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Abstract

Hidden Markov model (HMM) has been a popular
choice for financial time series modeling due to its advan-
tage in capturing dynamic regimes. However, HMM’s
implicit assumption that the state duration follows a ge-
ometric distribution is too strong to hold in practice. In
this work, we propose a regularized vector autoregressive
hidden semi-Markov model to analyze multivariate finan-
cial time series. One challenge in such a model setting is
that the number of parameters is too large to be reliably
estimated unless the time series is extremely long. To
address this issue, an augmented EM algorithm is de-
veloped for parameter estimation by using regularized
estimators for the state-dependent covariance matrices
and autoregression matrices in the M-step. The perfor-
mance of the proposed model is evaluated in a simulation
experiment, and demonstrated with the New York Stock
Exchange financial portfolio data.

Introduction
In finance and economics, it is often assumed that the finan-
cial returns follow a white noise process. However, empirical
evidence suggests that this assumption may be too strong
to hold in practice. Ding, Granger, and Engle (1993) found
that there is substantial correlation between absolute returns.
Andersen et al. (2001) indicated that realized volatilities and
correlations show strong temporal dependence and appear
to be well described by long-memory processes. Moreover,
Fan and Yao (2017) commented that the squared and the
absolute returns of S&P 500 index exhibits significant serial
correlations. Therefore, it is reasonable to model the financial
return series using an autoregressive process.

The drawback of an autoregressive process is that it alone
cannot model the volatility clustering and heavy-tailed dis-
tribution in the financial return series. This is because such
financial return series often have more than one latent data
generating mechanisms. For example, the performance of
a financial portfolio in a stable economy is expected to fol-
low a different autoregressive process from that in a volatile
economy. Rydén, Teräsvirta, and Åsbrink (1998) showed that
a hidden Markov model (HMM) can reproduce most of the
stylized facts for daily return series Granger and Ding (1995).
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HMM is a bivariate discrete time stochastic process
{S t,Yt}t≥0 such that

(A1) {S t} is a Markov chain, i.e. P(S t |S t−1, ..., S 1) = P(S t |S t−1).
(A2) {Yt} is a sequence of conditional independent random vari-

ables given {S t}.

In a Gaussian HMM, the marginal distributions for ob-
served series are essentially modeled as a mixture of Gaus-
sian distributions such that volatility clustering and heavy-
tailedness are automatically incorporated in the model frame-
work. Further, the transition between the latent states are
directly modeled in HMM so as to account for the temporal
dependence in the series.

However, assumptions (A1) and (A2) may both be too
strong to hold in practice. Assumption (A1) indicates that
the current latent state depends only on the most recent la-
tent state in the past; beyond that, it is memoryless. Rydén,
Teräsvirta, and Åsbrink (1998) illustrated that the stylized
fact of the very slowly decaying autocorrelation for absolute
(or squared) returns cannot be described by a HMM. Bulla
and Bulla (2006) proposed the use of hidden semi-Markov
model (HSMM) to overcome the lack of flexibility of HMM
to model the temporal higher order dependence in financial
returns. In HSMM, the latent state durations are explicitly
modeled rather than assuming them to be geometric as in
HMM. This has the practical advantage since it is typical
that the longer time the economy spends in one of the latent
states the more likely it will switch to another latent state. In
the meantime, assumption (A2) can be dropped in the class
of Markov-switching models proposed by Hamilton (1989)
where {Yt} is allowed to follow state-dependent Gaussian
vector autoregressive processes, also known as vector autore-
gressive hidden Markov models (VAR-HMM). Yang (2000)
pointed out another interesting feature that VAR-HMM can
occasionally behave in a nonstationary manner although be-
ing stationary and mean reverting in the long run.

