval B 10800
Data collection interval te − ts 3600
Threshold to prevent unanticipated
changes

N i
dmax 500

Learning rate for importance value α 0.1

able to effectively hand over some parts of their tasks to
other agents, and thus the efficiency degradation in U(s) and
D(s) after two suspensions became quite small.

In particular, we can see from Fig. 2 that the proposed
method significantly reduces the sharp degradation of per-
formance (i.e., increase in U(s)) by approximately 77% dur-
ing the first scheduled suspension, and 65% during the sec-
ond. Moreover, while half of the agents did not operate,
U(s) was kept almost as low as that before they stopped.
On the other hand, the value of D(s) gradually increased
during the preparation period by the gradual handover of
tasks. However, the sudden degradation in efficiency (the
increase in D(s)) has been tempered, especially during the
first scheduled suspension.

The difference in the properties of the sudden perfor-
mance degradation between U(s) and D(s) is due to how
the agents cover the entire work. In the case of the security-
patrol type problem (U(s)), agents are only required to in-
dividually visit nodes, especially focusing on the important
nodes with high event occurrence probability. Therefore, the
decreased number of agents did not cause a significant ef-
ficiency loss if the agents had learned enough during the
preparation period. However, agents using the conventional
method could not cope with the sudden halving of their num-
bers and were left unable to visit some important nodes. In
the cleaning-type problem, on the other hand, the proposed
learning of agents during the preparation period prevented
decreasing efficiency, but only to some degree, because the
agents had to cover all nodes; thus, the time left for the unob-
served events accumulated. However, we were able to mit-
igate the sudden sharp degradation considerably, compared
with the conventional method.

Evaluation of Performance
We need to investigate whether the proposed method works
sufficiently to mitigate the performance degradation caused
by the reduction in the number of agents. For this purpose,
we examined the efficiency when the number of agents is
fixed at 10 or 20 without scheduled suspension, and com-
pared these results with those of our proposed method. The
results are plotted in Fig. 4 (for U(s)) and Fig. 5 (for D(s)).
Note that the labels “Base10” and “Base20” in these figures
express the cases when the the number of agents |A| is 10
and 20, respectively.

If we look at the curves labeled “Base10” and
“AMTDS/TH” in these figures, we can see that agents using
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Figure 6: Number of events observed in agents.

the proposed method (AMTDS/TH) exhibit the same or bet-
ter performance during the scheduled suspensions than when
ten agents work continuously without stopping. In particu-
lar, it is interesting to note that agents using AMTDS/TH
can work much more efficiently during the first scheduled
suspension. Another finding from our experiments is that
working with more agents in an earlier stage may lead to
faster convergences of learning. Therefore, for example, it
may be effective to have twenty agents working initially, and
then to have ten agents working after applying the proposed
method. Of course, the performance of twenty agents using
the AMTDS/TH is almost equal to that when twenty agents
work continuously (i.e., Base20).

Lastly, we plotted the number of events observed by indi-
vidual agents inA1 andA2 in Fig. 6 to investigate how agent
workloads vary over time when we investigate the value of
U(s). Note that this figure was generated using data from
a single randomly selected experimental run and we only
plotted the data of five agents that are also selected ran-
domly from A1 and A2. Figure 6a indicates that the number
of events observed by agents in A1 gradually decreased in
the preparation period of the first scheduled suspension (be-
tween 500,000 and 1,000,000 steps). After returning to the
work from the first suspension, they quickly increased the
number of observed events. Next, they work to nearly the
maximum to observe the events during the second suspen-
sion and, finally, the number of observed events decreased to
the average level, which is approximately half of the maxi-
mum number of observed events. Figure 6b also shows a



trend that is almost the opposite to that of Fig. 6a. This anal-
ysis suggests that agents hand over their tasks by transfer-
ring a certain ratio of importance values of their responsible
nodes to other agents with the proposed negotiation

Discussion
First, it should be noted that our proposed method con-
tributed considerably to mitigate the sudden degradation
of performance due to the temporal stop (suspension) of
some agents. Because agents are autonomous learners, they
can gradually compensate for the work of agents that have
stopped; however, this process requires some time. Such
degradation can be fatal in applications such as security pa-
trols, for example. In contrast, the proposed method pays
particular attention to security patrol applications and pre-
vents a temporary but sudden degradation of efficiency.

In our experiment, we had a rather extreme setup, where
half of the agents would suspend. The reason for this ex-
treme setting is to confirm the effectiveness of the pro-
posed method. In a real-world application, a small num-
ber of agents would take turns to suspend to perform peri-
odic inspections. Even with such a small number of suspen-
sions, however, sudden degradation is not ignorable in some
MACPP applications, such as security patrol and patrol for
constant data collection from environmental sensors.

Planned suspensions for periodic maintenance of ma-
chines and equipment, such as robots, usually need to be
scheduled by human experts, carefully considering the im-
pact on labor overload and functional degradation, so as not
to disrupt operations. However, this is a heavy burden on the
human experts (Panteleev et al. 2014). Therefore, we believe
that autonomous maintenance transition by agents is impor-
tant for sustainable system operation in the future.

Conclusion
We first discussed the sudden performance degradation oc-
curring in the conventional method due to the scheduled sus-
pensions for periodic inspection or replacement of agents.
We also pointed out that such degradation is not ignorable in
applications, such as security surveillance, because it may
result in temporary security weaknesses. For this type of
problem, we proposed a negotiation procedure for delegat-
ing some important tasks to other agents to reduce the per-
formance degradation due to a scheduled suspension in the
MACPP. Furthermore, after the suspended agents return to
operate, the performance rapidly recovers to the same level
as before the suspension.

In the future, we will focus on the security patrol prob-
lem, and would like to experiment in more realistic prob-
lem settings. In the real security patrol problem, for exam-
ple, agents do not learn the security level of each location
by patrolling, but the levels are usually given in advance.
Therefore, we would like to develop a method for mitigating
the performance degradation during scheduled suspensions
without learning of importance in the environment.
Acknowledgement: This work was partly supported
by JSPS KAKENHI Grant Numbers 17KT0044 and
20H04245.
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