For general applicability, we are going to adopt the most
flexible framework of a pth order vector autoregressive hidden
semi-Markov model [VAR(p)-HSMM] to analyze multivari-
ate financial time series. Note that both VAR and HMM are
special cases in the VAR(p)-HSMM framework. Our goal is
to make inference on the parameters that determine the data
generating mechanism, as well as evaluate the prediction per-
formance. A potential problem of VAR(p)-HSMM is the large



number of parameters to be estimated when the dimension of
Yt is high. A multivariate M-state VAR(p)-HSMM series of
dimension d has Md(d+1)

2 parameters in the state-dependent
covariance matrices and Mpd2 parameters in the autoregres-
sion matrices. Unless the time series is extremely long, we
are not able to reliably estimate the covariance and autore-
gression matrices even when the dimension d is moderate.
Therefore, regularizations are needed to stabilize the param-
eter estimation. Städler and Mukherjee (2013), Fiecas et al.
(2017), and Monbet and Ailliot (2017) proposed different
versions of a penalized log-likelihood procedure with regular-
ization on the state-dependent inverse covariance matrices in
a Gaussian HMM to form a more stable regularized estimator.
So far, there is no literature that elaborates on the regularized
estimation for VAR(p)-HSMM framework. Neither has the
regularized VAR(p)-HSMM framework been used to model
multivariate financial returns yet.

Thus, our contribution is to provide a detailed parame-
ter estimation procedure for a regularized VAR(p)-HSMM.
The model framework of VAR(p)-HSMM is provided in Sec-
tion 2, where we integrated the LASSO regularization by
Tibshirani (1996) on autoregression matrices, and shrinkage
regularization by Ledoit and Wolf (2004) on covariance ma-
trices into the EM algorithm. Section 3 presents simulation
studies on finite samples to evaluate the performance of the
proposed regularized estimators in different scenarios. Sec-
tion 4 provides an empirical analysis on the NYSE financial
portfolio of 50 stocks using the regularized VAR(p)-HSMM.
Section 5 gives a brief discussion. All the analyses utilize the
R package "rarhsmm", which has been developed for fitting
regularized VAR(p)-HSMM.

Methodology
Model framework
Denote by yt ∈ R

d for t=1,...,T to be the observed multivariate
data at time t, where d is the dimension for each yt. Denote
by S t ∈ {1, ...,M} to be the latent state at time t, where M is
the fixed finite number of states. Let δ = [δ1, ..., δM] be the
prior probability of latent states. Further, we denote the latent
state duration densities by r = [r1, ..., rM] such that
ri(n) = P(stay n times in latent state i) n = 1, 2, ...,D,
where D is the fixed maximum state duration, i.e. any state
duration greater than D will be censored at D. In addition,
denote by Q = {qi j} for i=1,...,M and j=1,...,M the state
transition matrix such that

qi j = P(S t+1 = j|S t = i) t = 1, ...,T − 1,

where
∑M

j=1 qi j = 1 ∀ i ∈ 1, ...,M
Thus, the data generating mechanism for VAR(p)-HSMM,

can be described as follows. First, an initial state, S 1 = i (i ∈
1, ...,M) is chosen according to the initial state distribution δi.
Second, a duration n is chosen according to the latent state
duration density ri(n). Third, observations y1, ..., yn ∈ R

d are
chosen according to the state-dependent pth order Gaussian
vector autoregressive process

yt = µi +

p∑
k=1

Akiyt−k + ε ti where ε ti ∼ N(0,Σi), (1)

for i = 1,...,M and t = 1,...,n, where µi ∈ R
d and Σi ∈ R

d×d

are the conditional mean and covariance matrix of yt given
S t, yt−1, ..., yt−p; Aki ∈ R

d×d is the kth-order autoregression
matrix conditioning on S t = i.

Fourth, the next state, S n+1 = j, is chosen according to
the state transition probability qi j, the i, jth element in the
transition matrix Q. An implicit constraint is that there should
be no transition back to the same state because we generate
exactly n observations in latent state i in the previous steps,
i.e. S 1:n = i. Then the data generating process repeats the
previous steps until we end up with T observations.

Denote by θ = [δ, r,Q,µ,Σ,A] the set of all parameters in
VAR(p)-HSMM, where there are M − 1 free parameters in
δ, M(D− 1) in r, M(M − 2) in Q, Md in µ, Md(d+1)

2 in Σ, and
Mpd2 in A.

Our VAR(p)-HSMM framework is a natural generaliza-
tion of the VAR(p)-HMM framework (Hamilton, 1989; Yang,
2000; Monbet and Ailliot, 2017; Francq and Zakoıan, 2001)
by allowing for the explicit modeling of the state duration
distributions. In particular, we set all the latent state duration
densities to be discrete nonparametric distributions with arbi-
trary point mass assigned to the feasible duration values so
as to allow for the most flexibility.

Regularization
There are two motivations for us to apply regularization on
the VAR(p)-HSMM framework. On the one hand, the daily
financial time series is typically not long enough for us to
reliably estimate all the parameters in the state-dependent co-
variance matrices in the VAR(p)-HSMM. Those covariance
matrices may not be invertible especially when the dimension
of yt is high. On the other hand, we assume that the state-
dependent autoregression matrices to be sparse, i.e. many
entries are nearly zero. Although the white noise assumption
is often used in financial return data, the empirical evidence
indicates that the IID assumption is too strong and too re-
strictive to be true in general (Fan and Yao, 2017; Franke,
Härdle, and Hafner, 2004). Thus, a regularized estimator for
autoregression matrices can shrink the negligible correlations
to zero while allow for the possibility that some correlations
may be significant.

The regularized estimator for state-dependent covariance
matrices follows the work of Ledoit and Wolf (2004),
Sancetta (2008), and Fiecas et al. (2017) such that each regu-
larized estimator is a convex combination of the maximum
likelihood estimator and a scaled identity matrix with the
same trace,

Σr =
1

1 + λΣ

Σ̂
mle

+
λΣ

1 + λΣ

cI s.t tr(Σ̂
mle

) = tr(cI),

where λΣ ≥ 0 controls the strength of the regularization. Note
that when λΣ = 0, we have Σr = Σ̂

mle
. This regularized esti-

mator results in shrinkage on the covariance estimates and
ensures the positive definiteness of the estimated covariance
matrix when the sample covariance matrix is close to sin-
gularity. This holds even if λΣ is very small so that we do
not increase much bias when stabilizing the estimate. Be-
sides, this regularization yields not only invertible but also



well-conditioned covariance estimates. As λΣ increases, the
dispersion between the smallest and the largest eigenvalues
for the estimated covariance matrix shrinks so that the matrix
becomes more regular.

The regularized estimator for state-dependent autoregres-
sive coefficients is based on the classic LASSO regulariza-
tionTibshirani (1996) such that

ar = arg
a

min ‖ vec(yp+1:T )−µ+

p∑
k=1

aT
k vec(yp+1−k:T−k)‖22+λa‖a‖1,

where vec is the vectorization operator, and a =
[aT

p, ..., aT
1 ]T = [vec(Ap)T, ..., vec(A1)T]T is the vectorization

of the state-dependent autoregression matrices. Here λa ≥ 0
controls the strength of the regularization on the `1 LASSO
penalty, i.e. a larger λa will induce a more sparse estimator.

Cross-validation
The selection of the optimal regularization parameters λΣ and
λa will be based on a similar cross-validation scheme by min-
imizing one-step-ahead mean-square forecast error (MSFE)
as was described in Bańbura, Giannone, and Reichlin (2010)
and Nicholson, Matteson, and Bien (2014). More specifically,
the data is divided into three periods: one for training (1:T1),
one for validation (T1:T2), and one for forecasting (T2:T ).

The validation process starts by fitting a model using all
data up to time T1 and forecast yλΣ,λa

T1+1 . Then we sequentially
add one observation at a time and repeat this process until
time T2. Finally, from time T2 to T, we evaluate the one-step-
ahead forecast error by minimizing

MS FE(λΣ, λa) =
1

T2 − T1

T2−1∑
t=T1

‖yλΣ,λa
t+1 − yt+1‖

2
F ,

where ‖.‖F is the Frobenius norm defined as ‖A‖F =√
tr(ATA). A two-dimensional grid-search is adopted to find

the regularization values that minimize the MSFE, with 15
grid points in each dimension.

Parameter estimation
The parameter estimation procedure follows the general
framework of EM algorithm for the class of hidden Markov
models proposed by Baum et al. (1970) and popularized by
Dempster, Laird, and Rubin (1977). Regarding the imple-
mentation of the EM algorithm to maximize the penalized
likelihood function, the monotonic property and convergence
results have been proved in Green (1990) and De Pierro
(1995).

In the E-step, the standard forward-backward variables are
generalized on the basis of Rabiner (1989) and Yu (2010).
Define

f j,n(yt+1:t+n) = P(yt+1:t+n|S t+1:t+n = j),

i.e. the state-dependent multivariate autoregressive Gaussian
density for state j that lasts for duration n. Then, define the
forward variables

αt( j, n) = P(S t−n+1:t = j, y1:t |θ),

where j = 1, ...,M, t = 1, ...,T , and n = {1, ...,min(D, t)}.
Initialize

α0( j, n) = δ j j = 1, ...,M, (2)
Define the recursion

αt( j, n) =

M∑
i=1

min(D,t)∑
n′=1

αt−n(i, n′)qi jri(n) f j,n(yt−n+1:t). (3)

Similarly, define the backward variables βt( j, n) =
P(yt+1:T |S t−n+1:t = j, θ) where j = 1, ...,M, t = 1, ...,T , and
n = {1, ...,min(D, t)}. Initialize βT ( j, n) = 1 and define the
recursion

βt( j, n) =

M∑
i=1

min(D,T−t)∑
n′=1

q jir j(n) fi,n′ (yt+1:t+n′ )βt+n′ (i, n′). (4)

In addition, define the following 3 sets of auxiliary variables

ξt(i, j) = P(S t = i, S t+1 = j, y1:T |θ)

=

min(D,t)∑
n′=1

min(D,T−t)∑
n=1

αt(i, n′)qi j f j,n(yt+1:t+n)βt+n( j, n),

(5)

ηt( j, n) = P(S t−n+1:t = j, y1:T |θ) = αt( j, n)βt( j, n), (6)

γt( j) = P(S t = j, y1:T |θ) =

min(D,t,T−t)∑
n=1

ηt( j, n). (7)

Then in the E-step, we are ready to compute

Q(θ|θ(l)) =Eθ(l)
{
log[Pθ(y1, ..., yT , S 1, ..., S T )]|y1, ..., yT

}
= Eθ(l)

{
log[Pθ(S 1, ..., S T )]|y1, ..., yT

}
+

Eθ(l)
{
log[Pθ(y1, ..., yT |S 1, ..., S T )]|y1, ..., yT

}
=

 T∑
t=1

M∑
i=1

∑
j,i

ξt(i, j)
γt(i)

log qi j

 +

 M∑
i=1

γ0(i) log δi

 +

 T∑
t=1

M∑
j=1

D∑
n=1

ηt( j, n)
γt(i)

log r j(n)

 +

 T∑
t=1

M∑
j=1

γt( j) log P(yt |yt−1:max(1,t−p),µ j,Σ j,A j)

 ,
(8)

where θ(l) is the parameter value at the lth iteration, and
P(yt |yt−1:max(1,t−p),µ j,Σ j,A j) is the state-dependent density
for the pth order Gaussian autoregressive process.

In the M-step, we can harness the separability of parame-
ters in Q(θ|θ(l)) to maximize each component individually as
follows,

δ j = γ0( j)/
∑

j

γ0( j), (9)

qi j =
∑

t

ξt(i, j)/
∑
j,i

∑
t

ξt(i, j), (10)

r j(n) =
∑

t

ηt( j, n)/
∑

n

∑
t

ηt( j, n). (11)



Then µ j is updated as the unpenalized intercept in the
weighted least squares regression for the VAR model with
LASSO regularization, where each observation yt |yt−1:t−p is
weighted by γt( j). The autoregression matrix A j is updated as
the coefficients in the same weighted least squares regression
with LASSO regularization. These updates are carried out
using coordinate descent algorithm detailed by Friedman et
al. (2007).
Σ j is updated as a convex combination of the weighted

error variance from VAR and a scaled identity matrix with
the same trace.

Asymptotic properties
The asymptotic properties for the maximum likelihood es-
timators in HMM under suitable regularity conditions have
been proved successively in Leroux (1992), Bickel, Ritov,
and Ryden (1998), Douc, Matias, and others (2001), Cappé,
Moulines, and Rydén (2009), and An et al. (2013).

Furthermore, Barbu and Limnios (2009) (also in Trevezas
and Limnios (2011)) extended proof for the consistency and
asymptotic normality of the maximum likelihood estimators
for finite-state discrete-time hidden semi-Markov models.
The conditions and results are summarized as follows,

(B1) If for any states i, j ∈ {1, ...,M}, there is a positive integer
τ such that P(S t+τ = j|S t = i) > 0

(B2) The conditional state duration distributions ri(.) have finite
support ∀i ∈ {1, ...,M}.

Under assumptions (B1) and (B2), the maximum likeli-
hood estimator θ̂T is strongly consistent as T −→ ∞.

In the class of hidden semi-Markov model with a finite
state space, assumption (B1) means that the Markov chain
is irreducible. This holds when all the states communicate
with each other, i.e. there is only one communication class
in the transition matrix. (B2) automatically holds when we
use the discrete nonparametric state duration distribution in
the hidden semi-Markov model because we explicit assign
probability mass to a finite collection of possible durations. In
case a state duration density with infinite support is adopted,
we can censor the distribution at a maximum duration D to
satisfy the assumption.

Computational cost
To compute the likelihood in the E-step, Rabiner (1989)
pointed out that the computational complexity O(M2T ) for an
M-state HMM with length T , and O(M2D2T ) for an M-state
explicit duration HSMM censored at the largest duration D.
Further in our VAR(p)-HSMM framework, the dimension of
the observed series is d and the order of autoregression is
p. Therefore, we have to include the computational cost of
O(d3 + d2 p) to compute the multivariate normal density in
each forward-backward variable. This adds to a total compu-
tational cost O(M2D2T (d3 + d2 p)) in the E-step.

In the M-step, the most computationally expensive part
is the update for the the autoregression matrices under the
elastic net regularization. Based on the results from Friedman
et al. (2007), the computational cost of the coordinate descent
algorithm to solve LASSO is O(Md2 pT ) for M pth order

vector autoregressions of dimension d. This computational
cost is dominated by that from the E-step.

Therefore, the total computational complexity is
O(M2D2T (d3 + d2 p)) for each EM iteration. As we can see,
the algorithm scales linearly in the length of the series T
and autoregression order p, but scales quadratically with
the number of latent states M and the maximum censored
duration D, and scales cubically with the dimension d.

Analysis on the NYSE portfolio data
We apply the proposed model on the New York Stock Ex-
change (NYSE) financial portfolio data, which consists of
the daily closing price of 50 most active NYSE stocks from
2015-01-02 to 2016-12-30 so that each time series is of length
504. This data set is publicly available for download in the R
package "rarhsmm". We use the log return as the observed
multivariate sequence {yt} with dimension 50 such that

yt = log
pricet+1

pricet
t = 1, ..., 503,

Our analysis shows there is a fairly strong, positive corre-
lation in the lag 0 log returns among most of the 50 stocks.
In contrast, the right panel displays the lag 1 correlation ma-
trix, which is rather sparse. Indeed, 83 of the lag 1 sample
correlations are significantly different from zero after testing
by Fisher z-transformation (p < 0.05). This sparsity moti-
vates the use of regularized estimators on the state-dependent
autoregression matrices in the VAR(p)-HSMM framework.

The model selection is performed among the competing
regularized models [VAR, HMM, VAR(p)-HSMM] using the
minimum MSFE criterion. The first 303 observations were
used for training, the next 100 for validation, and the final
100 for forecasting. We set 15 grid points that fall with equal
space on the log scale between 0.0001 and 1 for LASSO pa-
rameter on VAR coefficients. Similarly, we set 15 grid points
that fall with equal space on the log scale between 0.1 and
100 for the shrinkage on the covariances. When fitting the
VAR-HSMMs, the maximum latent state duration is set to be
30 days and all latent state duration densities are chosen to be
discrete nonparametric. From Table 1, all competing models
perform comparably well in terms of the MSFE. Both reg-
ularized VAR(1)-HSMM and VAR(2)-HSMM with 2 states
achieved the lowest MSFE of 2.271. Thus, the regularized
VAR(1)-HSMM is selected to be the final model since it is
more parsimonious.

The scatter plot in Figure 1 depicts the log returns of the
50 stocks from 2015-01-02 to 2016-12-30. A sequence of the
decoded latent states using Viterbi algorithm is overlaid on
top of the scatter plot. We can see that state 2 corresponds to
the period with a higher volatility in the log return of the 50
stocks while state 1 represents a relatively stable economic
period. Figure 2 and Figure 3 display the scatter plot and
empirical distributions for the fitted means and variances in
the two latent states (stable versus volatile). In Figure 2, we
can see that the means in both states are centered around 0,
but the spread in the means of state 2 is much larger than
that in state 1. In Figure 3, it seems that most of the stocks
have a larger variance for log return in state 2 than in state 1



Model ID Model specification MSFE
1 Regularized VAR(1) 2.293
2 Regularized HMM with 2 latent states 2.288
3 Regularized VAR(1)-HSMM with 2 latent states 2.271
4 Regularized VAR(2)-HSMM with 2 latent states 2.271
5 Regularized VAR(1)-HSMM with 3 latent states 2.289

Table 1: Summary of model selection on the NYSE portfolio data. The regularization parameters are selected using cross-
validation by minimizing one-step-ahead mean-square forecast error (MSFE). We set 15 grid points that fall with equal space on
the log scale between 0.0001 and 1 for LASSO parameter on VAR coefficients. Similarly, we set 15 grid points that fall with
equal space on the log scale between 0.1 and 100 for the shrinkage on the covariances.

since the majority of the points lie above the 45 degree line.
This result also corroborates the claim that state 2 stands for
a more volatile economy than state 1.

Figure 1: Log returns and the decoded latent states for the 50
stocks in the NYSE portfolio from 2015-01-02 to 2016-12-
30.

Discussions
The class of regularized VAR-HSMM provides a flexible
framework to model the switching data generating regimes in
multivariate financial time series data, which can work espe-
cially well when these state-dependent covariance and autore-
gression matrices are indeed sparse. In the case study in Sec-
tion 4, the maximum latent duration (D) is set to be 30 days
so as to account for the potential long temporal dependence.
We do not want D to be too small, in which case the VAR(p)-
HSMM would boil down to VAR(p)-HMM. Although the
computation cost of the algorithm increases quadratically in
D, the number of parameters only increases linearly in D.
In the final regularized model of VAR(1)-HSMM, there are
2909 estimated parameters that are nonzero, where 2550 of
them belong to the state-dependent covariance matrices. The
fitted means in both states are centered around zero, and there
exists strong, positive correlation among most of the stocks in
both states. However, the financial returns in state 1 (stable)
seems to satisfy the white noise assumption while there is
some evidence of lag 1 correlation in state 2 (volatile).

In addition, there are other choices of regularization on
the covariance and autoregression matrices. For instance,

graphical LASSO (Yuan and Lin, 2007) could be used on the
state-dependent covariance matrices and SCAD (Fan and Li,
2001) could be used on the autoregression matrices, which
is the strategy adopted by Monbet and Ailliot (2017) in their
VAR-HMM. Another common technique to reduce the num-
ber of parameters in covariance and autoregression matrices
is to make parametric assumptions on their structures, which
will in turn require testing the goodness-of-fit for those as-
sumptions.

Figure 2: Scatter plot and empirical distributions of the fitted
means for the log returns in state 1 (stable) and 2 (volatile).

Figure 3: Scatter plot and empirical distributions of the fitted
variances for the log returns in state 1 (stable) and 2 (volatile).
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